Changing parameters
Rather than continuing optimization on a difficult model like
glass4
, it is sometimes useful to try different parameter
settings. When the lower bound moves slowly, as it does on this
model, one potentially useful parameter is MIPFocus
, which
adjusts the high-level MIP solution strategy. Let us now set this
parameter to value 1, which changes the focus of the MIP search to
finding good feasible solutions. There are two ways to change the
parameter value. You can either use method m.setParam():
gurobi> m.setParam('MIPFocus', 1) Changed value of parameter MIPFocus to 1 Prev: 0 Min: 0 Max: 3 Default: 0...or you can use the
m.Params
class...
gurobi> m.Params.MIPFocus = 1 Changed value of parameter MIPFocus to 1 Prev: 0 Min: 0 Max: 3 Default: 0Once the parameter has been changed, we call m.reset() to reset the optimization on our model and then m.optimize() to start a new optimization run:
gurobi> m.reset() gurobi> m.optimize() Optimize a model with 396 rows, 322 columns and 1815 nonzeros Variable types: 20 continuous, 302 integer (0 binary) Coefficient statistics: Matrix range [1e+00, 8e+06] Objective range [1e+00, 1e+06] Bounds range [1e+00, 8e+02] RHS range [1e+00, 8e+06] Found heuristic solution: objective 2.40002e+09 Presolve removed 4 rows and 5 columns Presolve time: 0.00s Presolved: 392 rows, 317 columns, 1815 nonzeros Variable types: 19 continuous, 298 integer (298 binary) Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds Nodes | Current Node | Objective Bounds | Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time 0 0 8.0000e+08 0 72 2.4000e+09 8.0000e+08 66.7% - 0s H 0 0 2.283353e+09 8.0000e+08 65.0% - 0s H 0 0 2.283353e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 72 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 72 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 72 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 72 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 72 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 88 2.2834e+09 8.0000e+08 65.0% - 0s 0 0 8.0000e+08 0 71 2.2834e+09 8.0000e+08 65.0% - 0s H 0 0 2.100018e+09 8.0000e+08 61.9% - 0s H 0 2 2.075016e+09 8.0000e+08 61.4% - 0s 0 2 8.0000e+08 0 70 2.0750e+09 8.0000e+08 61.4% - 0s H 3 8 1.950016e+09 8.0000e+08 59.0% 47.3 0s H 148 134 1.933349e+09 8.0000e+08 58.6% 4.2 0s H 285 288 1.900014e+09 8.0000e+08 57.9% 4.2 0s H 286 288 1.825015e+09 8.0000e+08 56.2% 4.2 0s H 286 286 1.733347e+09 8.0000e+08 53.8% 4.2 0s H 300 282 1.733347e+09 8.0000e+08 53.8% 4.2 1s H 312 295 1.700014e+09 8.0000e+08 52.9% 4.4 1s H 340 315 1.700014e+09 8.0000e+08 52.9% 4.7 1s H 356 324 1.666680e+09 8.0000e+08 52.0% 4.6 1s H 396 383 1.666680e+09 8.0000e+08 52.0% 4.6 1s H 615 524 1.633347e+09 8.0000e+08 51.0% 4.4 1s 1936 1388 1.2500e+09 58 42 1.6333e+09 9.0000e+08 44.9% 8.6 5s H 3651 2060 1.540012e+09 9.0001e+08 41.6% 9.4 7s H 4900 2566 1.480013e+09 9.0001e+08 39.2% 10.1 9s 4985 2616 1.0295e+09 65 52 1.4800e+09 9.0001e+08 39.2% 10.3 11s Interrupt request received Cutting planes: Gomory: 51 Cover: 1 Implied bound: 69 MIR: 11 Flow cover: 221 Explored 5508 nodes (62529 simplex iterations) in 11.39 seconds Thread count was 8 (of 8 available processors) Solution count 10: 1.48001e+09 1.54001e+09 1.63335e+09 ... 1.82501e+09 Solve interrupted Best objective 1.480012800002e+09, best bound 9.000054375256e+08, gap 39.1893%
Results are consistent with our expectations. We find a better
solution sooner by shifting the focus towards finding feasible
solutions (objective value 1.525e9
versus 1.6e9
).
The setParam() method is designed to be quite flexible and forgiving. It accepts wildcards as arguments, and it ignores character case. Thus, the following commands are all equivalent:
gurobi> m.setParam('NODELIMIT', 100) gurobi> m.setParam('NodeLimit', 100) gurobi> m.setParam('Node*', 100) gurobi> m.setParam('N???Limit, 100)You can use wildcards to get a list of matching parameters:
gurobi> m.setParam('*Cuts', 2) Matching parameters: ['Cuts', 'CliqueCuts', 'CoverCuts', 'FlowCoverCuts', 'FlowPathCuts', 'GUBCoverCuts', 'ImpliedCuts', 'MIPSepCuts', 'MIRCuts', 'ModKCuts', 'NetworkCuts', 'SubMIPCuts', 'ZeroHalfCuts']
Note that Model.Params
is a bit less forgiving than
setParam(). In particular, wildcards are not allowed
with this approach. You don't have to worry about capitalization of
parameter names in either approach, though, so
m.Params.Heuristics
and m.Params.heuristics
are
equivalent.
The full set of available parameters can be browsed using the
paramHelp() command. You can obtain further information on a
specific parameter (e.g., MIPGap
) by typing
paramHelp('MIPGap')
.