

Welcome

The webinar will begin shortly.

Speakers

What's New in Gurobi 10.0

Tuesday, November 15 11 AM ET/5 PM CET Tuesday, November 22 10 AM ET/4 PM CET

Tobias Achterberg VP of Research & Development

Michel Jaczynski Sr Director of Cloud and Platform R&D

Agenda

New Performance Techniques Platform Features and WLS API and Engine Features Open-Source Github Repositories

New Performance Techniques

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

Gurobi 10.0 Performance Summary

Performance improvements compared to Gurobi 9.5

Algorithm	Overall speed-up	On >100sec models
LP – default	10%	25%
LP – primal simplex	3%	10%
LP – dual simplex	3%	10%
MILP	13%	24%
Convex MIQP	57%	2.4x*
Convex MIQCP	28%	88%*
Non-convex MIQCP	51%	2.6x

* MIQP and MIQCP hard model test sets too small to give reliable benchmark results

Gurobi 10.0 Performance Summary

Performance improvements compared to Gurobi 9.5

Algorithm	Overall speed-up	On >100sec models
LP – default	10%	25%
LP – primal simplex	3%	10%
LP – dual simplex	3%	10%
MILP	13%	24%
Convex MIQP	57%	2.4x*
Convex MIQCP	28%	88%*
Non-convex MIQCP	51%	2.6x

* MIQP and MIQCP hard model test sets too small to give reliable benchmark results

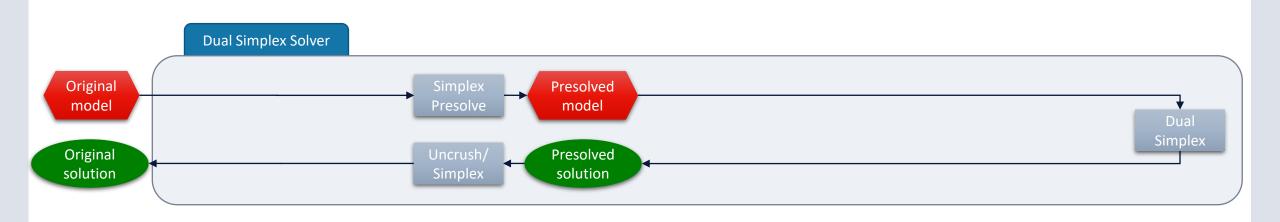
LP Performance

- New network simplex algorithm
- Concurrent LP improvements: concurrent only on the final presolved model
- Crossover improvements
 - Parallel primal pushes
 - Barrier solution adjustment before pushes
- New and improved presolve reductions
 - Extend some MIP reductions to LP, like PreSparsify reduction
 - Handle dual and basis uncrush
 - New value 2 for parameter Aggregate

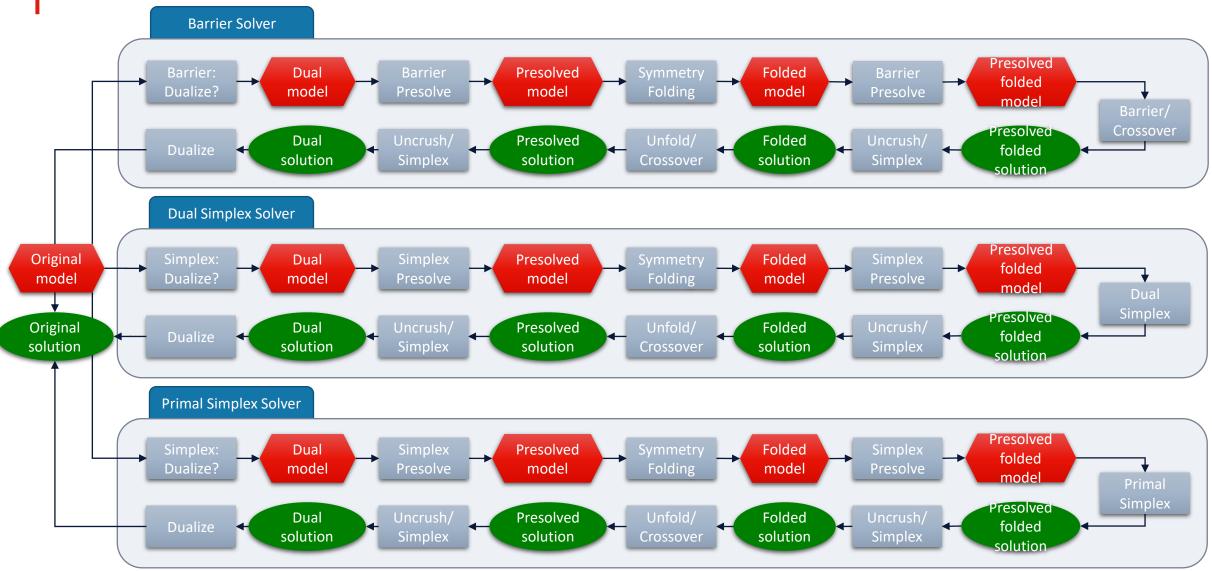
Network Simplex Algorithm

• Problem

- Minimum cost flow
- Can be formulated as an LP and solved by general LP solvers
- Motivation
 - Well-known: often taught at OR, CS and Math courses
 - Well studied: many different algorithms
 - Successive shortest path algorithm
 - Scaling algorithms, polynomial
 - Cost scaling, capacity scaling, double scaling, etc.
 - Network simplex algorithms
 - Primal and dual network simplex
 - Reference: Network Flows, R. Ahuja, T. Magnanti and J. Orlin


Network Simplex Algorithm

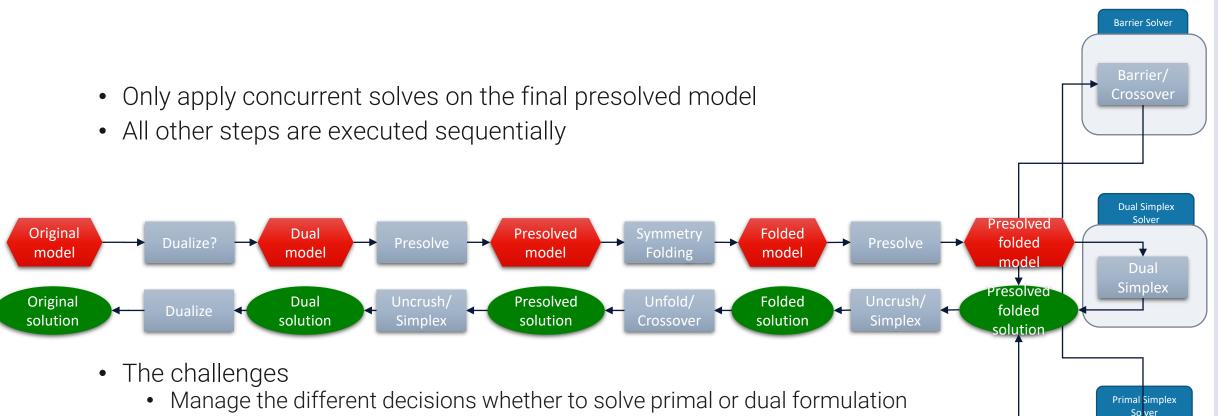
- Gurobi network simplex algorithm
 - Implemented only primal simplex
 - Most challenging parts for the implementation
 - Data structure for spanning tree, i.e., basis
 - Maintain/update spanning tree
- Advantages of primal network simplex over general LP primal simplex
 - Special structure makes computation much faster: about 5x
 - Strong feasible spanning tree: guarantee no cycling
 - Easier to construct special algorithms for initial good spanning tree (basis crash), etc.
 - Performance on our network set
 - Vs. general primal simplex: 36x, about 50% fewer iterations
 - Vs. general dual simplex: 3.9x, about 10x more iterations
- Dual network simplex
 - Not implemented: similar difficulty to implement, maybe a bit harder
 - Don't know any simple nice way to guarantee no cycling
 - Still expect to be faster than primal network algorithm



Concurrent LP Algorithms: Gurobi 9.5

Concurrent LP Algorithms: Gurobi 9.5

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11


Concurrent LP Algorithms: Gurobi 9.5

- Make a model copy for each concurrent job
 - Often takes a lot of memory
- Each job, primal simplex, dual simplex or barrier, will apply all the steps independently
 - Each step is performed by a concurrent job concurrently
- Concurrently running jobs can slow down computation significantly
 - Depending on machines and the size of a model, it can be 30% 60% slowdown

Concurrent LP Algorithms: Gurobi 10.0

- Manage presolve difference between simplex and barrier
- The speedup for large models is often much more than 10%
- Now it uses much less memory
 - depends on the presolve sizes instead of the original sizes

Primal

Gurobi 10.0 Performance Summary

Performance improvements compared to Gurobi 9.5

Algorithm	Overall speed-up	On >100sec models		
LP – default	10%	25%		
LP – primal simplex	3%	10%		
LP – dual simplex	3%	10%		
MILP	13%	24%		
Convex MIQP	57%	2.4x*		
Convex MIQCP	28%	88%*		
Non-convex MIQCP	51%	2.6x		

* MIQP and MIQCP hard model test sets too small to give reliable benchmark results

MIP Performance

- Various strong branching improvements
- Several symmetry improvements
- Disabling inactive cuts for relaxations while diving
- Aggressive settings for solving sub-MIPs
- New presolve reductions and improvements
- Concurrent LP improvement and tuning for relaxations
- Aggressive VUB merging using cliques
- Optimization-based bound tightening (OBBT)
 - Helps MIQP/MIQCP/MINLP more, will be discussed later
- Various improvements for machine learning models
 - Will be discussed in the part for open-source Github repositories

Strong Branching Improvements

- Strong branching
 - Select a set of fractional binary/integer variables
 - For each variable, perform certain number of dual iterations for down and up branches
 - Use the objective changes for both branches for selecting branching variable
- Improvements in Gurobi 10
 - Strong branching is very expensive, do less while keeping good quality
 - "Look ahead": abort after *n* successive candidates tried without new best candidate
 - Use symmetry to skip symmetric candidates
 - Combined with implications from branching down or up
 - Propagate implied bounds
 - Propagate cliques
 - Propagate SOS constraints
 - Tuned decision on how often to apply strong branching
 - Various other tweaks

Gurobi 10.0 Performance Summary

Performance improvements compared to Gurobi 9.5

Algorithm	Overall speed-up	On >100sec models
LP – default	10%	25%
LP – primal simplex	3%	10%
LP – dual simplex	3%	10%
MILP	13%	24%
Convex MIQP	57%	2.4x*
Convex MIQCP	28%	88%*
Non-convex MIQCP	51%	2.6x

* MIQP and MIQCP hard model test sets too small to give reliable benchmark results

MIQP/MIQCP Performance

- New QUBO heuristic
- Perspective strengthening
- Move Q objective terms to constraints
- Work limit adjustment for QC fixing heuristics
- Strengthening coefficients of binary variables in quadratic constraints
- Fix binary in certain order for heuristics
- Solve set covering problem to select linearization
- Remove common variables
- Optimization-based bound tightening (OBBT)
- Many MIP improvements also apply

New QUBO Heuristic

- Two types of heuristics
 - Construction: create a new solution
 - Improvement: improve an existing solution
- QUBO heuristic in Gurobi 9.5
 - Tabu search improvement heuristic
 - Start from a random start point
 - Local improvement is easy for QUBO
 - No constraints
- New QUBO heuristic in Gurobi 10.0
 - Rank-2 relaxation heuristic construction heuristic
 - Burer, Monteiro, and Zhang, Rank-Two Relaxation Heuristics for Max-Cut and Other Binary Quadratic Programs

New QUBO Heuristic

- Good to have both
 - Neighborhood search can be defeated when good solutions are far apart
 - Particularly important when constraints are captured as penalties
- Our computational results
 - Able to find good solution for QUBO problems quickly
 - Also, able to reduce optimization time significantly, which is rare for heuristics

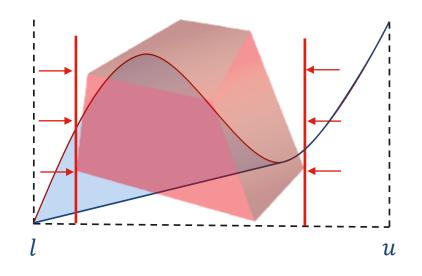
Gurobi 10.0 Performance Summary

Performance improvements compared to Gurobi 9.5

Algorithm	Overall speed-up	On >100sec models		
LP – default	10%	25%		
LP – primal simplex	3%	10%		
LP – dual simplex	3%	10%		
MILP	13%	24%		
Convex MIQP	57%	2.4x*		
Convex MIQCP	28%	88%*		
Non-convex MIQCP	51%	2.6x		

* MIQP and MIQCP hard model test sets too small to give reliable benchmark results

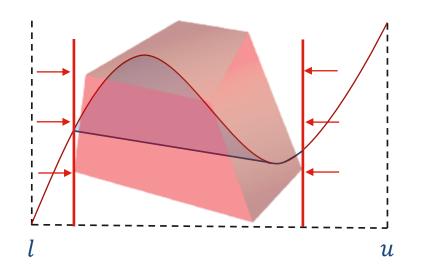
Non-convex MIQCP Performance


- Optimization-based bound tightening (OBBT)
- Dealing explicitly with bipartite graphs in the product term covering
- Improvement on NLP heuristic termination
- NLP heuristic multi-start
- Many MIP and convex MIQCP improvements also apply

Optimization Based Bound Tightening

- Given the LP relaxation of a (non-convex) MI(NL)P
- For each variable *x*
 - Minimize/maximize x value over relaxation
 - Use optimal value as lower/upper bound for x
 - Tighten coefficients of relaxation using new bounds
- Enhancements for OBBT (Gleixner et al. 2017)
 - Filter variables
 - Exploit warm starts
 - Use dual solution of OBBT LPs to tighten bounds in the tree.

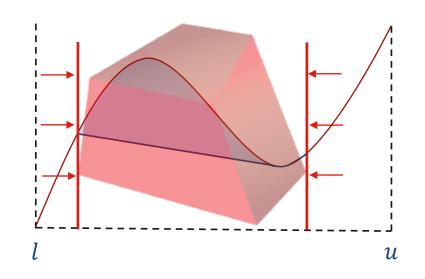
e.g.: $\operatorname{conv}(y \ge f(x): l \le x \le u) \cap X$



Optimization Based Bound Tightening

- Given the LP relaxation of a (non-convex) MI(NL)P
- For each variable *x*
 - Minimize/maximize x value over relaxation
 - Use optimal value as lower/upper bound for x
 - Tighten coefficients of relaxation using new bounds
- Enhancements for OBBT (Gleixner et al. 2017)
 - Filter variables
 - Exploit warm starts
 - Use dual solution of OBBT LPs to tighten bounds in the tree

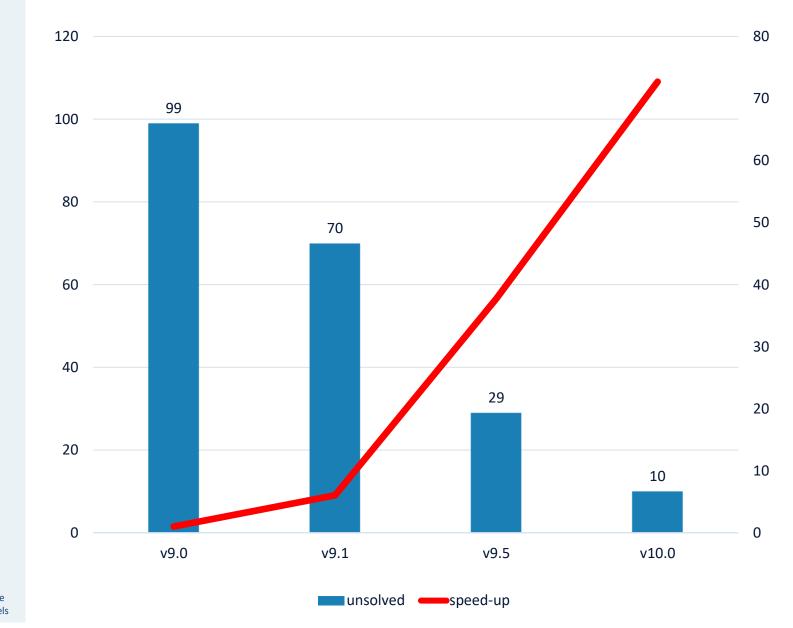
e.g.: $\operatorname{conv}(y \ge f(x): l \le x \le u) \cap X$



Optimization Based Bound Tightening

- For non-convex MIQCP:
 - 14% improvement overall
 - 33% improvement on models solved in ≥ 100 sec.
- For MIP, additional improvements:
 - Detect variables that influence big-M coefficients
 - Group those in clusters
 - Do OBBT, within each cluster and propagate
 - Aimed at Neural network with ReLU structures (inspired by Fischetti, Jo 2017)
 - Modest average improvement MIP/MIQP/MIQCP: 1%
 - But big improvement on certain of models (NN with ReLU)

e.g.: $\operatorname{conv}(y \ge f(x): l \le x \le u) \cap X$



Non-convex MIQCP

Performance Evolution

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 874 models: - 38 discarded due to inconsistent answers - 308 discarded that none of the versions can solve - speed-up measured on >100s bracket: 205 models

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 26

New Features

Platform Components and WLS

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

New Platform Features

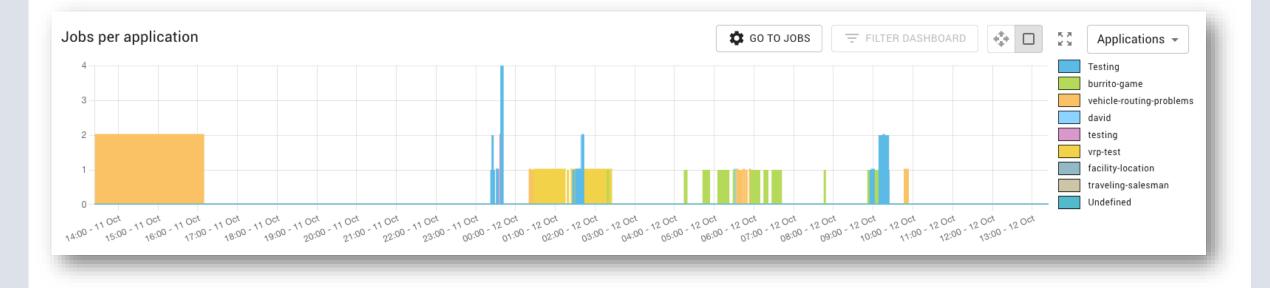
Gurobi Cluster Manager 10.0

- Cluster Manager/Compute Server
 - Client-server architecture
 - Web UI, security, optimization nodes
- New dashboards in Cluster Manager
 - The job dashboard
 - The node dashboard
- Easier to understand application behavior and node usage

.	Cluster jobs												
	8 Outur	\$	Clus	ster jobs (49)	0				T Alpha		×	Q. Search jo	ba table X
	0	0		STARTED AT \div	USERNAME	OPTIMIZATION STATUS	VERSION	APP	BATCH	DURATION	APITYPE	ALGORITHM	■ A8087
	History	0	0	11/17/2021 5:52:22 AM	ood	OPTIMAL	9.5.0	facility/i	ocation	01	Python	MIP	L06
		0	0	11/16/2021 4/27/22 PM	out	OPTIMAL	95.0	traveling	salesma		Python	MIP	1.05
			0	11/16/2921 4:27.15 PM	out	OPTIMAL	9.5.0	traveling	salesma	04	Python	MIP	L06
		0	0	11/16/2021 4/27/06 PM	and	OPTIMAL	9.5.0	traveling	saleuma	01	Python	145P	1000
			INFO	та	ADLINE.	CLIENT	57	ATUS	MODEL	1417		PRAAMETERS	
			40a5f-	668F4962-ac#F6c	054643113		9104 340	r prup placene	Cisped				
				2.32.61000		Pustine 9.5.0			Printly				
		Node address					Priorit	Priority of the Job					

Job Dashboard

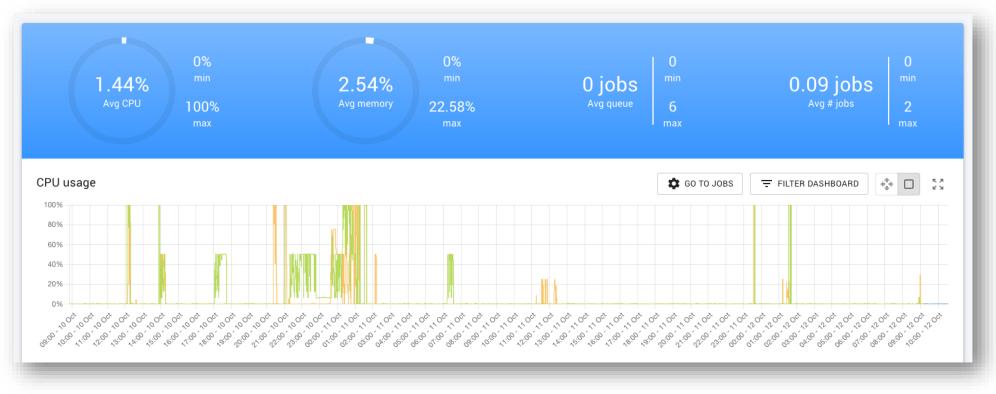
Gurobi Cluster Manager 10.0


🛱 Jobs 🕐			
302 Total jobs	9h48min Total execution time	Active applications	5 Active users
Job statuses COMPLETED 289 jobs	Active applications		count - Job count -
ABORTED 9 jobs DISCONNECTED 4 jobs	Testing 204 jobs burrito-game 68 jobs vehicle-routing-problems 16 jobs david 4 jobs	heinz 204 jc oad 70 jot ruthmair 19 jot mars 5 jobs	bs 9.5.2 84 jobs
Solve statuses	testing 4 jobs	david.torres-sanchez 4 jobs	S
OPTIMAL 134 jobs INIT 128 jobs COMPLETED 21 jobs	facility-location 1 job Undefined 1 job		
INF_OR_UNBD 8 jobs OPTIMIZING 7 jobs			
INTERRUPTED 2 jobs LOADED 2 jobs			

- Predefined filters for last 24h, 7 days or 30 days
 - More filtering available
- Global metrics
 - number of jobs, execution time, active application, active users

- Distribution by several dimensions
 - Job and solve statuses, applications, users, runtimes
 - Drill down to job list

Job Dashboard Gurobi Cluster Manager 10.0


- Timeline by several dimensions
 - Applications, Job/Solve statuses, Users, Runtime and solve times
 - Zoom and pan over time
 - Legend and colors to differentiate values

- Drilldown
 - Go to the job list of the selected period
 - Filter the dashboard with the selected period

Node Dashboard

Gurobi Cluster Manager 10.0

- Predefined filters for last 24h, 7 days or 30 days
- Global metrics
 - CPU, Memory,
 - Job in queue and running

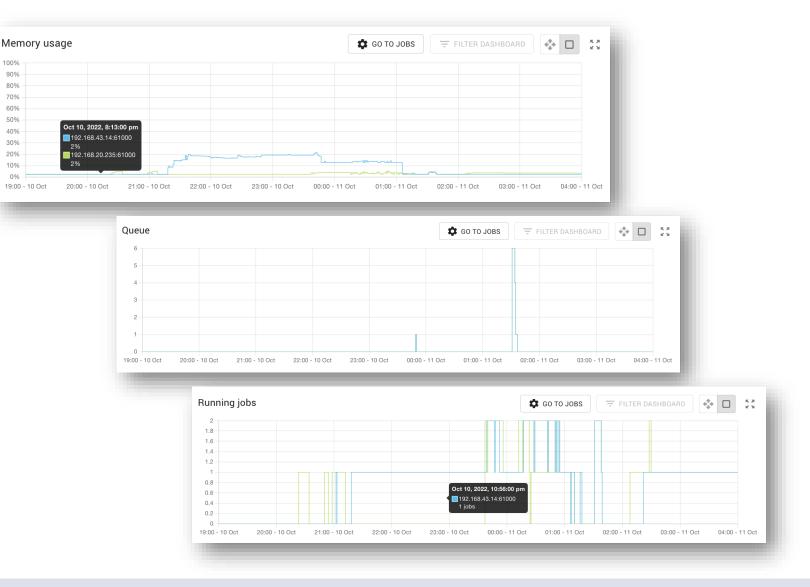
Node Dashboard

Gurobi Cluster Manager 10.0

- Timeline
 - CPU usage
 - Memory usage

100% 90% 80% 70%

> 60% 50%

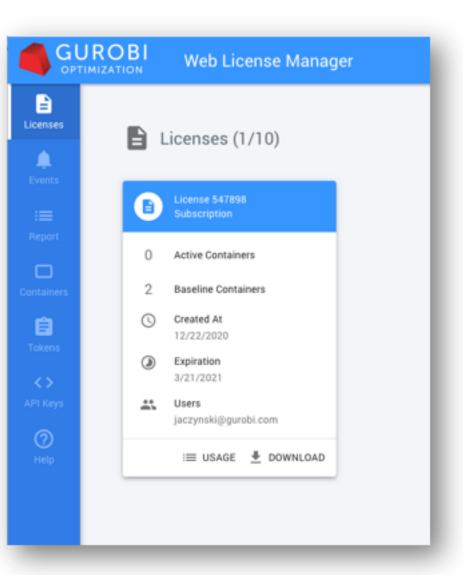

> 40%

30%

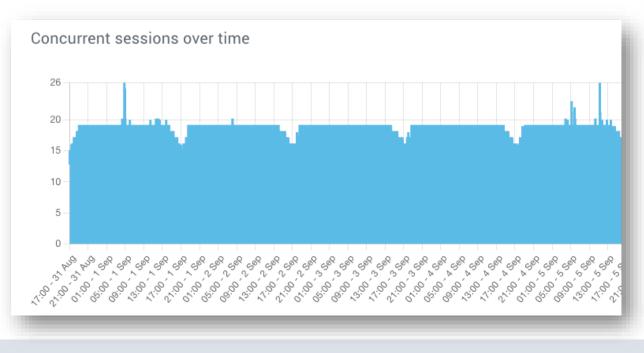
20% 10%

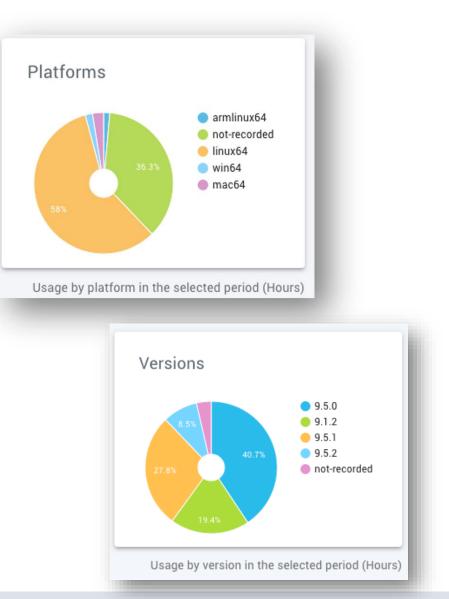
0%

- Job in queue
- Running jobs
- Drilldown
 - Zoom, pan
 - Node selection



New WLS Deployment Types


Gurobi 10.0 – Web License Service


- Licensing service introduced with Gurobi 9.5
 - Servers are running in several regions worldwide
 - Dynamically activates the use of Gurobi
- Gurobi 10 supports different deployment types:
 - Containers only (Docker, Kubernetes) as in 9.5
 - Machines only (Linux, Windows, Mac)
 - Containers and Machines
- WLS licenses can now be used for any deployment scenario

New WLS Reports and Features Gurobi 10.0 – Web License Service

- The WLS manager reports new metrics:
 - Platforms
 - Versions
 - Sessions over time
- Explicit user control on token refresh intervals

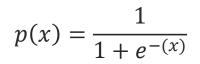
n n

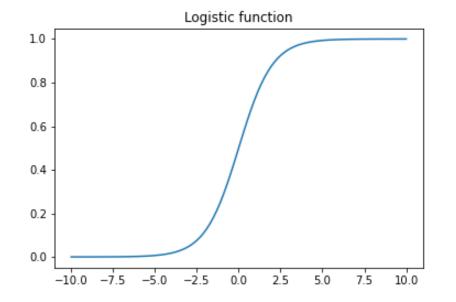
New Features

API and Engine

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 35

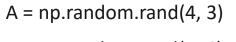
Gurobi 10.0 – Engine Product Features




- New logistic general constraint
 - Makes it easy to incorporate a constraint in MIP that models the logistic function
 - Logistic function has various applications, including ecology, statistics, machine ٠ learning, medicine, chemistry, and others
- Greatly improved the matrix-friendly API of gurobipy
 - All modeling objects now support multiple dimensions
 - Dimension handling leans consistently on NumPy, including broadcasting
- NuGet package for .NET
 - Allows .NET users to download Gurobi directly from NuGet server
- Memory limit parameter that allows graceful exit
 - User can set a memory limit and still get best solution and resume optimization after limit was hit

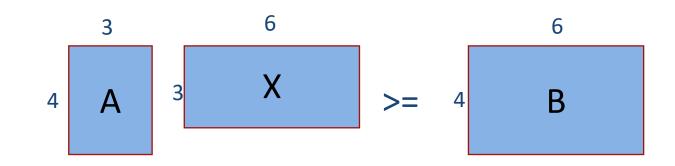
Logistic General Constraint

- Function constraints in Gurobi
 - Allow to state y = f(x)
 - *f* is a predefined function
 - *y* and *x* are one-dimensional variables
 - Gurobi automatically performs a piecewise-linear approximation of *f* in the domain of *x*.
- Added logistic function to our set of predefined *f*.



- Up to version 9.5 support for multi-dimensional modeling was limited
- With version 10.0:
 - All of MVar, MLinExpr and MQuadExpr support arbitrary dimensions
 - Adding constraints from such expressions yield multidimensional MConstr/MQConstr

2-D linear constraint


B = np.random.rand(4, 6)

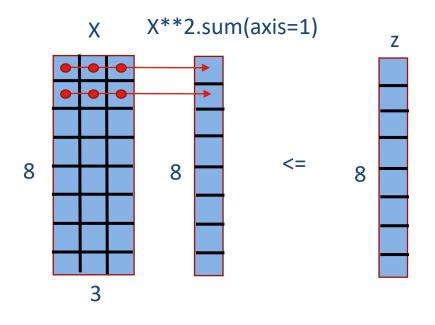
X = model.addMVar((3, 6))

model.setObjective(X.sum())

Add 4*6=24 linear constraints

mc = model.addConstr(A @ X >= B)

- Up to version 9.5 support for multi-dimensional modeling was limited
- With version 10.0:
 - All of MVar, MLinExpr and MQuadExpr support arbitrary dimensions
 - Adding constraints from such expressions yield multidimensional MConstr/MQConstr

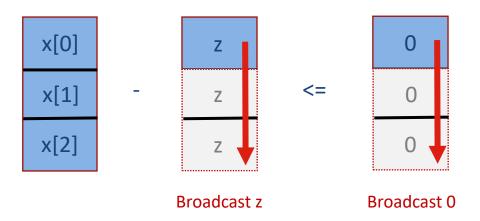

1-D quadratic constraint

X = model.addMVar((8, 3), lb=-np.inf)

z = model.addMVar(8)

Add eight standard cones

model.addConstr((X**2).sum(axis=1) <= z**2)</pre>



Gurobipy Broadcasting

- Up to version 9.5: Dimensions had to agree for most operations
- With version 10.0: Embrace NumPy's broadcasting
 - All of MVar, MLinExpr and MQuadExpr can be broadcast
 - Operations with scalars, ndarrays and scipy.sparse matrices support broadcasting

Vectorized VUB constraints

x = model.addMVar(3, ub=1.0)
z= model.addMVar((), vtype='B')
three VUB constraints x[i] - z <= 0
model.addConstr(x - z <= 0)</pre>

Gurobipy Other new matrix-friendly features/methods

• General

- Fewer surprises for experienced NumPy users wrt shapes of operation results
- Support both matrix and element-wise multiplication
- MVar
 - Extract a diagonal from an MVar X : X.diagonal(offset).
 - Convert a list of Var objects to an MVar: x = MVar.fromlist(varlist)
 - Sum along an axis of an MVar X: X.sum(axis=...)
 - Elementwise squaring of an Mvar X: pow(X, 2), X**2
- MLinExpr
 - All-zero expression: MLinExpr.zeros(shape)
 - Sum along an axis of an MLinExpr mle: mle.sum(axis=...)
- New class MQuadExpr
 - For modeling multidimensional quadratic constraints
 - Similar features/methods as MLinExpr
- New class MQConstr
 - Multi-dimensional constraint handle returned from model.addConstr(...) for quadratic expressions
 - Similar features/methods as MConstr

Open-Source GitHub Repositories

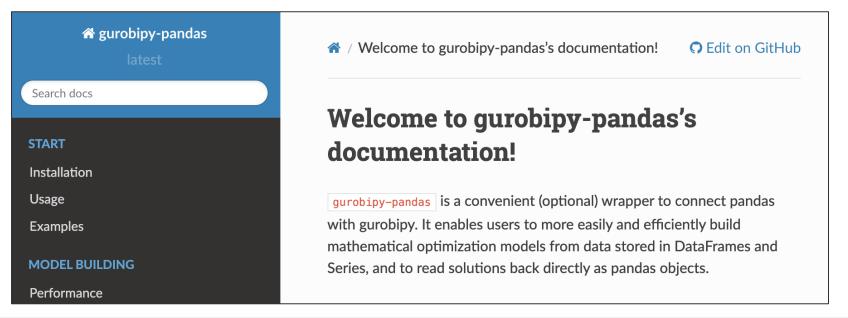
n ng ng

Gurobi 10.0 – Open-Source GitHub Repositories

- gurobipy-pandas
 - Enables convenient gurobipy model building patterns with pandas
- Gurobi Machine Learning
 - Allows users to add a trained machine learning model as constraint to a MIP
- Later this year or next year
 - Gurobi OptiMods
 - Collection of simple to use optimization modules for specific applications
 - Targets users who do not understand math modeling and just want to get solution to their problem
 - Numerical issues assessment tool*
 - Allows users to analyze models with numerical issues to find out root cause of such issues
- Gurobi GitHub projects: <u>https://github.com/Gurobi/</u>
 - Distributed as open-source under Apache License 2.0

*final name to be determined

Gurobipy and pandas


Easier model building with the popular Python data analytics package

- Create pandas Series and DataFrames of Gurobi variables
- Use pandas operations to combine variables and data into constraints
- Extract solution data as pandas Series
- No need to manually translate between pandas and gurobipy!

Gurobipy and pandas Documentation and examples for users of the PyData stack

- Open source, with documentation available on readthedocs.com
 - Github repository: <u>https://github.com/gurobi/gurobipy-pandas</u>
 - Documentation: <u>https://gurobi-optimization-gurobipy-pandas.readthedocs-hosted.com</u>
- Complete model building examples as Jupyter notebooks
- Guidance for writing performant gurobipy-pandas code

Gurobi Machine Learning Our Goals

- Simplify the process of importing a trained machine learning model built with a popular ML package into an optimization model.
- Improve algorithmic performance to enable the optimization model to explore a sizable space of solutions that satisfy the variable relationships captured in the ML model.
- Make it easier for optimization models to mix explicit and implicit constraints.

Other similar packages:

- Janos (Bergman et. al, 2019)
- ReLU_MIP (Lueg et. al, 2021)
- OptiCL (Maragno et.al, 2021)
- OMLT (Ceccon et. al, 2022)

Gurobi Machine Learning

Regression Models Understood

- Linear/Logistic regression
- Decision trees
- Neural network with ReLU activation
- Random Forests
- Gradient Boosting trees
- Transformations:
 - Simple scaling of features
 - Polynomial features of degree 2
 - One Hot encoder
- Pipelines to combine them

- Dense layers
- ReLU layers
- Object Oriented, functional or sequential

O PyTorch

- Dense layers
- ReLU layers
- Only torch.nn.Sequential models

Gurobi Machine Learning Example Usage

- Say have trained the following regression with scikit-learn: pipeline = make_pipeline(StandardScaler(), MLPRegressor([10]*2)) pipeline.fit(X_train, y_train)
- Embedding into a Gurobi model

```
m = gp.Model()
```

```
# Add matrix variables for the regression
```

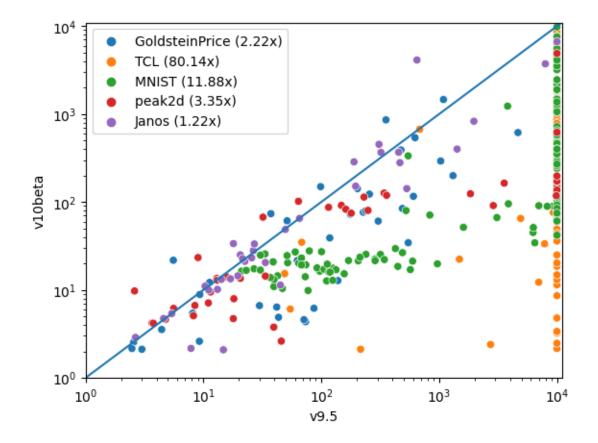
```
input = m.addMVar((n_constr, X_train.shape[1]), lb=-GRB.INFINITY)
```

```
output = m.addMVar(n_constr, lb=-gp.GRB.INFINITY)
```

```
# Add predictor constraint
```

```
pred_constr = add_predictor_constr(m, pipeline, input, output)
```

Gurobi Machine Learning



Benchmarks

- Test Set
 - Function approximation:
 - Goldstein-Price function (60 instances)
 - Peak function (60 instances)
 - Janos (Bergman et.al. 2019): 500 predictor constraints with 3 features
 - TCL (Amasyali et.al. 2022): Application in electrical engineering find valid input/output within bounds minimizing costs
 - Adversarial machine learning on MNIST: 119 instance trained by tensorflow and 90 trained by scikit-learn
- Setup
 - Models solved on Intel(R) Xeon(R) CPU E3-1240 CPUs, 4 cores, 4 threads
 - Time limit 10,000 seconds
 - Models with logistic regression excluded
 - Models not solved by any in the time limit excluded

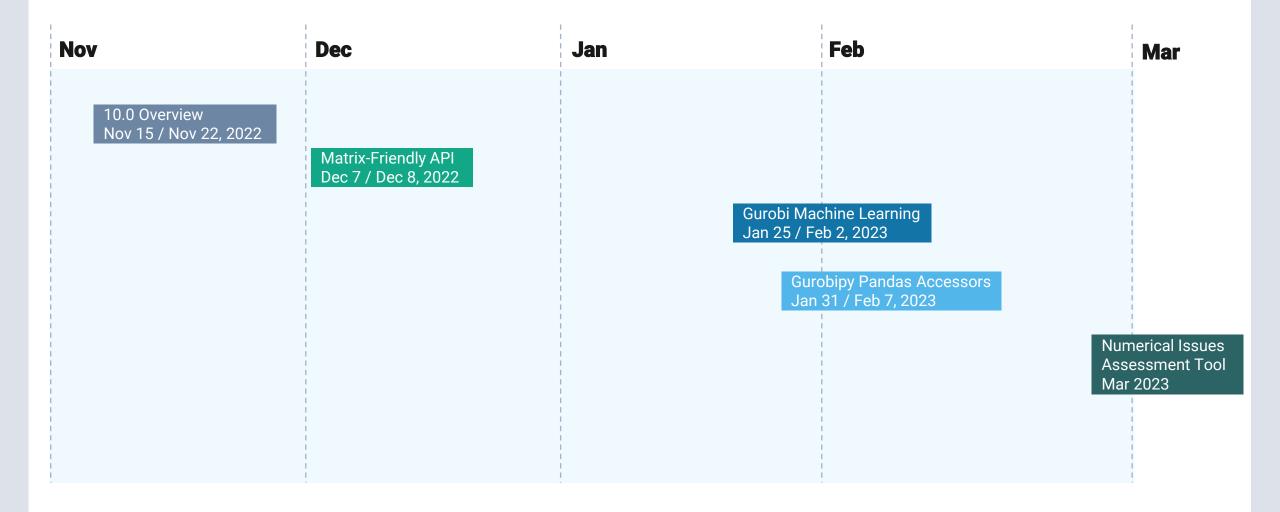
Gurobi Machine Learning Gurobi 9.5 vs Gurobi 10.0

Gurobi Machine Learning

- Github repository: <u>https://github.com/Gurobi/gurobi-machinelearning</u>
- Documentation: <u>https://gurobi-machinelearning.readthedocs.io</u>

Gurobi Machine Learning

Gurobi Machine Learning is an open-source python package to embed trained regression models in a gurobipy model to be solved with the Gurobi solver.


© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

10.0 Webinar Series

GUROBI OPTIMIZATION

Deep Dives into Features and Enhancements

Thank You

an an