Modeling I

Anwendertage 2017
Frankfurt, Germany
Agenda for this session

• Small demos

• Useful knowledge
 • Gurobi model components
 • What makes a model difficult?
 • Choosing an interface
 • Programming pitfalls
 • Model debugging
Gurobi model components

- Decision variables
- Objective function
 - minimize $x^TQx + c^Tx + \alpha$
- Constraints
 - $Ax = b$ (linear constraints)
 - $l \leq x \leq u$ (bound constraints)
 - some x_i integral (integrality constraints)
 - some x_j lie within second order cones (cone constraints)
 - $x^TQ_jx + q_j^Tx \leq \beta_j$ (quadratic constraints)
 - some x_k in SOS (special ordered set constraints)
- Many of these are optional
Example – Mixed Integer Linear Program (MILP)

• Decision variables
• Objective function
 • minimize $x^TQx + c^Tx + \alpha$
• Constraints
 • $Ax = b$ (linear constraints)
 • $l \leq x \leq u$ (bound constraints)
 • some x_i integral (integrality constraints)
 • some x_j lie within second order cones (cone constraints)
 • $x^TQ_jx + q_j^Tx \leq \beta_j$ (quadratic constraints)
 • some x_k in SOS (special ordered set constraints)

• By far, most common model for Gurobi users
MIP is versatile

• Giant leap from linear programming (LP) with respect to modeling power
 • Modeling with MIP is more than LP with integer restrictions

• MIP versatility typically comes from binary decision variables
 • \(b_k = 0/1 \)
 • Captures yes/no decisions

• Combine with linear constraints to capture complex relationships between decisions
 • Ex: fixed charge for using a resource
 minimize \(\ldots + 100 b_k + \ldots \)
 subject to \(x_k \leq 10 b_k \)
 • Ex: pick one from among a set of options
 \(b_1 + b_2 + b_3 = 1 \)
 • \(\ldots \)
Industries using Gurobi

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service
- Forestry
- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining
- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sourcing
- Sports betting
- Sports scheduling
- Statistics
- Steel manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce scheduling

Copyright 2016, Gurobi Optimization, Inc.
Creating and Solving Your First Model #1

• Simple example:
 • You want to decide about three activities (do or don’t do) and aim for maximum value
 • You need to choose at least activity 1 or 2 (or both)
 • The total time limit is 4 hours
 • Activity 1 takes 1 hour
 • Activity 2 takes 2 hours
 • Activity 3 takes 4 hours
 • Activity 3 is worth twice as much as 1 and 2

• This can be modeled as a mixed-integer linear program
 • Binary variables x,y,z for activities 1,2,3
 • Linear constraint for time limit
 • Linear constraint for condition (1 or 2)

\[
\begin{align*}
\text{max} & \quad x + y + 2z \\
\text{s.t.} & \quad x + 2y + 4z \leq 4 \\
& \quad x + y \geq 1 \\
\end{align*}
\]

\[x, y, z \in \{0, 1\}\]
Creating and Solving Your First Model #2

- Open a new Jupyter Notebook
- Follow the Best Practices
 - Create activity variables
 - Set objective function
 - Create linear expressions and use them to create constraints
 - Call optimize()
- Print out results

This model is the mip1 example that you can find for all APIs in the examples directory of the Gurobi installation.

```python
# Create empty Model
m = Model()

# Add variables
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")

# Set objective function
m.setObjective(x + y + 2*z, GRB.MAXIMIZE)

# Add constraints
C1 = m.addConstr(x + 2*y + 4*z <= 4)
C2 = m.addConstr(x + y >= 1)

# Solve model
m.optimize()
```
Live Demo: Creating and Solving Your First Model

Demo 2 - Creating and solving your first model

\[
\begin{align*}
\text{max} & \quad x + y + 2z \\
\text{s.t.} & \quad x + 2y + 4z \leq 4 \\
& \quad x + y \geq 1 \\
& \quad x, y, z \in \{0, 1\}
\end{align*}
\]

Step 1: Import functions from the gurobipy module

In [1]: `from gurobipy import *`

Step 2: Create empty model

In [2]: `m = Model()`

Step 3: Create activity variables

In [3]: `x = m.addVar(vtype=GRB.BINARY, name="x")`
`y = m.addVar(vtype=GRB.BINARY, name="y")`
`z = m.addVar(vtype=GRB.BINARY, name="z")`
From a mathematical model to a Python model
LP model

- A linear program (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]
LP model

• A *linear program* (LP) is an optimization problem of the form

Decision variables

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]
LP model

A linear program (LP) is an optimization problem of the form

Objective function

minimize \[\sum_{j \in J} c_j \cdot x_j \]
subject to \[\sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \]
\[l_j \leq x_j \leq u_j \quad \forall j \in J \]
LP model

• A linear program (LP) is an optimization problem of the form

Constraints

minimize \(\sum_{j \in J} c_j \cdot x_j \)

subject to \(\sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \)

\(l_j \leq x_j \leq u_j \quad \forall j \in J \)
LP model

• A *linear program* (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]

Data coefficients
LP model

• A linear program (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]

Index sets
LP model

- A linear program (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]

Subscripts
LP model

- A linear program (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]

Arithmetic operators
LP model

• A *linear program* (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]
LP model

• A linear program (LP) is an optimization problem of the form

For all operators

minimize \[\sum_{j \in J} c_j \cdot x_j \]

subject to \[\sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \]

\[l_j \leq x_j \leq u_j \quad \forall j \in J \]
A linear program (LP) is an optimization problem of the form

\[
\begin{align*}
\text{minimize} & \quad \sum_{j \in J} c_j \cdot x_j \\
\text{subject to} & \quad \sum_{j \in J} a_{ij} \cdot x_j = b_i \quad \forall i \in I \\
& \quad l_j \leq x_j \leq u_j \quad \forall j \in J
\end{align*}
\]
General optimization modeling constructs

• Decision variables
• Objective function
• Constraints

• Built with:
 • Coefficients
 • Indices and subscripts
 • Operators
 • Basic arithmetic (+, -, *, /)
 • Constraint (≤, =, ≥)
 • For all
 • Aggregate sum
Enhancements to Gurobi Python interface

• High-level optimization modeling constructs embedded in Python API
 • Improved syntax (operator overloading)
 • Aggregate sum operator (quicksum)
 • Convenient data initialization (multidict)
 • Functionality for efficiently working with sparse data (tuplelist)

• Design goals:
 • Bring "feel" of a modeling language to the Python interface
 • Allow for code that is easy to write and maintain
 • Maintain unified design across all of our interfaces
 • Remain lightweight and efficient compared to solver alone

• Python already provides much of what we need for representing data, indices and subscripts
 • Lists, tuples, dictionaries, loops, generator expressions, …

Ex:

\[
\begin{align*}
x_i + y_i & \leq 5, \forall i \in I \\
m.\text{addConstrs}(x[i] + y[i] & \leq 5 \\
\text{for } i \text{ in } I)
\end{align*}
\]
Python list comprehension

- List comprehension is a compact way to create lists

  ```python
  sqrd = [i*i for i in range(5)]
  print sqrd  # displays [0, 1, 4, 9, 16]
  ```

- Can be used to create subsequences that satisfy certain conditions (ex: filtering a list)

  ```python
  bigsqrd = [i*i for i in range(5) if i*i >= 5]
  print bigsqrd  # displays [9, 16]
  ```

- Can be used with multiple for loops (ex: all combinations)

  ```python
  prod = [i*j for i in range(3) for j in range(4)]
  print prod  # displays [0, 0, 0, 0, 0, 1, 2, 3, 0, 2, 4, 6]
  ```

- Generator expression is similar, but no brackets (ex: argument to aggregate sum)

  ```python
  sumsqrd = sum(i*i for i in range(5))
  print sumsqrd  # displays 30
  ```

- “Feels” like algebraic notation
Sums for objective and constraints

Simple

• `sum()` method for a `tupledict` of `Var` objects

```python
x = m.addVars(10, vtype=GRB.BINARY)
m.addConstr(x.sum() <= 1)
```

Powerful

• `sum()` function
 • Argument: a list or generator expression
 • Gurobi provides `quicksum()`, which is faster for large expressions of `Var` objects

```python
x = m.addVars(10, vtype=GRB.BINARY)
m.addConstr(
    sum(x[i] for i in range(10)) <= 1)
```
Iterating in Python

• Loops
 • Iterate over collections of elements (list, dictionary, …)

    ```python
    for c in cities:
        print c  # must indent all statements in loop
    ```

• List comprehension
 • Efficiently build lists via notation resembling mathematical sets

    ```python
    penaltyarcs = [a for a in arcs if cost[a] > 1000]
    ```

• Generator expressions
 • Similar syntax to list comprehension, used for function arguments

    ```python
    obj = quicksum(cost[a]*x[a] for a in arcs)
    ```
For-all loops in optimization models

Explicit

for i in I:
 m.addConstr(
 quicksum(a[i,j]*x[i,j] for j in J) <= 5)

Implicit

m.addConstrs(x.prod(a, i, '*') <= 5 for i in I)

\[\sum_{j \in J} a_{ij} x_{ij} \leq 5 \quad \forall i \in I \]
Exercise #2 – Putting it all together

• Download file at http://files.gurobi.com/training/knapsack.zip and unzip knapsack.py

• Fill in the necessary sections to solve the following model:

 maximize \[p_0 x_0 + \ldots + p_6 x_6 \]
 subject to \[w_0 x_0 + \ldots + w_6 x_6 \leq c \]
 \[x_0, \ldots, x_6 \text{ binary} \]

• Note the data coefficients (p, w, c) have already been provided for you

• Run the program

• Notes/Hints:
 • Optimal value = 15; solution is \(x_0 = 1, x_3 = 1 \)
 • Make sure to inspect the exported model knapsack.lp to verify model is correct
 • Use the documentation or help() if you get stuck
$ gurobi.sh knapsack.py
Optimize a model with 1 rows, 7 columns and 7 nonzeros
Coefficient statistics:
 Matrix range [2e+00, 9e+00]
 Objective range [3e+00, 9e+00]
 Bounds range [1e+00, 1e+00]
 RHS range [9e+00, 9e+00]
...
Explored 0 nodes (1 simplex iterations) in 0.00 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.500000000000e+01, best bound 1.500000000000e+01, gap 0.0%

<table>
<thead>
<tr>
<th>Variable</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>1</td>
</tr>
<tr>
<td>x3</td>
<td>1</td>
</tr>
</tbody>
</table>
from gurobipy import *

define data coefficients
n = 7
p = [6, 5, 8, 9, 6, 7, 3]
w = [2, 3, 6, 7, 5, 9, 4]
c = 9

create empty model
m = Model()

add decision variables
x = m.addVars(n, vtype=GRB.BINARY, name='x')
set objective function
m.setObjective(x.prod(p), GRB.MAXIMIZE)

add constraint
m.addConstr(x.prod(w)) <= c, name='knapsack')

solve model
m.optimize()

display solution
if m.SolCount > 0:
 m.printAttr('X')

export model
m.write('knapsack.lp')
Maximize
 6 \times x_0 + 5 \times x_1 + 8 \times x_2 + 9 \times x_3 + 6 \times x_4 + 7 \times x_5 + 3 \times x_6
Subject To
 \text{knapsack:} 2 \times x_0 + 3 \times x_1 + 6 \times x_2 + 7 \times x_3 + 5 \times x_4 + 9 \times x_5 + 4 \times x_6 \leq 9
Bounds
Binaries
 x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6
End
What makes a model difficult?
Model size

• Models typically become large via copies
 • Ex: regions, products, time, …

• Reducing model size is an art
 • What should be modeled?
 • What should be approximated?

• Some constraints may be treated as “lazy” (pulled into model only when violated)

• Gurobi is parallel by default
 • Parallel MIP consumes memory

• Solver considerations:
 • Have enough physical memory (RAM) to load and solve model in memory
 • Use 64-bits
 • Try compute server or cloud

Copyright 2016, Gurobi Optimization, Inc.
Presolve is your friend

• Collection of presolve reductions applied before algorithms
 • Reduces problem size
 • Tightens formulation

• Presolve is very effective and finds the obvious reductions
 • Users do not need to apply as many reductions as possible

• Limits to what presolve can do
 • Can’t find reductions that aren’t actually implied by the model
 • Users have better understanding of underlying problem being modeled
Frequency – A series of related models

• Models may not be so easy when there are many to solve

• Warm starts can often reduce solve times
 • Automatic
 • Modify a model in memory rather than create a new model
 • Manual
 • LP: basis and primal/dual starts
 • MIP: start vectors

• Sometimes warm starts hurt more than they help
 • Try solving from scratch via concurrent
Modifying a model

- Change coefficients
 - Objective
 - RHS
 - Matrix
 - Bounds
- Change variable types: continuous, integer, etc.
- Add/delete variables or constraints

- For small changes, modifying a model is more efficient than creating a new model
 - Reuse existing model data
 - Automatically use prior solution as warm-start for new model if possible
 - Some changes will force solver to discard LP basis
Example – Modifying a model

```python
model = read('usa13509.mps')
model.optimize()

    Solved in 7940 iterations and 0.15 seconds
    Optimal objective  1.959148400e+07

x105 = model.getVarByName('x105')
x105.LB = 0.6
model.optimize()

    Solved in 3 iterations and 0.01 seconds
    Optimal objective  1.959149680e+07

model.reset()
model.optimize()

    Solved in 7931 iterations and 0.14 seconds
    Optimal objective  1.959149680e+07
```
Integer variables

- In most cases, integer variables make a model more difficult

- General integer variables tend to be more difficult than binary (0-1)

- Things to consider:
 - Which general integers are necessary?
 - Can some variables be approximated?
Quadratic expressions

- Quadratic expressions are much more complex than linear
 - Especially for constraints: quadratic constraints require the barrier method

- Quadratic is essential for some applications
 - Ex: financial risk, engineering

- Quadratic constraints should *never* be used for logical expressions
 - Ex: $x = 0$ or $y = 0$ should *not* be modeled by $x \cdot y = 0$
 - More about logical expressions later
General interface guidance

- All interfaces are lightweight and efficient
 - Use your programming needs to pick an interface

- Python is easiest Gurobi interface to get started with
 - Nothing additional to setup and configure
 - Interactive and no compiling necessary
 - Easy to write because structure is less rigid

- If you are using a solver-independent modeling system, enabling Gurobi is easy
 - Ex: In AMPL model file, add
    ```
    option solver gurobi_ampl;
    option gurobi_options 'mipfocus 1';
    ```

- Migrating from another solver or proprietary modeling language should be easier than you think
 - Visit https://www.gurobi.com/resources/switching-to-gurobi/switching-overview for more guidelines
Programming pitfalls
Gurobi environments

• Parameters are set on an environment

• Models are built from an environment

• Multiple models can be built from the same parent environment
 • Each model gets their own copy

• Once a model is created, subsequent changes to parent environment not reflected in copy

• Use Model.set() function to make parameter changes for the copy
 • Ex: set time limit of 3600 seconds for parent environment using Java interface
 model.set(GRB.DoubleParam.TimeLimit, 3600);
 • Ex: set presolve level to 2 for model's environment using Java interface
 model.set(GRBIntParam.Presolve, 2);
Lazy updates

- Lazy updates make Gurobi interfaces efficient
 - Changes are made in batches
 - Building internal data structures is much more efficient if done in a single run

- Since Gurobi Optimizer 7.0, the `update()` function is called automatically!

- The `update()` function is still called behind the scenes – to reference new model elements
 - Typically: between creating variables and constraints

- For best performance, create variables, then create constraints
 - Avoid a loop that creates a few variables then adds a few constraints
Memory management

• C++ considerations:
 • Always pass by reference, not by value
 • Be careful about an object's lifecycle (ex: destructor is called when they go out of scope)
 • Delete pointers to objects when finished, or you'll have a memory leak
 • Gurobi creates some objects on the heap (ex: `GRBModel::addVars`)

• Java and .NET considerations:
 • Garbage collector typically does not free `GRBModel` and `GRBEnv` objects instantaneously
 • Call the `dispose()` methods to explicitly free them

• Python considerations:
 • Garbage collector typically does not free `Model` objects instantaneously
 • Use `del m` to explicitly free them
 • Default environment not created until first used
 • Released on demand with new `disposeDefaultEnv()` method
Ignoring optimization status

• Input:

  ```python
  import sys
  from gurobipy import *
  
m = read(sys.argv[1])
m.optimize()
for v in m.getVars():
  print v.VarName, v.X
  ```

• Output – runtime exception!

  ```python
  Model is infeasible
  Best objective -, best bound -, gap - x0
  Traceback (most recent call last):
    File "test.py", line 7, in <module>
      print v.VarName, v.X
    File "var.pxi", line 76, in gurobipy.Var.__getattr__ (../../src/python/gurobipy.c:11798)
    File "var.pxi", line 142, in gurobipy.Var.getAttr (../../src/python/gurobipy.c:12609)
  gurobipy.GurobiError: Unable to retrieve attribute 'X'
  ```
Managing solution status

• Multiple outcomes possible for optimization models: optimal, infeasible, unbounded, ...

• Check the Status attribute to see the result of the optimization

 if m.Status == GRB.OPTIMAL:
 for v in m.getVars():
 print v.VarName, v.X

• Use SolCount attribute to see whether any solutions were found

 if m.SolCount > 0:
 for v in m.getVars():
 print v.VarName, v.X
Error handling

• Programming errors often lead to unexpected errors at runtime

• Easy to catch exceptions in OO interfaces:
  ```python
  try:
      m = read(sys.argv[1])
      m.optimize()
      for v in m.getVars():
          print v.VarName, v.X
  except GurobiError as e:
      print 'Error:', e
  ```

• With C, test the return code for every call to the Gurobi API

• Don’t be sloppy – always test for errors!
 • Many support requests could be avoided by testing for and reviewing error codes

Copyright 2016, Gurobi Optimization, Inc.
Model debugging
Common error types

• Model logic errors – when a model is written incorrectly
 • Can lead to no answers (infeasibility), wrong answers or suboptimal answers
 • Suboptimal answers are most difficult to test
 • How do you know when constraints incorrectly eliminate a valid solution?
 • Must keep code simple to read and understand

• Data errors – solving with bogus input data
 • Typically result of user errors at runtime
 • Be a defensive programmer and handle corner cases
 • Often lead to infeasible models

• Developing models requires testing, testing and more testing!
Model files

LP format
- Easy to read and understand
- May truncate some digits
- Order is not preserved
- Best for debugging

MPS format
- Machine-readable
- Full precision
- Order is preserved
- Best for testing
Maximize
 x + y + 2 z
Subject To
 c0: x + 2 y + 3 z <= 4
 c1: x + y >= 1
Bounds
Binaries
 x y z
End
Naming variables and constraints

- Set the VarName and ConstrName attributes to meaningful values
 - flow_Atlanta_Dallas is more useful than \texttt{x3615} \\

- Don’t reuse names for multiple constraints or variables
 - API doesn’t care about the VarName or ConstrName attributes
 - Create unique, descriptive names to help with debugging
MPS format example

• m.write("mymodel.mps");

• Now, you can use this model file for any kind of tests
 • Command-line:
 $ gurobi_cl [parameters] mymodel.mps
 • Interactive shell:
 > m = read("mymodel.mps")
 > m.optimize()

• MPS files are a great way to export models from other solvers too
 • Useful for performance comparisons
 • Visit https://www.gurobi.com/resources/switching-to-gurobi/exporting-mps-files-from-competing-solvers for detailed instructions
Diagnosing infeasibility

• Unfortunately, it is not usually easy to diagnose

• If we know of feasible solution, then easier job to find problem
 • Evaluate existing constraints using variable values to find violations

• Gurobi provides Irreducible Infeasible Subsystem (IIS) detection
 • Finds a minimal subset of the constraints that is infeasible
 • Primarily used as a debugging tool

• Gurobi also supports constraint relaxations (feasRelax)
 • Find a solution that minimizes constraint violations (total, sum of squares or count)
 • Used as a debugging tool, or in production settings
Thank you – Questions?