Simple experimentation with a more difficult model

Let us now consider a more difficult model, glass4.mps. Again, we read the model and begin the optimization:

gurobi> m = read("/Library/gurobi1001/macos_universal2/examples/data/glass4")
Read MPS format model from file /Library/gurobi1001/macos_universal2/examples/data/glass4.mps
Reading time = 0.00 seconds
glass4: 396 rows, 322 columns, 1815 nonzeros
gurobi> m.optimize()
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (mac64[arm])

CPU model: 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz, instruction set [SSE2]
Thread count: 4 physical cores, 4 logical processors, using up to 4 threads

Optimize a model with 396 rows, 322 columns and 1815 nonzeros
Model fingerprint: 0x18b19fdf
Variable types: 20 continuous, 302 integer (0 binary)
Coefficient statistics:
  Matrix range     [1e+00, 8e+06]
  Objective range  [1e+00, 1e+06]
  Bounds range     [1e+00, 8e+02]
  RHS range        [1e+00, 8e+06]
Presolve removed 4 rows and 5 columns
Presolve time: 0.00s
Presolved: 392 rows, 317 columns, 1815 nonzeros
Variable types: 19 continuous, 298 integer (298 binary)
Found heuristic solution: objective 3.133356e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 8.0000e+08    0   72 3.1334e+09 8.0000e+08  74.5%     -    0s
H    0     0                    2.400019e+09 8.0000e+08  66.7%     -    0s
H    0     0                    2.220019e+09 8.0000e+08  64.0%     -    0s
     0     0 8.0000e+08    0   72 2.2200e+09 8.0000e+08  64.0%     -    0s
H    0     0                    2.200019e+09 8.0000e+08  63.6%     -    0s
     0     0 8.0000e+08    0   81 2.2000e+09 8.0000e+08  63.6%     -    0s
     0     0 8.0000e+08    0   77 2.2000e+09 8.0000e+08  63.6%     -    0s
     0     2 8.0000e+08    0   77 2.2000e+09 8.0000e+08  63.6%     -    0s
H  307   609                    2.066686e+09 8.0000e+08  61.3%   5.8    0s
H 1126   885                    1.950016e+09 8.0000e+08  59.0%   6.0    0s
H 1317   983                    1.900015e+09 8.0000e+08  57.9%   5.6    0s
H 1817  1173                    1.900015e+09 8.0000e+08  57.9%   5.0    0s
H 2656  1796                    1.900015e+09 8.0000e+08  57.9%   4.8    0s
H 8305  6287                    1.900015e+09 8.0000e+08  57.9%   3.4    0s
*10878  6870              99    1.808351e+09 8.0000e+08  55.8%   3.3    0s
*12677  7866              62    1.800016e+09 8.0000e+08  55.6%   3.3    1s
*17157 10811             118    1.800015e+09 8.0000e+08  55.6%   3.2    1s
H19145 11166                    1.750016e+09 8.0000e+08  54.3%   3.2    1s
H24736 14317                    1.700015e+09 8.0000e+08  52.9%   3.2    1s
H24874 14315                    1.700015e+09 8.0000e+08  52.9%   3.2    1s
H32097 17197                    1.633347e+09 8.0665e+08  50.6%   3.2    2s
H32123 16354                    1.600013e+09 8.1873e+08  48.8%   3.2    3s
 32158 16378 1.6000e+09  118  110 1.6000e+09 8.4564e+08  47.1%   3.2    5s
H32215 15596                    1.533346e+09 8.6063e+08  43.9%   3.3    6s
H32284 14860                    1.500013e+09 8.8136e+08  41.2%   3.4    9s
 32294 14867 1.2500e+09   46   93 1.5000e+09 8.8136e+08  41.2%   3.4   10s
 32446 14975 1.2500e+09   52   95 1.5000e+09 9.0001e+08  40.0%   3.5   15s

Interrupt request received

Cutting planes:
  Gomory: 8
  Implied bound: 13
  Projected implied bound: 1
  MIR: 19
  Flow cover: 17
  Zero half: 1
  RLT: 4
  Relax-and-lift: 17

Explored 57196 nodes (301282 simplex iterations) in 19.00 seconds (18.42 work units)
Thread count was 4 (of 4 available processors)

Solution count 10: 1.50001e+09 1.53335e+09 1.60001e+09 ... 1.80835e+09

Solve interrupted
Best objective 1.500012666667e+09, best bound 1.000006945369e+09, gap 33.3334%

It quickly becomes apparent that this model is quite a bit more difficult than the earlier coins model. The optimal solution is actually 1,200,000,000, but finding that solution takes a while. After letting the model run for 15 seconds, we interrupt the run (by hitting CTRL-C, which produces the Interrupt request received message) and consider our options. Typing m.optimize() would resume the run from the point at which it was interrupted.