[Webinar Recording] Adding Optimization to Your Data Science Analytics Toolkit

Mathematical optimization, specifically Mixed Integer Programming (MIP), is a technology that is used to solve a large variety of problems within multiple industries, including supply chain planning, electrical power generation and distribution, computational finance, sports scheduling, and many more.

This powerful technology is complementary to Machine Learning and should be a part of every data scientist’s analytics toolbox. In this webinar, you will learn:

  • The basics of optimization and MIP
  • How to identify optimization problems within your organization
  • When to use MIP vs Artificial Intelligence (AI) when developing a prescriptive analytics solution for your business problem
  • How MIP can be used as a complementary technique to Machine Learning

We present real-world examples of Machine Learning and optimization in action, illustrating the value it can bring to your organization. We will also provide you with the next steps on how to get started with optimization as well as available resources.

Presenting this webinar are Dr. Gwyneth Butera (Sr. Support Engineer, Gurobi Optimization), and Dr. Russell Halper (Principal, End-to-End Analytics).

You can download the webinar recording and slides below