Try our new documentation site (beta).
ConcurrentJobs
Distributed concurrent optimizer job count
Type: | int |
---|---|
Default value: | 0 |
Minimum value: | 0 |
Maximum value: | MAXINT |
Enables distributed concurrent optimization, which can be used
to solve LP or MIP models on multiple machines.
A value of n
causes the
solver to create n
independent models, using different
parameter settings for each. Each of these models is sent to a
distributed worker for processing. Optimization terminates when the first
solve completes. Use the
WorkerPool parameter to
provide a list of available distributed workers.
By default, Gurobi chooses the parameter settings used for each independent solve automatically. You can create concurrent environments to choose your own parameter settings (refer to the concurrent optimization section for details). The intent of concurrent MIP solving is to introduce additional diversity into the MIP search. By bringing the resources of multiple machines to bear on a single model, this approach can sometimes solve models much faster than a single machine.
The distributed concurrent solver produces a slightly different log from the standard solver, and provides different callbacks as well. Please refer to the Distributed Algorithm discussion for additional details.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.