Documentation

Changing parameters

Rather than continuing optimization on a difficult model like glass4, it is sometimes useful to try different parameter settings. When the lower bound moves slowly, as it does on this model, one potentially useful parameter is MIPFocus, which adjusts the high-level MIP solution strategy. Let us now set this parameter to value 1, which changes the focus of the MIP search to finding good feasible solutions. There are two ways to change the parameter value. You can either use method m.setParam():

gurobi> m.setParam('MIPFocus', 1)
Changed value of parameter MIPFocus to 1
   Prev: 0   Min: 0   Max: 3   Default: 0
...or you can use the m.Params class...
gurobi> m.Params.MIPFocus = 1
Changed value of parameter MIPFocus to 1
   Prev: 0   Min: 0   Max: 3   Default: 0
Once the parameter has been changed, we call m.reset() to reset the optimization on our model and then m.optimize() to start a new optimization run:
gurobi> m.reset()
Discarded solution information
gurobi> m.optimize()
Gurobi Optimizer version 9.0.0 build v9.0.0rc0 (linux64)
Optimize a model with 396 rows, 322 columns and 1815 nonzeros
Model fingerprint: 0x541d0ad3
Variable types: 20 continuous, 302 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+06]
  Objective range  [1e+00, 1e+06]
  Bounds range     [1e+00, 8e+02]
  RHS range        [1e+00, 8e+06]
Presolve removed 4 rows and 5 columns
Presolve time: 0.00s
Presolved: 392 rows, 317 columns, 1815 nonzeros
Variable types: 19 continuous, 298 integer (298 binary)
Found heuristic solution: objective 3.133356e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 8.0000e+08    0   72 3.1334e+09 8.0000e+08  74.5%     -    0s
H    0     0                    2.400019e+09 8.0000e+08  66.7%     -    0s
H    0     0                    2.220019e+09 8.0000e+08  64.0%     -    0s
     0     0 8.0000e+08    0   72 2.2200e+09 8.0000e+08  64.0%     -    0s
H    0     0                    2.166685e+09 8.0000e+08  63.1%     -    0s
     0     0 8.0000e+08    0   72 2.1667e+09 8.0000e+08  63.1%     -    0s
     0     0 8.0000e+08    0   77 2.1667e+09 8.0000e+08  63.1%     -    0s
H    0     0                    2.133351e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   80 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   80 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   83 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   78 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   83 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   83 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   88 2.1334e+09 8.0000e+08  62.5%     -    0s
     0     0 8.0000e+08    0   66 2.1334e+09 8.0000e+08  62.5%     -    0s
H    0     0                    2.050017e+09 8.0000e+08  61.0%     -    0s
     0     2 8.0000e+08    0   65 2.0500e+09 8.0000e+08  61.0%     -    0s
H    1     4                    2.050017e+09 8.0000e+08  61.0%  74.0    0s
H    6     8                    2.000016e+09 8.0000e+08  60.0%  41.8    0s
H  130   128                    1.700015e+09 8.0000e+08  52.9%  12.7    0s
H  199   203                    1.644459e+09 8.0000e+08  51.4%  10.8    0s
H  213   213                    1.644459e+09 8.0000e+08  51.4%  10.8    1s
H  244   269                    1.633347e+09 8.0001e+08  51.0%  11.0    1s
  1428  1027 1.5333e+09   40   44 1.6333e+09 8.0001e+08  51.0%  15.5    5s
  3138  1602 1.3750e+09   58   22 1.6333e+09 8.0001e+08  51.0%  20.5   10s
* 4233  2185              66    1.600017e+09 8.0001e+08  50.0%  21.5   12s
* 4238  2082              67    1.550017e+09 8.0001e+08  48.4%  21.5   12s
H 4308  2026                    1.500016e+09 8.0001e+08  46.7%  21.6   14s
  4457  2226 1.1000e+09   36   65 1.5000e+09 8.0001e+08  46.7%  22.6   15s
H 4809  2136                    1.450016e+09 8.0001e+08  44.8%  23.4   16s
H 4908  2043                    1.400013e+09 8.0001e+08  42.9%  23.9   17s
H 5098  2027                    1.350013e+09 8.0001e+08  40.7%  24.8   18s
H 5282  1752                    1.200013e+09 8.0001e+08  33.3%  25.7   18s

Interrupt request received

Cutting planes:
  Gomory: 37
  Cover: 9
  Implied bound: 41
  MIR: 51
  Flow cover: 266
  RLT: 107
  Relax-and-lift: 99

Explored 5332 nodes (140122 simplex iterations) in 19.00 seconds
Thread count was 8 (of 8 available processors)

Solution count 10: 1.20001e+09 1.35001e+09 1.40001e+09 ... 1.64446e+09

Solve interrupted
Best objective 1.200012600000e+09, best bound 8.000066838804e+08, gap 33.3335%

Results are consistent with our expectations. We find a better solution sooner by shifting the focus towards finding feasible solutions (objective value 1.2e9 versus 1.5e9).

The setParam() method is designed to be quite flexible and forgiving. It accepts wildcards as arguments, and it ignores character case. Thus, the following commands are all equivalent:

gurobi> m.setParam('NODELIMIT', 100)
gurobi> m.setParam('NodeLimit', 100)
gurobi> m.setParam('Node*', 100)
gurobi> m.setParam('N???Limit, 100)
You can use wildcards to get a list of matching parameters:
gurobi> m.setParam('*Cuts', 2)
Matching parameters: ['Cuts', 'CliqueCuts', 'CoverCuts', 'FlowCoverCuts',
'FlowPathCuts', 'GUBCoverCuts', 'ImpliedCuts', 'MIPSepCuts', 'MIRCuts', 'ModKCuts',
'NetworkCuts', 'SubMIPCuts', 'ZeroHalfCuts']

Note that Model.Params is a bit less forgiving than setParam(). In particular, wildcards are not allowed with this approach. You don't have to worry about capitalization of parameter names in either approach, though, so m.Params.Heuristics and m.Params.heuristics are equivalent.

The full set of available parameters can be browsed using the paramHelp() command. You can obtain further information on a specific parameter (e.g., MIPGap) by typing paramHelp('MIPGap').