Try our new documentation site (beta).


diet.py


#!/usr/bin/env python3.7

# Copyright 2021, Gurobi Optimization, LLC

# Solve the classic diet model, showing how to add constraints
# to an existing model.

import gurobipy as gp
from gurobipy import GRB


# Nutrition guidelines, based on
# USDA Dietary Guidelines for Americans, 2005
# http://www.health.gov/DietaryGuidelines/dga2005/

categories, minNutrition, maxNutrition = gp.multidict({
    'calories': [1800, 2200],
    'protein':  [91, GRB.INFINITY],
    'fat':      [0, 65],
    'sodium':   [0, 1779]})

foods, cost = gp.multidict({
    'hamburger': 2.49,
    'chicken':   2.89,
    'hot dog':   1.50,
    'fries':     1.89,
    'macaroni':  2.09,
    'pizza':     1.99,
    'salad':     2.49,
    'milk':      0.89,
    'ice cream': 1.59})

# Nutrition values for the foods
nutritionValues = {
    ('hamburger', 'calories'): 410,
    ('hamburger', 'protein'):  24,
    ('hamburger', 'fat'):      26,
    ('hamburger', 'sodium'):   730,
    ('chicken',   'calories'): 420,
    ('chicken',   'protein'):  32,
    ('chicken',   'fat'):      10,
    ('chicken',   'sodium'):   1190,
    ('hot dog',   'calories'): 560,
    ('hot dog',   'protein'):  20,
    ('hot dog',   'fat'):      32,
    ('hot dog',   'sodium'):   1800,
    ('fries',     'calories'): 380,
    ('fries',     'protein'):  4,
    ('fries',     'fat'):      19,
    ('fries',     'sodium'):   270,
    ('macaroni',  'calories'): 320,
    ('macaroni',  'protein'):  12,
    ('macaroni',  'fat'):      10,
    ('macaroni',  'sodium'):   930,
    ('pizza',     'calories'): 320,
    ('pizza',     'protein'):  15,
    ('pizza',     'fat'):      12,
    ('pizza',     'sodium'):   820,
    ('salad',     'calories'): 320,
    ('salad',     'protein'):  31,
    ('salad',     'fat'):      12,
    ('salad',     'sodium'):   1230,
    ('milk',      'calories'): 100,
    ('milk',      'protein'):  8,
    ('milk',      'fat'):      2.5,
    ('milk',      'sodium'):   125,
    ('ice cream', 'calories'): 330,
    ('ice cream', 'protein'):  8,
    ('ice cream', 'fat'):      10,
    ('ice cream', 'sodium'):   180}

# Model
m = gp.Model("diet")

# Create decision variables for the foods to buy
buy = m.addVars(foods, name="buy")

# You could use Python looping constructs and m.addVar() to create
# these decision variables instead.  The following would be equivalent
#
# buy = {}
# for f in foods:
#   buy[f] = m.addVar(name=f)

# The objective is to minimize the costs
m.setObjective(buy.prod(cost), GRB.MINIMIZE)

# Using looping constructs, the preceding statement would be:
#
# m.setObjective(sum(buy[f]*cost[f] for f in foods), GRB.MINIMIZE)

# Nutrition constraints
m.addConstrs((gp.quicksum(nutritionValues[f, c] * buy[f] for f in foods)
             == [minNutrition[c], maxNutrition[c]]
             for c in categories), "_")

# Using looping constructs, the preceding statement would be:
#
# for c in categories:
#  m.addRange(sum(nutritionValues[f, c] * buy[f] for f in foods),
#             minNutrition[c], maxNutrition[c], c)


def printSolution():
    if m.status == GRB.OPTIMAL:
        print('\nCost: %g' % m.objVal)
        print('\nBuy:')
        for f in foods:
            if buy[f].x > 0.0001:
                print('%s %g' % (f, buy[f].x))
    else:
        print('No solution')


# Solve
m.optimize()
printSolution()

print('\nAdding constraint: at most 6 servings of dairy')
m.addConstr(buy.sum(['milk', 'ice cream']) <= 6, "limit_dairy")

# Solve
m.optimize()
printSolution()

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search