GUROBI OPTIMIZER
REFERENCE MANUAL

Version 9.0, Copyright © 2020, Gurobi Optimization, LLC
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBgetgenconstrLogA</td>
<td>72</td>
</tr>
<tr>
<td>GRBgetgenconstrPow</td>
<td>72</td>
</tr>
<tr>
<td>GRBgetgenconstrSin</td>
<td>73</td>
</tr>
<tr>
<td>GRBgetgenconstrCos</td>
<td>74</td>
</tr>
<tr>
<td>GRBgetgenconstrTan</td>
<td>74</td>
</tr>
<tr>
<td>GRBgetjsonsolution</td>
<td>75</td>
</tr>
<tr>
<td>GRBgetpwlobj</td>
<td>76</td>
</tr>
<tr>
<td>GRBgetq</td>
<td>76</td>
</tr>
<tr>
<td>GRBgetqconstr</td>
<td>77</td>
</tr>
<tr>
<td>GRBgetqconstrbyname</td>
<td>78</td>
</tr>
<tr>
<td>GRBgetsos</td>
<td>78</td>
</tr>
<tr>
<td>GRBgetvarbyname</td>
<td>79</td>
</tr>
<tr>
<td>GRBgetvars</td>
<td>80</td>
</tr>
<tr>
<td>GRBSinglescenariomodel</td>
<td>80</td>
</tr>
<tr>
<td>GRBXgetconstrs</td>
<td>81</td>
</tr>
<tr>
<td>GRBXgetvars</td>
<td>82</td>
</tr>
<tr>
<td>2.5 Input/Output</td>
<td>84</td>
</tr>
<tr>
<td>GRBreadmodel</td>
<td>84</td>
</tr>
<tr>
<td>GRBread</td>
<td>84</td>
</tr>
<tr>
<td>GRBwrite</td>
<td>85</td>
</tr>
<tr>
<td>2.6 Attribute Management</td>
<td>86</td>
</tr>
<tr>
<td>GRBgetattrinfo</td>
<td>86</td>
</tr>
<tr>
<td>GRBgetintattr</td>
<td>86</td>
</tr>
<tr>
<td>GRBsetintattr</td>
<td>87</td>
</tr>
<tr>
<td>GRBgetintattrelement</td>
<td>87</td>
</tr>
<tr>
<td>GRBsetintattrelement</td>
<td>88</td>
</tr>
<tr>
<td>GRBgetintattrarray</td>
<td>88</td>
</tr>
<tr>
<td>GRBsetintattrarray</td>
<td>89</td>
</tr>
<tr>
<td>GRBgetintattrlist</td>
<td>90</td>
</tr>
<tr>
<td>GRBsetintattrlist</td>
<td>90</td>
</tr>
<tr>
<td>GRBgetdblattr</td>
<td>91</td>
</tr>
<tr>
<td>GRBsetdblattr</td>
<td>91</td>
</tr>
<tr>
<td>GRBgetdblattrelement</td>
<td>92</td>
</tr>
<tr>
<td>GRBsetdblattrelement</td>
<td>92</td>
</tr>
<tr>
<td>GRBgetdblattrarray</td>
<td>93</td>
</tr>
<tr>
<td>GRBsetdblattrarray</td>
<td>93</td>
</tr>
<tr>
<td>GRBgetstrattr</td>
<td>94</td>
</tr>
<tr>
<td>GRBsetstrattr</td>
<td>95</td>
</tr>
<tr>
<td>GRBgetcharattrelement</td>
<td>95</td>
</tr>
<tr>
<td>GRBsetcharattrelement</td>
<td>96</td>
</tr>
<tr>
<td>GRBgetcharattrarray</td>
<td>96</td>
</tr>
<tr>
<td>GRBsetcharattrarray</td>
<td>97</td>
</tr>
<tr>
<td>GRBgetcharattrlist</td>
<td>97</td>
</tr>
<tr>
<td>GRBsetcharattrlist</td>
<td>98</td>
</tr>
<tr>
<td>GRBgetstrattrlist</td>
<td>98</td>
</tr>
<tr>
<td>GRBgetstrattr</td>
<td>98</td>
</tr>
</tbody>
</table>
2.7 Parameter Management and Tuning

2.8 Monitoring Progress - Logging and Callbacks

2.9 Modifying Solver Behavior - Callbacks

2.10 Batch Requests
2.11 Error Handling
- GRBgeterrormsg

2.12 Advanced simplex routines
- GRBFSolve
- GRBBSolve
- GRBBinvCol
- GRBBinvRow
- GRBgetBasisHead

3 C++ API Overview
3.1 GRBEnv
- GRBEnv()
- GRBEnv::get()
- GRBEnv::getErrorMsg()
- GRBEnv::getParamInfo()
- GRBEnv::message()
- GRBEnv::readParams()
- GRBEnv::set()
- GRBEnv::start()
- GRBEnv::writeParams()

3.2 GRBModel
- GRBModel()
- GRBModel::addConstr()
- GRBModel::addConstrs()
- GRBModel::addGenConstrXxx()
- GRBModel::addQConstr()
- GRBModel::addRange()
- GRBModel::addRanges()
- GRBModel::addSOS()
- GRBModel::addVar()
- GRBModel::addVars()
- GRBModel::chgCoeff()
- GRBModel::chgCoeffs()
- GRBModel::computeIIS()
- GRBModel::discardConcurrentEnvs()
- GRBModel::discardMultiobjEnvs()
- GRBModel::feasRelax()
- GRBModel::fixedModel()
- GRBModel::get()
- GRBModel::getCoeff()
- GRBModel::getCol()
- GRBModel::getConstrByName()
- GRBModel::getConstrByName()
GRBColumn() ... 220
GRBColumn::addTerm() .. 220
GRBColumn::addTerms() 220
GRBColumn::clear() .. 220
GRBColumn::getCoeff() .. 221
GRBColumn::getConstr() 221
GRBColumn::remove() .. 221
GRBColumn::size() ... 221

3.13 GRBCallback ... 222
GRBCallback() .. 222
GRBCallback::abort() .. 222
GRBCallback::addCut() .. 222
GRBCallback::addLazy() 223
GRBCallback::getDoubleInfo() 224
GRBCallback::getIntInfo() 224
GRBCallback::getNodeRel() 225
GRBCallback::getSolution() 225
GRBCallback::getStringInfo() 226
GRBCallback::setSolution() 226

3.14 GRBCallback::stopOneMultiObj() 227
GRBCallback::useSolution() 228

3.15 GRBException .. 229
GRBException() .. 229
GRBException::getErrorCode() 229
GRBException::getMessage() 229

3.16 GRBBatch .. 230
GRBBatch() ... 230
GRBBatch::abort() ... 231
GRBBatch::discard() .. 231
GRBBatch::getJSONSolution() 231
GRBBatch::get() .. 231
GRBBatch::retry() ... 232
GRBBatch::update() .. 232
GRBBatch::writeJSONSolution() 232

3.17 Non-Member Functions 234
operator== .. 234
operator<= .. 234
operator>= .. 234
operator+ ... 235
operator- ... 236
operator* ... 237
operator/ ... 239

3.18 Attribute Enums ... 240
GRB_CharAttr .. 240
GRB_DoubleAttr ... 240
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBModel.getEnv()</td>
<td>298</td>
</tr>
<tr>
<td>GRBModel.getGenConstrXxx()</td>
<td>298</td>
</tr>
<tr>
<td>GRBModel.getGenConstrs()</td>
<td>305</td>
</tr>
<tr>
<td>GRBModel.getJSONSolution()</td>
<td>306</td>
</tr>
<tr>
<td>GRBModel.getMultiobjEnv()</td>
<td>306</td>
</tr>
<tr>
<td>GRBModel.getObjective()</td>
<td>306</td>
</tr>
<tr>
<td>GRBModel.getPWLObj()</td>
<td>307</td>
</tr>
<tr>
<td>GRBModel.getQCRow()</td>
<td>307</td>
</tr>
<tr>
<td>GRBModel.getQConstrs()</td>
<td>307</td>
</tr>
<tr>
<td>GRBModel.getRow()</td>
<td>308</td>
</tr>
<tr>
<td>GRBModel.getSOS()</td>
<td>308</td>
</tr>
<tr>
<td>GRBModel.getSOSs()</td>
<td>308</td>
</tr>
<tr>
<td>GRBModel.getTuneResult()</td>
<td>309</td>
</tr>
<tr>
<td>GRBModel.getVarByName()</td>
<td>309</td>
</tr>
<tr>
<td>GRBModel.getVars()</td>
<td>309</td>
</tr>
<tr>
<td>GRBModel.optimize()</td>
<td>309</td>
</tr>
<tr>
<td>GRBModel.optimizeasync()</td>
<td>310</td>
</tr>
<tr>
<td>GRBModel.optimizeBatch()</td>
<td>310</td>
</tr>
<tr>
<td>GRBModel.presolve()</td>
<td>311</td>
</tr>
<tr>
<td>GRBModel.read()</td>
<td>311</td>
</tr>
<tr>
<td>GRBModel.remove()</td>
<td>311</td>
</tr>
<tr>
<td>GRBModel.reset()</td>
<td>312</td>
</tr>
<tr>
<td>GRBModel.setCallback()</td>
<td>313</td>
</tr>
<tr>
<td>GRBModel.set()</td>
<td>313</td>
</tr>
<tr>
<td>GRBModel.setObjective()</td>
<td>326</td>
</tr>
<tr>
<td>GRBModel.setObjectiveN()</td>
<td>327</td>
</tr>
<tr>
<td>GRBModel.setPWLObj()</td>
<td>327</td>
</tr>
<tr>
<td>GRBModel.singleScenarioModel()</td>
<td>328</td>
</tr>
<tr>
<td>GRBModel.sync()</td>
<td>328</td>
</tr>
<tr>
<td>GRBModel.terminate()</td>
<td>328</td>
</tr>
<tr>
<td>GRBModel.tune()</td>
<td>328</td>
</tr>
<tr>
<td>GRBModel.update()</td>
<td>329</td>
</tr>
<tr>
<td>GRBModel.write()</td>
<td>329</td>
</tr>
</tbody>
</table>

4.3 GRBVar .. 330
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBVar.get()</td>
<td>330</td>
</tr>
<tr>
<td>GRBVar.index()</td>
<td>331</td>
</tr>
<tr>
<td>GRBVar.sameAs()</td>
<td>331</td>
</tr>
<tr>
<td>GRBVar.set()</td>
<td>331</td>
</tr>
</tbody>
</table>

4.4 GRBConstr 333
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBConstr.get()</td>
<td>333</td>
</tr>
<tr>
<td>GRBConstr.index()</td>
<td>334</td>
</tr>
<tr>
<td>GRBConstr.sameAs()</td>
<td>334</td>
</tr>
<tr>
<td>GRBConstr.set()</td>
<td>334</td>
</tr>
</tbody>
</table>

4.5 GRBQConstr 336
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBQConstr.get()</td>
<td>336</td>
</tr>
</tbody>
</table>
5.2 GRBModel

GRBEnv.Release() .. 385
GRBEnv.ResetParams() ... 386
GRBEnv.Set() .. 386
GRBEnv.Start() .. 387
GRBEnv.WriteParams() .. 387

GRBModel() .. 388
GRBModel.AddConstr() .. 389
GRBModel.AddConstrs() ... 389
GRBModel.AddGenConstrXxx() 390
GRBModel.AddQConstr() .. 400
GRBModel.AddRange() .. 401
GRBModel.AddRanges() .. 401
GRBModel.AddSOS() ... 402
GRBModel.AddVar() ... 402
GRBModel.AddVars() ... 403
GRBModel.ChgCoeff() .. 405
GRBModel.ChgCoeffs() .. 406
GRBModel.ComputeIIS() ... 406
GRBModel.DiscardConcurrentEnvs() 406
GRBModel.DiscardMultiobjEnvs() 407
GRBModel.Dispose() .. 407
GRBModel.FeasRelax() ... 407
GRBModel.FixedModel() ... 409
GRBModel.Get() ... 409
GRBModel.GetCoef() .. 421
GRBModel.GetCol() .. 421
GRBModel.GetConcurrentEnv() 421
GRBModel.GetConstrByName() 422
GRBModel.GetConstrs() .. 422
GRBModel.GetEnv() .. 422
GRBModel.GetGenConstrXxx() 422
GRBModel.GetGenConstrs() 429
GRBModel.GetJSONSolution() 429
GRBModel.GetMultiobjEnv() 429
GRBModel.GetObjective() .. 429
GRBModel.GetPWLObj() ... 430
GRBModel.GetQConstr() ... 430
GRBModel.GetQConstrs() ... 430
GRBModel.GetQCRow() .. 431
GRBModel.GetRow() .. 431
GRBModel.GetSOS() .. 431
GRBModel.GetSOSs() .. 432
GRBModel.GetTuneResult() 432
GRBModel.GetVarByName() 432

xiii
GRBModel.GetVars() ... 432
GRBModel.Optimize() .. 432
GRBModel.OptimizeAsync() ... 433
GRBModel.OptimizeBatch() ... 433
GRBModel.Presolve() .. 433
GRBModel.Read() ... 434
GRBModel.Remove() .. 434
GRBModel.Reset() ... 435
GRBModel.SetCallback() ... 435
GRBModel.Set() .. 435
GRBModel.SetObjective() ... 447
GRBModel.SetObjectiveN() ... 448
GRBModel.SetPWLObj() .. 448
GRBModel.SingleScenarioModel() ... 449
GRBModel.Sync() ... 449
GRBModel.Terminate() .. 449
GRBModel.Tune() ... 449
GRBModel.Update() .. 450
GRBModel.Write() ... 450

5.3 GRBVar .. 451
 GRBVar.Get() ... 451
 GRBVar.Index ... 451
 GRBVar.SameAs() ... 452
 GRBVar.Set() ... 452

5.4 GRBConstr .. 454
 GRBConstr.Get() .. 454
 GRBConstr.Index .. 454
 GRBConstr.SameAs() .. 455
 GRBConstr.Set() .. 455

5.5 GRBQConstr .. 457
 GRBQConstr.Get() ... 457
 GRBQConstr.Set() .. 457

5.6 GRBSOS ... 459
 GRBSOS.Get() ... 459

5.7 GRBGenConstr .. 460
 GRBGenConstr.Get() .. 460
 GRBGenConstr.Set() .. 460

5.8 GRBExpr .. 462
 GRBExpr.Value ... 462

5.9 GRBLinExpr .. 463
 GRBLinExpr() ... 463
 GRBLinExpr.Add() ... 464
 GRBLinExpr.AddConstant() .. 464
 GRBLinExpr.AddTerm() ... 464
 GRBLinExpr.AddTerms() .. 464
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBLinExpr.Clear()</td>
<td>465</td>
</tr>
<tr>
<td>GRBLinExpr.Constant</td>
<td>465</td>
</tr>
<tr>
<td>GRBLinExpr.GetCoeff()</td>
<td>465</td>
</tr>
<tr>
<td>GRBLinExpr.GetVar()</td>
<td>465</td>
</tr>
<tr>
<td>GRBLinExpr.MultAdd()</td>
<td>465</td>
</tr>
<tr>
<td>GRBLinExpr.Remove()</td>
<td>466</td>
</tr>
<tr>
<td>GRBLinExpr.Size</td>
<td>466</td>
</tr>
<tr>
<td>GRBLinExpr.Value</td>
<td>466</td>
</tr>
<tr>
<td>GRBQuadExpr()</td>
<td>467</td>
</tr>
<tr>
<td>GRBQuadExpr.Add()</td>
<td>468</td>
</tr>
<tr>
<td>GRBQuadExpr.AddConstant()</td>
<td>468</td>
</tr>
<tr>
<td>GRBQuadExpr.AddTerm()</td>
<td>468</td>
</tr>
<tr>
<td>GRBQuadExpr.AddTerms()</td>
<td>469</td>
</tr>
<tr>
<td>GRBQuadExpr.Clear()</td>
<td>470</td>
</tr>
<tr>
<td>GRBQuadExpr.GetCoeff()</td>
<td>470</td>
</tr>
<tr>
<td>GRBQuadExpr.GetVar1()</td>
<td>470</td>
</tr>
<tr>
<td>GRBQuadExpr.GetVar2()</td>
<td>471</td>
</tr>
<tr>
<td>GRBQuadExpr.LinExpr()</td>
<td>471</td>
</tr>
<tr>
<td>GRBQuadExpr.MultAdd()</td>
<td>471</td>
</tr>
<tr>
<td>GRBQuadExpr.Remove()</td>
<td>471</td>
</tr>
<tr>
<td>GRBQuadExpr.Size</td>
<td>472</td>
</tr>
<tr>
<td>GRBQuadExpr.Value</td>
<td>472</td>
</tr>
<tr>
<td>GRBTempConstr</td>
<td>473</td>
</tr>
<tr>
<td>GRBColumn()</td>
<td>474</td>
</tr>
<tr>
<td>GRBColumn.AddTerm()</td>
<td>474</td>
</tr>
<tr>
<td>GRBColumn.AddTerms()</td>
<td>474</td>
</tr>
<tr>
<td>GRBColumn.Clear()</td>
<td>475</td>
</tr>
<tr>
<td>GRBColumn.GetCoeff()</td>
<td>475</td>
</tr>
<tr>
<td>GRBColumn.GetConstr()</td>
<td>475</td>
</tr>
<tr>
<td>GRBColumn.Remove()</td>
<td>475</td>
</tr>
<tr>
<td>GRBColumn.Size</td>
<td>476</td>
</tr>
<tr>
<td>Overloaded Operators</td>
<td></td>
</tr>
<tr>
<td>operator <=</td>
<td>477</td>
</tr>
<tr>
<td>operator >=</td>
<td>477</td>
</tr>
<tr>
<td>operator ==</td>
<td>477</td>
</tr>
<tr>
<td>operator +</td>
<td>478</td>
</tr>
<tr>
<td>operator -</td>
<td>479</td>
</tr>
<tr>
<td>operator *</td>
<td>480</td>
</tr>
<tr>
<td>operator /</td>
<td>482</td>
</tr>
<tr>
<td>implicit cast</td>
<td>482</td>
</tr>
<tr>
<td>GRBCallback()</td>
<td>484</td>
</tr>
<tr>
<td>GRBCallback.Abort()</td>
<td>484</td>
</tr>
</tbody>
</table>

xv
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model()</td>
<td>509</td>
</tr>
<tr>
<td>Model.addConstr()</td>
<td>509</td>
</tr>
<tr>
<td>Model.addConstrs()</td>
<td>510</td>
</tr>
<tr>
<td>Model.addGenConstrXxx()</td>
<td>511</td>
</tr>
<tr>
<td>Model.addGenConstrMax()</td>
<td>512</td>
</tr>
<tr>
<td>Model.addGenConstrMin()</td>
<td>513</td>
</tr>
<tr>
<td>Model.addGenConstrAbs()</td>
<td>514</td>
</tr>
<tr>
<td>Model.addGenConstrAnd()</td>
<td>514</td>
</tr>
<tr>
<td>Model.addGenConstrOr()</td>
<td>515</td>
</tr>
<tr>
<td>Model.addGenConstrIndicator()</td>
<td>515</td>
</tr>
<tr>
<td>Model.addGenConstrPWL()</td>
<td>516</td>
</tr>
<tr>
<td>Model.addGenConstrPoly()</td>
<td>517</td>
</tr>
<tr>
<td>Model.addGenConstrExp()</td>
<td>517</td>
</tr>
<tr>
<td>Model.addGenConstrExpA()</td>
<td>518</td>
</tr>
<tr>
<td>Model.addGenConstrLog()</td>
<td>518</td>
</tr>
<tr>
<td>Model.addGenConstrLogA()</td>
<td>519</td>
</tr>
<tr>
<td>Model.addGenConstrPow()</td>
<td>520</td>
</tr>
<tr>
<td>Model.addGenConstrSin()</td>
<td>520</td>
</tr>
<tr>
<td>Model.addGenConstrCos()</td>
<td>521</td>
</tr>
<tr>
<td>Model.addGenConstrTan()</td>
<td>521</td>
</tr>
<tr>
<td>Model.addLConstr()</td>
<td>522</td>
</tr>
<tr>
<td>Model.addMConstrs()</td>
<td>522</td>
</tr>
<tr>
<td>Model.addMQConstr()</td>
<td>523</td>
</tr>
<tr>
<td>Model.addMVar()</td>
<td>524</td>
</tr>
<tr>
<td>Model.addQConstr()</td>
<td>525</td>
</tr>
<tr>
<td>Model.addRange()</td>
<td>525</td>
</tr>
<tr>
<td>Model.addSOS()</td>
<td>526</td>
</tr>
<tr>
<td>Model.addVar()</td>
<td>526</td>
</tr>
<tr>
<td>Model.addVars()</td>
<td>527</td>
</tr>
<tr>
<td>Model.cbCut()</td>
<td>528</td>
</tr>
<tr>
<td>Model.cbGet()</td>
<td>529</td>
</tr>
<tr>
<td>Model.cbGetNodeRel()</td>
<td>529</td>
</tr>
<tr>
<td>Model.cbGetSolution()</td>
<td>530</td>
</tr>
<tr>
<td>Model.cbLazy()</td>
<td>530</td>
</tr>
<tr>
<td>Model.cbSetSolution()</td>
<td>531</td>
</tr>
<tr>
<td>Model.cbStopOneMultiObj()</td>
<td>531</td>
</tr>
<tr>
<td>Model.cbUseSolution()</td>
<td>532</td>
</tr>
<tr>
<td>Model.chgCoeff()</td>
<td>533</td>
</tr>
<tr>
<td>Model.computeIIS()</td>
<td>533</td>
</tr>
<tr>
<td>Model.copy()</td>
<td>533</td>
</tr>
<tr>
<td>Model.discardConcurrentEnvs()</td>
<td>534</td>
</tr>
<tr>
<td>Model.discardMultiobjEnvs()</td>
<td>534</td>
</tr>
<tr>
<td>Model.dispose()</td>
<td>534</td>
</tr>
<tr>
<td>Model.feasRelaxS()</td>
<td>535</td>
</tr>
<tr>
<td>Model.feasRelax()</td>
<td>536</td>
</tr>
</tbody>
</table>
Model.fixed() ... 537
Model.getA() .. 537
Model.getAttr() ... 537
Model.getCoeff() .. 538
Model.getCol() ... 538
Model.getConcurrentEnv() .. 539
Model.getConstrByName() .. 539
Model.getConstrs() .. 540
Model.getGenConstrMax() .. 540
Model.getGenConstrMin() .. 540
Model.getGenConstrAbs() .. 541
Model.getGenConstrAnd() .. 541
Model.getGenConstrOr() .. 541
Model.getGenConstrIndicator() ... 542
Model.getGenConstrPWL() ... 542
Model.getGenConstrPoly() ... 543
Model.getGenConstrExp() .. 543
Model.getGenConstrExpA() .. 543
Model.getGenConstrLog() .. 544
Model.getGenConstrLogA() ... 544
Model.getGenConstrPow() .. 544
Model.getGenConstrSin() ... 545
Model.getGenConstrCos() .. 545
Model.getGenConstrTan() ... 545
Model.getGenConstrs() ... 546
Model.getJSONSolution() .. 546
Model.getMultiobjEnv() ... 546
Model.getObjective() .. 547
Model.getParamInfo() ... 547
Model.getPWLObj() .. 548
Model.getQConstrs() .. 548
Model.getQCRow() ... 548
Model.getRow() ... 548
Model.getSOS() .. 549
Model.getSOSs() .. 549
Model.getTuneResult() .. 549
Model.getVarByName() ... 550
Model.getVars() .. 550
Model.message() ... 550
Model.optimize() .. 550
Model.optimizeBatch() ... 551
Model.presolve() ... 551
Model.printAttr() .. 552
Model.printQuality() ... 552
Model.printStats() ... 552
Model.read() .. 552
Model.relax() .. 553
Model.remove() ... 553
Model.reset() .. 554
Model.resetParams() ... 554
Model.setAttr() ... 554
Model.setMObjective() ... 555
Model.setObjective() ... 555
Model.setObjectiveN() .. 556
Model.setPWLObj() ... 557
Model.setParam() .. 557
Model.singleScenarioModel() 557
Model.terminate() ... 558
Model.tune() .. 558
Model.update() ... 558
Model.write() .. 558

6.3 Var ... 560
Var.getAttr() .. 560
Var.sameAs() ... 560
Var.index ... 561
Var.setAttr() .. 561

6.4 MVar ... 562
MVar() ... 562
MVar.copy() .. 563
MVar.getAttr() .. 563
MVar.setAttr() .. 563
MVar.sum() ... 564

6.5 Constr ... 565
Constr.getAttr() ... 565
Constr.index .. 565
Constr.sameAs() .. 566
Constr.setAttr() ... 566

6.6 QConstr .. 567
QConstr.getAttr() ... 567
QConstr.setAttr() ... 567

6.7 SOS ... 569
SOS.getAttr() .. 569

6.8 GenConstr .. 570
GenConstr.getAttr() .. 570
GenConstr.setAttr() .. 570

6.9 LinExpr ... 570
LinExpr() ... 571
LinExpr.add() .. 572
LinExpr.addConstant() .. 572
LinExpr.addTerms() .. 572
LinExpr.clear() 572
LinExpr.copy() 573
LinExpr.getConstant() 573
LinExpr.getCoeff() 573
LinExpr.getValue() 573
LinExpr.getVar() 574
LinExpr.remove() 574
LinExpr.size() 574
LinExpr.__eq__() 574
LinExpr.__le__() 575
LinExpr.__ge__() 575

6.10 QuadExpr
QuadExpr() 576
QuadExpr.add() 577
QuadExpr.addConstant() 577
QuadExpr.addTerms() 577
QuadExpr.clear() 578
QuadExpr.copy() 578
QuadExpr.getCoeff() 578
QuadExpr.getLinExpr() 578
QuadExpr.getValue() 579
QuadExpr.getVar1() 579
QuadExpr.getVar2() 579
QuadExpr.remove() 579
QuadExpr.size() 580
QuadExpr.__eq__() 580
QuadExpr.__le__() 580
QuadExpr.__ge__() 580

6.11 GenExpr 581
6.12 MLinExpr 582
MLinExpr.copy() 582
MLinExpr.getValue() 582
MLinExpr.__eq__() 583
MLinExpr.__le__() 583
MLinExpr.__ge__() 583

6.13 MQuadExpr 584
MQuadExpr.copy() 584
MQuadExpr.getValue() 584
MQuadExpr.__eq__() 584
MQuadExpr.__le__() 585
MQuadExpr.__ge__() 585

6.14 TempConstr 586
6.15 Column 588
Column() 588
Column.addTerms() 588
11 Attributes

11.1 Model Attributes

- NumConstrs 696
- NumVars 696
- NumSOS 697
- NumQConstrs 697
- NumGenConstrs 697
- NumNZs 697
- DNumNZs 697
- NumQNZs 697
- NumQCNZs 698
- NumIntVars 698
- NumBinVars 698
- NumPWLObjVars 698
- ModelName 698
- ModelSense 698
- ObjCon 699
- ObjVal 699
- ObjBound 699
- ObjBoundC 699
- PoolObjBound 699
- PoolObjVal 700
- MIPGap 700
- Runtime 700
- Status 700
- SolCount 700
- IterCount 701
- BarIterCount 701
- NodeCount 701
- IsMIP 701
- IsQP 701
- IsQCP 701
- IsMultiObj 702
- IISMinimal 702
- MaxCoeff 702
- MinCoeff 702
- MaxBound 702
- MinBound 703
- MaxObjCoeff 703
- MinObjCoeff 703
- MaxRHS 703
- MinRHS 703
- MaxQCCoeff 703
- MinQCCoeff 703
11.2 Variable Attributes

11.3 Linear Constraint Attributes
11.4 SOS Attributes .. 717
 IISSOS .. 718
11.5 Quadratic Constraint Attributes ... 718
 QCSense ... 718
 QCRHS .. 718
 QCName ... 718
 QCPi ... 718
 QCSlack ... 719
 QCTag ... 719
 IISQConstr ... 719
11.6 General Constraint Attributes ... 719
 FuncPieceError .. 719
 FuncPieceLength ... 720
 FuncPieceRatio ... 720
 FuncPieces ... 720
 GenConstrType ... 721
 GenConstrName ... 721
 IISGenConstr .. 721
11.7 Quality Attributes ... 721
 BoundVio ... 721
 BoundSVio .. 722
 BoundVioIndex .. 722
 BoundSVioIndex ... 722
 BoundVioSum .. 722
 BoundSVioSum .. 722
 ConstrVio ... 722
 ConstrSVio ... 723
 ConstrVioIndex ... 723
 ConstrSVioIndex ... 723
 ConstrVioSum ... 723
 ConstrSVioSum .. 724
 ConstrResidual .. 724
 ConstrSResidual ... 724
 ConstrResidualIndex .. 724
 ConstrSResidualIndex ... 724
ConstrResidualSum .. 725
ConstrSResidualSum ... 725
DualVio ... 725
DualSVio .. 725
DualVioIndex ... 725
DualSVioIndex ... 726
DualVioSum .. 726
DualSVioSum ... 726
DualResidual .. 726
DualSResidual .. 726
DualResidualIndex ... 727
DualSResidualIndex ... 727
DualResidualSum ... 727
DualSResidualSum .. 727
ComplVio .. 727
ComplVioIndex ... 728
ComplVioSum ... 728
IntVio ... 728
IntVioIndex ... 728
IntVioSum ... 728
11.8 Multi-objective Attributes 728
ObjN ... 729
ObjNCon ... 729
ObjNPriority .. 729
ObjNWeight ... 729
ObjNRelTol .. 730
ObjNAbsTol ... 730
ObjNVal ... 730
ObjNName ... 731
NumObj ... 731
11.9 Multi-Scenario Attributes 731
ScenNLB ... 731
ScenNUB ... 732
ScenNObj ... 732
ScenNRHS ... 732
ScenNName ... 733
ScenNObjBound .. 733
ScenNObjVal .. 733
ScenNX ... 733
NumScenarios .. 734
11.10 Batch Attributes ... 734
BatchErrorCode ... 734
BatchErrorMessage .. 734
BatchID ... 734
BatchStatus ... 735
11.11 Attribute Examples ... 735
 C Attribute Examples .. 736
 C++ Attribute Examples 737
 C# Attribute Examples 738
 Java Attribute Examples 738
 Python Attribute Examples 739
 Visual Basic Attribute Examples 739

12 Parameters ... 741
 12.1 Parameter Guidelines 748
 Continuous Models ... 748
 MIP Models .. 750
 12.2 Parameter Descriptions 752
 AggFill ... 752
 Aggregate ... 752
 BarConvTol .. 753
 BarCorrectors .. 753
 BarHomogeneous .. 753
 BarIterLimit .. 754
 BarOrder ... 754
 BarQCPConvTol ... 755
 BestBdStop .. 755
 BestObjStop ... 755
 BQPCuts .. 756
 BranchDir ... 756
 CliqueCuts .. 757
 CloudAccessID ... 757
 CloudHost .. 757
 CloudSecretKey .. 758
 CloudPool ... 758
 ComputeServer .. 758
 ConcurrentJobs ... 759
 ConcurrentMIP .. 759
 ConcurrentSettings 760
 CoverCuts ... 761
 Crossover ... 761
 CrossoverBasis ... 762
 CSAPIAccessID ... 762
 CSAPISecret .. 763
 CSAppName .. 763
 CSAuthToken .. 763
 CSBatchMode .. 763
 CSClientLog ... 764
 CSGroup .. 764
 CSIdleTimeout .. 765
 CSManger ... 765
xxvii
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPriority</td>
<td>766</td>
</tr>
<tr>
<td>CSQueueTimeout</td>
<td>766</td>
</tr>
<tr>
<td>CSRouter</td>
<td>767</td>
</tr>
<tr>
<td>CSTLSInsecure</td>
<td>767</td>
</tr>
<tr>
<td>CutAggPasses</td>
<td>767</td>
</tr>
<tr>
<td>Cutoff</td>
<td>768</td>
</tr>
<tr>
<td>CutPasses</td>
<td>768</td>
</tr>
<tr>
<td>Cuts</td>
<td>769</td>
</tr>
<tr>
<td>DegenMoves</td>
<td>769</td>
</tr>
<tr>
<td>Disconnected</td>
<td>769</td>
</tr>
<tr>
<td>DisplayInterval</td>
<td>770</td>
</tr>
<tr>
<td>DistributedMIPJobs</td>
<td>770</td>
</tr>
<tr>
<td>DualReductions</td>
<td>771</td>
</tr>
<tr>
<td>FeasibilityTol</td>
<td>771</td>
</tr>
<tr>
<td>FeasRelaxBigM</td>
<td>771</td>
</tr>
<tr>
<td>FlowCoverCuts</td>
<td>771</td>
</tr>
<tr>
<td>FlowPathCuts</td>
<td>772</td>
</tr>
<tr>
<td>FuncPieceError</td>
<td>772</td>
</tr>
<tr>
<td>FuncPieceLength</td>
<td>772</td>
</tr>
<tr>
<td>FuncPieceRatio</td>
<td>773</td>
</tr>
<tr>
<td>FuncPieces</td>
<td>773</td>
</tr>
<tr>
<td>FuncMaxVal</td>
<td>774</td>
</tr>
<tr>
<td>GomoryPasses</td>
<td>774</td>
</tr>
<tr>
<td>GUBCoverCuts</td>
<td>774</td>
</tr>
<tr>
<td>Heuristics</td>
<td>775</td>
</tr>
<tr>
<td>IgnoreNames</td>
<td>775</td>
</tr>
<tr>
<td>IISMethod</td>
<td>776</td>
</tr>
<tr>
<td>ImpliedCuts</td>
<td>776</td>
</tr>
<tr>
<td>ImproveStartGap</td>
<td>776</td>
</tr>
<tr>
<td>ImproveStartNodes</td>
<td>777</td>
</tr>
<tr>
<td>ImproveStartTime</td>
<td>777</td>
</tr>
<tr>
<td>InfProofCuts</td>
<td>778</td>
</tr>
<tr>
<td>InfUnbdInfo</td>
<td>778</td>
</tr>
<tr>
<td>inputFile</td>
<td>778</td>
</tr>
<tr>
<td>IntFeasTol</td>
<td>778</td>
</tr>
<tr>
<td>IterationLimit</td>
<td>779</td>
</tr>
<tr>
<td>JobID</td>
<td>779</td>
</tr>
<tr>
<td>JSONSolDetail</td>
<td>780</td>
</tr>
<tr>
<td>LazyConstraints</td>
<td>780</td>
</tr>
<tr>
<td>LogFile</td>
<td>780</td>
</tr>
<tr>
<td>LogToConsole</td>
<td>781</td>
</tr>
<tr>
<td>MarkowitzTol</td>
<td>781</td>
</tr>
<tr>
<td>Method</td>
<td>781</td>
</tr>
<tr>
<td>MinRelNodes</td>
<td>782</td>
</tr>
<tr>
<td>MIPFocus</td>
<td>782</td>
</tr>
</tbody>
</table>
ScaleFlag ... 801
ScenarioNumber ... 801
Seed ... 801
ServerPassword ... 802
ServerTimeout ... 802
Sifting ... 803
SiftMethod .. 803
SimplexPricing .. 804
SolutionLimit .. 804
SolFiles ... 804
SolutionNumber ... 805
StartNodeLimit .. 805
StartNumber ... 805
StrongCGCuts .. 806
SubMIPCuts .. 806
SubMIPNodes .. 807
Symmetry .. 807
Threads ... 807
TimeLimit ... 808
TokenServer ... 808
TSPort ... 808
TuneCriterion .. 809
TuneJobs ... 809
TuneOutput .. 810
TuneResults ... 810
TuneTimeLimit .. 810
TuneTrials .. 811
UpdateMode ... 811
UserName ... 812
VarBranch .. 812
WorkerPassword ... 813
WorkerPool ... 813
ZeroHalfCuts ... 813
ZeroObjNodes .. 814

12.3 Parameter Examples ... 814
 C Parameter Examples ... 815
 C++ Parameter Examples .. 816
 C# Parameter Examples ... 816
 Java Parameter Examples ... 817
 MATLAB Parameter Examples 817
 Python Parameter Examples 817
 R Parameter Examples ... 818
 Visual Basic Parameter Examples 818

13 Optimization Status Codes .. 820

xxx
22 Multiple Scenarios

- **22.1 Definition of a Multi-Scenario Model** ... 885
- **22.2 Specifying Multiple Scenarios** ... 885
- **22.3 Logging** .. 886
- **22.4 Retrieving Solutions for Multiple Scenarios** .. 887
- **22.5 Tips and Tricks** ... 887
- **22.6 Limitations and Additional Considerations** ... 888

23 Batch Optimization

- **23.1 Setting Up a Batch Environment** ... 889
- **23.2 Tagging Variables or Constraints** ... 889
- **23.3 Submitting a Batch Optimization Request** ... 890
- **23.4 Interacting with Batch Requests** ... 890
- **23.5 Interpreting the JSON Solution** ... 891
- **23.6 A Complete Example** .. 892

24 Recording API Calls

- **24.1 Recording** ... 895
- **24.2 Replay** ... 896
- **24.3 Limitations** .. 896

25 Concurrent Optimizer

26 Parameter Tuning Tool

- **26.1 Command-Line Tuning** ... 901
- **26.2 Tuning API** .. 903

27 Gurobi Instant Cloud

- **27.1 Client Setup** .. 904
- **27.2 Instant Cloud Setup** .. 905
- **27.3 Copyright Notice for 3rd Party Libraries** .. 906

28 Gurobi Guidelines for Numerical Issues

- **28.1 Avoid rounding of input** ... 909
- **28.2 Real numbers are not real** .. 910
- **28.3 Tolerances and user-scaling** .. 911
 - Gurobi tolerances and the limitations of double-precision arithmetic 912
 - Why scaling and geometry is relevant .. 912
 - Recommended ranges for variables and constraints ... 915
 - Improving ranges for variables and constraints ... 916
 - Advanced user scaling ... 916
 - Avoid hiding large coefficients .. 917
 - Dealing with big-M constraints .. 918
- **28.4 Does my model have numerical issues?** .. 918
- **28.5 Solver parameters to manage numerical issues** ... 920
 - Presolve .. 920
This is the reference manual for the Gurobi™ Optimizer. It contains documentation for the following Gurobi language interfaces:

- C
- C++
- Java®
- Microsoft®.NET
- Python®
- MATLAB®
- R

The *Gurobi interactive shell* is also documented in the Python section.

The different Gurobi language interfaces share many common features. These are described at the end of this manual. Two particularly important common features are the Attribute interface and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer to them frequently as you develop applications that use the Gurobi Optimizer.
Additional Topics

This document covers a number of additional topics, which are listed here:

- Variables and Constraints and Objectives
- Environments
- Attributes
- Parameters
- Optimization Status Codes
- Callback Codes
- Error Codes
- File Formats
- Logging
- Command-Line Tool
- Solution Pool
- Multiple Objectives
- Multiple Scenarios
- Batch Optimization
- Recording API Calls
- Concurrent Optimizer
- Parameter Tuning Tool
- Instant Cloud
- Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed Algorithms, and Gurobi Remote Services.

Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at https://support.gurobi.com. There, you can read knowledge base articles and join the community discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support site to submit a request to the Gurobi support team.
This section documents the Gurobi C interface. This manual begins with a quick overview of the functions in the interface, and continues with detailed descriptions of all of the available interface routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the routines described here.

Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv call. The environment acts as a container for all data associated with a set of optimization runs. You will generally only need one environment in your program, even if you wish to work with multiple optimization models. Once you are done with an environment, you should call GRBfreeenv to release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized environment and then, programmatically, set all required options for your specific requirements. For further details see the Environment section.

Models

You can create one or more optimization models within an environment. A model consists of a set of variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of constraints. Each variable has an associated lower bound, upper bound, type (continuous, binary, integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion. The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed...
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default, GRBoptimize() will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored as a set of attributes of the model. The C interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize() will only perform further optimization if relevant data has changed since the model was last optimized. If you would like to discard previously computed solution information and restart the optimization from scratch without changing the model, you can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fixed model. This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

- **Solution Pool**: Allows you to find more solutions.
- **Multiple Scenarios**: Allows you to find solutions to multiple, related models.
- **Multiple Objectives**: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call GRBcomputeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This routine populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated with the variables of the model, some with the constraints of the model, and some with the model itself. To give a simple example, solving an optimization model causes the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute values. The exact routine to use for a particular attribute depends on the type of the attribute. As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines. Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be of type char, int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr() routines (e.g., GRBgetintattr). In addition, those model attributes that can be set directly by the user (e.g., the objective sense) may be modified through the GRBset*attr() routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray() routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified using the index of the first member and the length of the desired sub-array. The second set, the GRBget*attrelement() routines (e.g., GRBgetcharattrelement) return a single entry from the attribute array. Finally, the GRBget*attrlist() routines (e.g., GRBgetdblattrlist) retrieve attribute values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(), GRBset*attrelement(), and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoefs to change individual matrix coefficients. This routine can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you remove constraints (through GRBdelconstrs) or variables (through GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms routine. You can add a list of quadratic terms in one call, or you can add terms incrementally through multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note that quadratic models will typically have both quadratic and linear terms. Linear terms are entered and modified through the Obj attribute, in the same way that they are handled for models with purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for information about the model before your modifications have been applied, the details of the lazy update approach may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case gives you fine-grained control over when modifications are applied. The second and third make the assumption that you want all pending modifications to be applied before you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach makes it much easier to perform multiple modifications to a model, since the model remains unchanged between modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server environment, where modifications require communication between machines. Thus, it is useful to have visibility into exactly when these modifications are applied. In general, if your program needs to make multiple modifications to the model, you should aim to make them in phases, where you make a set of modifications, then update, then make more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters are set using the GRBset*param() routines (e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g., GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a set of parameter settings from a file using GRBreadparams, or write the set of changed parameters using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in order to find a set that improves performance. You can call GRBtunemodel to invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it is created. Parameter changes to the original environment therefore have no effect on existing models. Use GRBgetenv to retrieve the environment associated with a particular model if you
want to change a parameter for that model.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, specify the log file name in GRBloadenv when you create your environment. You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

More detailed progress monitoring can be done through the Gurobi callback function. The GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call regularly during the optimization process. You can call GRBcbget from within the callback to obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine GRBterminate from within a callback, for example, the optimizer will terminate at the earliest convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively. Routine GRBcbstomultiobj allows you to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization, allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates that the routine completed successfully, while a non-zero value indicates that an error occurred. The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeterrormsg.
2.1 Environment Creation and Destruction

GRBloadenv

```c
int GRBloadenv ( GRBenv **envP,
                 const char *logfilename )
```

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

- `envP`: The location in which the pointer to the newly created environment should be placed.
- `logfilename`: The name of the log file for this environment. May be NULL (or an empty
 string), in which case no log file is created.

GRBemptyenv

```c
int GRBemptyenv ( GRBenv **envP )
```

Create an empty environment. Note that you will need to call GRBstartenv before you can use
this environment.

You should use this routine if you want to set parameters before actually starting the environ-
ment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi
Instant Cloud or a Cluster Manager. See the Environment Section for more details.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

- `envP`: The location in which the pointer to the newly created environment should be placed.

GRBstartenv

```c
int GRBstartenv ( GRBenv *env )
```
Start an empty environment. This routine starts an empty environment created by GRBemptyenv. If the environment has already been started, this routine will do nothing. If the routine fails, the environment will have the same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This routine will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:

A non-zero return value indicates that there was a problem starting the environment. Refer to the Error Code table for a list of possible return values.

Arguments:

- env: The empty environment to start.

GRBloadclientenv

```c
int GRBloadclientenv ( GRBenv **envP,
    const char *logfilename,
    const char *computeserver,
    const char *router,
    const char *password,
    const char *group,
    int CStlsinsecure,
    int priority,
    double timeout )
```

Create a client environment on a compute server. Optimization models live within an environment, so this is typically the first Gurobi routine called in an application. This call specifies the compute server on which those optimization models will be solved, as well as the priority of the associated jobs.

This routine will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer to the Error Code table for a list of possible return values.

Arguments:

- **envP**: The location in which the pointer to the newly created environment should be placed.
- **logfile**: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.
- **computeserver**: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., `server1:61000`)
- **router**: The router for a Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You should refer to the router using either its name or its IP address. If no router is used (which is the typical case), pass an empty string.
- **password**: The password for gaining access to the specified Compute Server cluster. Pass an empty string if no password is required.
- **group**: The name of the Compute Server group.
- **CStlsinsecure**: Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.
- **priority**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. Depending on the configuration of the server, a job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash. This behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server options.
- **timeout**: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that the call should never timeout.

Example usage:

```c
GRBenv *env;
error = GRBloadclientenv(&env, "gurobi.log",
                        "server1.mydomain.com,server2.mydomain.com",
                        "", "", "", 0, 5, -1.0);
```
Create a Gurobi Instant Cloud environment. Optimization models live within an environment, so this is typically the first Gurobi routine called in an application. This call will use an existing Instant Cloud machine if one is currently running within the specified machine pool, and it will launch a new one otherwise. Note that launching a new machine can take a few minutes.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, configure your machine pools, and perform other cloud setup and maintenance tasks.

You should keep your secretKey private. Sharing it with others will allow them to launch Instant Cloud instances in your account.

This routine will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.
accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your secretKey, this allows you to launch Instant Cloud instances and submit jobs to them.
secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your accessID, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.
pool: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restart the configuration information each time you launch a machine. May be NULL (or an empty string), in which case your job will be launched in the default pool associated with your cloud license.
priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs.

Example usage:

```c
GRBenv *env;
error = GRBloadcloudenv(&env, "gurobi.log",
        "3d1ececf9-dfad-eff4-b3fa", "ae6L23alJe3+fas",
        ",", 0);
```

GRBfreeenv

```c
void GRBfreeenv ( GRBenv *env )
```

Free an environment that was previously allocated by GRBloadenv, and release the associated memory. This routine should be called when an environment is no longer needed. In particular, it should only be called once all models built using the environment have been freed.

Arguments:
- `env`: The environment to be freed.

GRBgetconcurrentenv

```c
GRBenv * GRBgetconcurrentenv ( GRBmodel *model,
        int num )
```

Create/retrieve a concurrent environment for a model.

This routine provides fine-grained control over the concurrent optimizer. By creating your own concurrent environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments, and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with `num`=0. For example, if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent optimizer behavior.

Return value:
- The concurrent environment. A NULL return value indicates that there was a problem creating the environment.

Arguments:
- `model`: The model for the concurrent environment.
- `num`: The concurrent environment number.

Example usage:

```c
GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *env1 = GRBgetconcurrentenv(model, 1);
```
GRBgetmultiobjenv

```c
GRBenv* GRBgetmultiobjenv ( GRBmodel *model,  
                               int num )
```

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Return value:

The environment associated with a given multiobjective number in the model. A NULL return value indicates that there was a problem retrieving the environment.

Arguments:

- `model`: The model from where we want to retrieve the multi-objective environment.
- `num`: The multi-objective number.

Example usage:

```c
GRBenv *env0 = GRBgetmultiobjenv(model, 0);
GRBenv *env1 = GRBgetmultiobjenv(model, 1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);
```

GRBdiscardconcurrentenvs

```c
void GRBdiscardconcurrentenvs ( GRBmodel * model )
```

Discard concurrent environments for a model.

The concurrent environments created by `GRBgetconcurrentenv` will be used by every subsequent call to the concurrent optimizer until the concurrent environments are discarded.

Arguments:

- `model`: The model for the concurrent environment.

Example usage:

```c
GRBdiscardconcurrentenvs(model);
```

GRBdiscardmultiobjenvs

```c
void GRBdiscardmultiobjenvs ( GRBmodel * model )
```
Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Arguments:
- **model**: The model in which all multi objective environments will be discarded.

Example usage:

```c
GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);
```
2.2 Model Creation and Modification

GRBloadmodel

```c
int GRBloadmodel ( GRBenv *env,
                     GRBmodel **modelP,
                     const char *Pname,
                     int numvars,
                     int numconstrs,
                     int objsense,
                     double objcon,
                     double *obj,
                     char *sense,
                     double *rhs,
                     int *vbeg,
                     int *vlen,
                     int *vind,
                     double *vval,
                     double *lb,
                     double *ub,
                     char *vtype,
                     const char **varnames,
                     const char **constrnames )
```

Create a new optimization model, using the provided arguments to initialize the model data (objective function, variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition of variables or constraints, changes to variable types or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXloadmodel variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- `env`: The environment in which the new model should be created. Note that the new model gets a copy of this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the environment associated with a model.
- `modelP`: The location in which the pointer to the newly created model should be placed.
- `Pname`: The name of the model.
- `numvars`: The number of variables in the model.
- `numconstrs`: The number of constraints in the model.
- `objsense`: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).
- `objcon`: Constant objective offset.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are `'='` (equal), `'<'` (less-than-or-equal), or `'>'` (greater-than-or-equal). You can also use constants `GRB_EQUAL`, `GRB_LESS_EQUAL`, or `GRB_GREATER_EQUAL`.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC) format. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite upper bounds.

vtype: Types for the variables. Options are `GRB_CONTINUOUS`, `GRB_BINARY`, `GRB_INTEGER`, `GRB_SEMICONT`, or `GRB_SEMIINT`. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case all constraints are given default names.

Important notes:

We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

```c
/* maximize     x + y + 2 z
   subject to   x + 2 y + 3 z <= 4
               x + y    >= 1
   x, y, z binary */

int     vars   = 3;
```
```c
int constrs = 2;
int vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
                      obj, sense, rhs, vbeg, vlen, vind, vval,
                      NULL, NULL, vtype, NULL, NULL);
```

GRBnewmodel

```c
int GRBnewmodel ( GRBenv *env,
                  GRBmodel **modelP,
                  const char *Pname,
                  int numvars,
                  double *obj,
                  double *lb,
                  double *ub,
                  char *vtype,
                  const char **varnames )

Create a new optimization model. This routine allows you to specify an initial set of variables (with objective coefficients, bounds, types, and names), but the initial model will have no constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.

**Return value:**
A non-zero return value indicates that a problem occurred while creating the new model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- *env*: The environment in which the new model should be created. Note that the new model will get a copy of this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the environment associated with a model.
- *modelP*: The location in which the pointer to the new model should be placed.
- *Pname*: The name of the model.
- *numvars*: The number of variables in the model.
- *obj*: Objective coefficients for the new variables. This argument can be NULL, in which case the objective coefficients are set to 0.0.
- *lb*: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower bounds of 0.0.
- *ub*: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite upper bounds.
```
vtype: Types for the variables. Options are `GRB_CONTINUOUS`, `GRB_BINARY`, `GRB_INTEGER`, `GRB_SEMICONT`, or `GRB_SEMIINT`. This argument can be `NULL`, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be `NULL`, in which case all variables are given default names.

Example usage:

```c
double obj[] = {1.0, 1.0};
char *names[] = {"var1", "var2");
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);```

**GRBcopymodel**

```c
GRBmodel * GRBcopymodel (GRBmodel *model)
```

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call `GRBupdatemodel` before copying it.

**Return value:**

A copy of the input model. A `NULL` return value indicates that a problem was encountered.

**Arguments:**

- `model`: The model to copy.

**Example usage:**

```c
GRBupdatemodel(orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel(orig);
```

**GRBaddconstr**

```c
int GRBaddconstr (GRBmodel *model, int numnz, int *cind, double *cval, char sense, double rhs, const char *constrname)
```

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

**Return value:**

A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**

- `model`: The model to which the new constraint should be added.
- `numnz`: The number of non-zero coefficients in the new constraint.
- `cind`: Variable indices for non-zero values in the new constraint.
- `cval`: Numerical values for non-zero values in the new constraint.
- `sense`: The sense for the new constraint (e.g., `GRB_LESS_EQUAL`, `GRB_EQUAL`, `GRB_GREATER_EQUAL`).
- `rhs`: The right-hand side for the new constraint.
- `constrname`: The name for the new constraint.
sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.

rhs: Right-hand side value for the new constraint.

constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given a default name.

Example usage:

```c
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
/* x1 + 2 x3 + x4 = 1 */
error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");
```

**GRBaddconstrs**

```c
int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)
```

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXaddconstrs variant of this routine.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR) format by this routine. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint \( i \) and the end of the non-zeros for constraint \( i-1 \). To give an example of how this representation is used, consider a case where \( \text{cbeg}[2] = 10 \) and \( \text{cbeg}[3] = 12 \). This would indicate that constraint 2 has two non-zero values associated with it. Their variable indices can be found in \( \text{cind}[10] \) and \( \text{cind}[11] \), and the numerical values for those non-zeros can be found in \( \text{cval}[10] \) and \( \text{cval}[11] \).

\( \text{cind} \): Variable indices associated with non-zero values. See the description of the \( \text{cbeg} \) argument for more information.

\( \text{cval} \): Numerical values associated with constraint matrix non-zeros. See the description of the \( \text{cbeg} \) argument for more information.

\( \text{sense} \): Sense for the new constraints. Options are \text{GRB_LESS_EQUAL}, \text{GRB_EQUAL}, or \text{GRB_GREATER_EQUAL}.

\( \text{rhs} \): Right-hand side values for the new constraints. This argument can be \text{NULL}, in which case the right-hand side values are set to 0.0.

\( \text{constrnames} \): Names for the new constraints. This argument can be \text{NULL}, in which case all constraints are given default names.

**GRBaddgenconstrXxx**

Each of the functions described below adds a new *general constraint* to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as *general (function) constraints*. These are typically *not* treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this *general constraint* umbrella are:

- **GRBaddgenconstrMax**: \( y = \max(x_1, x_2, ..., c) \)
- **GRBaddgenconstrMin**: \( y = \min(x_1, x_2, ..., c) \)
- **GRBaddgenconstrAbs**: \( y = |x| \)
- **GRBaddgenconstrAnd**: \( y = x_1 \land x_2 \land x_3 \ldots \)
- **GRBaddgenconstrOr**: \( y = x_1 \lor x_2 \lor x_3 \ldots \)
- **GRBaddgenconstrIndicator**: \( y = 1 \rightarrow a'x \leq b \) (an indicator constraint)
- **GRBaddgenconstrPWL**: \( y = \text{pwl}(x) \) (a piecewise-linear function, specified using breakpoints)
- **GRBaddgenconstrPoly**: \( y = p_0x^d + p_1x^{d-1} + \ldots + p_{d-1}x + p_d \)
- GRBaddgenconstrExp: \( y = e^x \)
- GRBaddgenconstrExpA: \( y = a^x \)
- GRBaddgenconstrLog: \( y = \log_e(x) \)
- GRBaddgenconstrLogA: \( y = \log_a(x) \)
- GRBaddgenconstrPow: \( y = x^a \)
- GRBaddgenconstrSin: \( y = \sin(x) \)
- GRBaddgenconstrCos: \( y = \cos(x) \)
- GRBaddgenconstrTan: \( y = \tan(x) \)

Please refer to this section for additional details on general constraints.

**GRBaddgenconstrMax**

```c
int GRBaddgenconstrMax (GRBmodel *model,
 const char *name,
 int resvar,
 int nvars,
 const int *vars,
 double constant)
```

Add a new general constraint of type `GRB_GENCONSTR_MAX` to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

A MAX constraint \( r = \max\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the maximum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

**Return value:**
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**
- `model`: The model to which the new general constraint should be added.
- `name`: Name for the new general constraint. This argument can be `NULL`, in which case the constraint is given a default name.
- `resvar`: The index of the resultant variable \( r \) whose value will be equal to the max of the other variables.
- `nvars`: The number \( n \) of operand variables over which the max will be taken.
- `vars`: An array containing the indices of the operand variables \( x_j \) over which the max will be taken.
- `constant`: An additional operand that allows you to include a constant \( c \) among the arguments of the max operation.

**Example usage:**
int i = 3, 4;
error = GRBaddgenconstrMax(model, "maxconstr", 5, 3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin ( GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double constant )

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A MIN constraint \( r = \min\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the minimum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- resvar: The index of the resultant variable \( r \) whose value will be equal to the min of the other variables.
- nvars: The number \( n \) of operand variables over which the min will be taken.
- vars: An array containing the indices of the operand variables \( x_j \) over which the min will be taken.
- constant: An additional operand that allows you to include a constant \( c \) among the arguments of the min operation.

Example usage:

/* x5 = min(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMin(model, "minconstr", 5, 3, ind, 2.0);
GRBaddgenconstrAbs

int GRBaddgenconstrAbs ( GRBmodel *model,
                         const char *name,
                         int resvar,
                         int argvar )

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An ABS constraint \( r = \text{abs}\{x\} \) states that the resultant variable \( r \) should be equal to the absolute value of the argument variable \( x \).

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
resvar: The index of the resultant variable \( r \) whose value will be equal to the absolute value of the argument variable.
argvar: The index of the argument variable \( x \) for which the absolute value will be taken.

Example usage:

/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);

GRBaddgenconstrAnd

int GRBaddgenconstrAnd ( GRBmodel *model,
                         const char *name,
                         int resvar,
                         int nvars,
                         const int *vars )

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

An AND constraint \( r = \text{and}\{x_1, \ldots, x_n\} \) states that the binary resultant variable \( r \) should be 1 if and only if all of the operand variables \( x_1, \ldots, x_n \) are equal to 1. If any of the operand variables is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.

resvar: The index of the binary resultant variable \( r \) whose value will be equal to the AND concatenation of the other variables.

nvars: The number \( n \) of binary operand variables over which the AND will be taken.

vars: An array containing the indices of the binary operand variables \( x_j \) over which the AND concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Example usage:
```c
/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);
```

GRBaddgenconstrOr

```c
int GRBaddgenconstrOr (GRBmodel *model,
 const char *name,
 int resvar,
 int nvars,
 const int *vars)
```

Add a new general constraint of type `GRB_GENCONSTR_OR` to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

An OR constraint \( r = or\{x_1, \ldots, x_n\} \) states that the binary resultant variable \( r \) should be 1 if and only if any of the operand variables \( x_1, \ldots, x_n \) is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

Arguments:
- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **resvar**: The index of the binary resultant variable \( r \) whose value will be equal to the OR concatenation of the other variables.
- **nvars**: The number \( n \) of binary operand variables over which the OR will be taken.
- **vars**: An array containing the indices of the binary operand variables \( x_j \) over which the OR concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`. 
Example usage:

```c
/* x5 = or(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);
```

Add a new general constraint of type `GRB_GENCONSTRTYPE_INDICATOR` to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

An INDICATOR constraint \( z = f \to a^T x \leq b \) states that if the binary indicator variable \( z \) is equal to \( f \in \{0, 1\} \), then the linear constraint \( a^T x \leq b \) should hold. On the other hand, if \( z = 1 - f \), the linear constraint may be violated. The sense of the linear constraint can also be specified to be “\( = \)” or “\( \geq \)”.

Note that the indicator variable \( z \) of a constraint will be forced to be binary, independent of how it was created.

**Arguments:**

- `model`: The model to which the new general constraint should be added.
- `name`: Name for the new general constraint. This argument can be `NULL`, in which case the constraint is given a default name.
- `binvar`: The index of the binary indicator variable \( z \).
- `binval`: The value \( f \) for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- `nvars`: The number \( n \) of non-zero coefficients in the linear constraint triggered by the indicator.
- `ind`: Indices for the variables \( x_j \) with non-zero values in the linear constraint.
- `val`: Numerical values for non-zero values \( a_j \) in the linear constraint.
- `sense`: Sense for the linear constraint. Options are `GRB_LESS_EQUAL`, `GRB_EQUAL`, or `GRB_GREATER_EQUAL`.
- `rhs`: Right-hand side value for the linear constraint.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Example usage:**
/* x7 = 1 -> x1 + 2 x3 + x4 = 1 */
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1, 3, ind, val, GRB_EQUAL, 1.0);

GRBaddgenconstrPWL

int GRBaddgenconstrPWL ( GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 int npts,
 double *xpts,
 double *ypts )

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. Note that, due to our lazy update approach, the new constraint won't actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship \( y = f(x) \) must hold between variables \( x \) and \( y \), where \( f \) is a piecewise-linear function. The breakpoints for \( f \) are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
xvar: The index of variable \( x \).
yvar: The index of variable \( y \).
npts: The number of points that define the piecewise-linear function.
xpts: The \( x \) values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The \( y \) values for the points that define the piecewise-linear function.

Example usage:

double xpts[] = {1, 3, 5};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr(model, "pwl", xvar, yvar, 3, x, y);
Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A polynomial function constraint states that the relationship $y = p_0 x^d + p_1 x^{d-1} + ... + p_{d-1} x + p_d$ should hold between variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new general constraint should be added.

name: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.

xvar: The index of variable $x$.

yvar: The index of variable $y$.

plen: The length of coefficient array p. If $x^d$ is the highest power term, then plen should be $d + 1$.

p: The coefficients for the polynomial function (starting with the coefficient for the highest power).

options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Example usage:

```c
/* y = 3 x^4 + 7 x + 3 = 3 x^4 + 0 x^3 + 0 x^2 + 7 x + 3 */
int plen = 5;
double p[] = {3, 0, 0, 7, 3};
error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");
```
GRBaddgenconstrExp

```c
int GRBaddgenconstrExp (GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 const char *options)
```

Add a new general constraint of type `GRB_GENCONSTR_EXP` to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

A natural exponential function constraint states that the relationship \( y = \exp(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**

- `model`: The model to which the new general constraint should be added.
- `name`: Name for the new general constraint. This argument can be `NULL`, in which case the constraint is given a default name.
- `xvar`: The index of variable \( x \).
- `yvar`: The index of variable \( y \).
- `options`: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. `"FuncPieces=-1 FuncPieceError=0.001"`).

**Example usage:**

```c
/* y = \exp(x) */
error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");
```

GRBaddgenconstrExpA

```c
int GRBaddgenconstrExpA (GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 double a,
 const char *options)
```

Add a new general constraint of type `GRB_GENCONSTR_EXPA` to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model
(using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

An exponential function constraint states that the relationship \( y = a^x \) should hold for variables \( x \) and \( y \), where \( a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

**Return value:**
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**
- `model`: The model to which the new general constraint should be added.
- `name`: Name for the new general constraint. This argument can be `NULL`, in which case the constraint is given a default name.
- `xvar`: The index of variable \( x \).
- `yvar`: The index of variable \( y \).
- `a`: The base of the function, \( a > 0 \).
- `options`: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Example usage:**
```c
/* y = 3^x */
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");
```

---

**GRBaddgenconstrLog**

```c
int GRBaddgenconstrLog (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)
```

Add a new general constraint of type `GRB_GENCONSTRTYPE_LOG` to a model. Note that, due to our lazy update approach, the new constraint won't actually be added until you update the model (using `GRBupdatemodel`), optimize the model (using `GRBoptimize`), or write the model to disk (using `GRBwrite`).

A natural logarithmic function constraint states that the relationship \( y = \log(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.
Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **xvar**: The index of variable x.
- **yvar**: The index of variable y.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g., "FuncPieces=-1 FuncPieceError=0.001").

Example usage:
```c
/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.001");
```

**GRBaddgenconstrLogA**

```c
int GRBaddgenconstrLogA (GRBmodel *model, const char *name, int xvar, int yvar, double a, const char *options)
```

Add a new general constraint of type GRB_GENCONSTRTYPE_LOGA to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A logarithmic function constraint states that the relationship \( y = \log_a(x) \) should hold for variables \( x \) and \( y \), where \( a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
xvar: The index of variable $x$.
yvar: The index of variable $y$.
a: The base of the function, $a > 0$.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Example usage:

```c
/* y = log_10(x) */
error = GRBaddgenconstrLogA(model, "loga", xvar, yvar, 10.0, "");
```

GRBaddgenconstrPow

```c
int GRBaddgenconstrPow (GRBmodel *model, const char *name, int xvar, int yvar, double a, const char *options)
```

Add a new general constraint of type GRB_GENCONSTR_POW to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A power function constraint states that the relationship $y = x^a$ should hold for variables $x$ and $y$, where $a > 0$ is the (constant) exponent. The lower bound of variable $x$ must be nonnegative, even if $a$ is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Return value:

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **xvar**: The index of variable $x$.
- **yvar**: The index of variable $y$.
- **a**: The exponent of the function.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Example usage:

```c
/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");
```

**GRBaddgenconstrSin**

```c
int GRBaddgenconstrSin (GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 const char *options)
```

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemodemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A sine function constraint states that the relationship \( y = \sin(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **xvar**: The index of variable \( x \).
- **yvar**: The index of variable \( y \).
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Example usage:**

```c
/* y = sin(x) */
error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");
```
GRBaddgenconstrCos

```c
int GRBaddgenconstrCos (GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 const char *options)
```

Add a new general constraint of type GRB_GENCONSTR_COS to a model. Note that, due to our lazy update approach, the new constraint won't actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A cosine function constraint states that the relationship $y = \cos(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **xvar**: The index of variable $x$.
- **yvar**: The index of variable $y$.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-2 FuncPieceError=0.001').

**Example usage:**

```c
/* y = \cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");
```

GRBaddgenconstrTan

```c
int GRBaddgenconstrTan (GRBmodel *model,
 const char *name,
 int xvar,
 int yvar,
 const char *options)
```

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. Note that, due to our lazy update approach, the new constraint won't actually be added until you update the model.
A tangent function constraint states that the relationship \( y = \tan(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: The model to which the new general constraint should be added.
- **name**: Name for the new general constraint. This argument can be NULL, in which case the constraint is given a default name.
- **xvar**: The index of variable \( x \).
- **yvar**: The index of variable \( y \).
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Example usage:**

```c
/* y = \tan(x) */
error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "");
```

---

**GRBaddqconstr**

```c
int GRBaddqconstr (GRBmodel *model,
 int numlnz,
 int *lind,
 double *lval,
 int numqnz,
 int *qrow,
 int *qcol,
 double *qval,
 char sense,
 double rhs,
 const char *constrname)
```

Add a new quadratic constraint to a model. Note that, due to our lazy update approach, the new constraint won’t actually be added until you update the model (using GRBupdatemmodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a right-hand side value: \( x^T Q x + q^T x \leq b \). The quadratic terms are input through the numqnz, qrow,
qcol, and qval arguments, and the linear terms are input through the numlnz, lind, and lval arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between them can be both important and subtle. Refer to this discussion for additional information.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical values associated with linear terms.
numqlnz: The number of quadratic terms in the new quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The associated arguments arrays provide the corresponding values for each quadratic term. To give an example, if you wish to input quadratic terms $2x_0^2 + x_0x_1 + x_1^2$, you would call this routine with numqnz=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more information.
qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more information.
sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL or GRB_GREATER_EQUAL.
rhs: Right-hand side value for the new quadratic constraint.
constrname: Name for the new quadratic constraint. This argument can be NULL, in which case the constraint is given a default name.

Example usage:

```c
int lind[] = {1, 2};
double lval[] = {2.0, 1.0};
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 1.0};
/* 2 x0^2 + x0 x1 + x1^2 + 2 x1 + x2 <= 1 */
error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, qval, GRB_LESS_EQUAL, 1.0, "New");
```
GRBaddqpterms

```c
int GRBaddqpterms (GRBmodel *model,
 int numqnz,
 int *qrow,
 int *qcol,
 double *qval)
```

Add new quadratic objective terms into an existing model. Note that new terms are (numerically) added into existing terms, and that adding a term in row \( i \) and column \( j \) is equivalent to adding a term in row \( j \) and column \( i \). You can add all quadratic objective terms in a single call, or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms, and then rebuild your new quadratic objective from scratch.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic terms. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- `model`: The model to which the new quadratic objective terms should be added.
- `numqnz`: The number of new quadratic objective terms to add.
- `qrow`: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair of indices (stored in `qrow` and `qcol`), and a coefficient (stored in `qval`). The three argument arrays provide the corresponding values for each quadratic term. To give an example, to represent \(2x_0^2 + x_0x_1 + x_1^2\), you would have `numqnz`=3, `qrow[]` = \{0, 0, 1\}, `qcol[]` = \{0, 1, 1\}, and `qval[]` = \{2.0, 1.0, 1.0\}.
- `qcol`: Column indices associated with quadratic terms. See the description of the `qrow` argument for more information.
- `qval`: Numerical values associated with quadratic terms. See the description of the `qrow` argument for more information.

Important notes:
Note that building quadratic objectives requires some care, particularly if you are migrating an application from another solver. Some solvers require you to specify the entire \(Q\) matrix, while others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multiplier on \(Q\), while others do not. The Gurobi interface is built around quadratic terms, rather than a \(Q\) matrix. If your quadratic objective contains a term \(2x_0x_1\), you can enter it as a single term, \(2x_0x_1\), or as a pair of terms, \(x_0\) and \(x_1\).

Example usage:
```c
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
```
double qval[] = {2.0, 1.0, 3.0};
/* minimize 2 x^2 + x*y + 3 y^2 */
error = GRBaddqpterms(model, 3, qrow, qcol, qval);

GRBaddrangeconstr

int GRBaddrangeconstr ( GRBmodel *model,
                        int numnz,               
                        int *cind,               
                        double *cval,            
                        double lower,            
                        double upper,            
                        const char *constrname )

Add a new range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the constraint is given a default name.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are keeping a count of the variables in the model, remember to add one whenever you add a range.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB_EQUAL.

Example usage:

int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 3.0};
/* 1 <= x1 + 2 x3 + 3 x4 <= 2 */
error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");
int GRBaddrangeconstrs ( GRBmodel *model, int numconstrs, int numnz, int *cbeg, int *cind, double *cval, double *lower, double *upper, const char **constrnames )

Add new range constraints to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution. Note that, due to our lazy update approach, the new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXaddrangeconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
umnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR) format by this routine. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two non-zero values associated with it. Their variable indices can be found in cind[10] and cind[11], and the numerical values for those non-zeros can be found in cval[10] and cval[11].
cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more information.
cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument for more information.
lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
**constrnames**: Names for the new constraints. This argument can be **NULL**, in which case all constraints are given default names.

**Important notes:**
Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are keeping a count of the variables in the model, remember to add one for each range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is added with a range constraint to capture the range information. Thus, the **Sense** attribute on a range constraint will always be **GRB_EQUAL**.

**GRBAddSos**

```c
int GRBAddSos (GRBmodel *model,
 int numsos,
 int nummembers,
 int *types,
 int *beg,
 int *ind,
 double *weight)
```

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update approach, the new SOS constraints won’t actually be added until you update the model (using **GRBupdateModel**), optimize the model (using **GRBoptimize**), or write the model to disk (using **GRBwrite**).

Please refer to this section for details on SOS constraints.

**Return value:**
A non-zero return value indicates that a problem occurred while adding the SOS constraints. Refer to the **Error Code** table for a list of possible return values. Details on the error can be obtained by calling **GRBgeterrormsg**.

**Arguments:**
- **model**: The model to which the new SOSs should be added.
- **numsos**: The number of new SOSs to add.
- **nummembers**: The total number of SOS members in the new SOSs.
- **types**: The types of the SOS sets. SOS sets can be of type **GRB_SOS_TYPE1** or **GRB_SOS_TYPE2**.
- **beg**: The members of the added SOS sets are passed into this routine in Compressed Sparse Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each index entry provides the variable index for an SOS member, and each value entry provides the weight of that variable in the corresponding SOS set. Each new SOS has an associated **beg** value, indicating the start position of the SOS member list in the **ind** and **weight** arrays. This routine requires that the members for SOS i immediately follow those for SOS i-1 in **ind** and **weight**. Thus, **beg[i]** indicates both the index of the first non-zero in constraint i and the end of the non-zeros for constraint i-1. To give an example of how this representation is used, consider a case where **beg[2] = 10** and **beg[3] = 12**. This would indicate that SOS number 2 has two members. Their variable indices can be found in **ind[10]** and **ind[11]**, and the associated weights can be found in **weight[10]** and **weight[11]**.
ind: Variable indices associated with SOS members. See the description of the beg argument for more information.

weight: Weights associated with SOS members. See the description of the beg argument for more information.

Example usage:

```c
int types[] = {GRB_SOS_TYPE1, GRB_SOS_TYPE1};
int beg[] = {0, 2};
int ind[] = {1, 2, 1, 3};
double weight[] = {1, 2, 1, 2};
error = GRBaddsos(model, 2, 4, types, beg, ind, weight);
```

**GRBaddvar**

```c
int GRBaddvar (GRBmodel *model,
 int numnz,
 int *vind,
 double *vval,
 double obj,
 double lb,
 double ub,
 char vtype,
 const char *varname)
```

Add a new variable to a model. Note that, due to our lazy update approach, the new variable won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

**Return value:**

A non-zero return value indicates that a problem occurred while adding the variable. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: The model to which the new variable should be added.
- **numnz**: The number of non-zero coefficients in the new column.
- **vind**: Constraint indices associated with non-zero values for the new variable.
- **vval**: Numerical values associated with non-zero values for the new variable.
- **obj**: Objective coefficient for the new variable.
- **lb**: Lower bound for the new variable.
- **ub**: Upper bound for the new variable.
- **vtype**: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT.
- **varname**: Name for the new variable. This argument can be NULL, in which case the variable is given a default name.

**Example usage:**

```c
int ind[] = {1, 3, 4};
double val[] = {1.0, 1.0, 1.0};
error = GRBaddvar(model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,
```
GRBContinuos, "New");

GRBaddvars

int GRBaddvars ( GRBmodel *model,
    int numvars,
    int numnz,
    int *vbeg,
    int *vind,
    double *vval,
    double *obj,
    double *lb,
    double *ub,
    char *vtype,
    const char **varnames )

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXaddvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
umnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC) format. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored contiguously, so the start position for a variable is the end position for the previous variable. To give an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].
vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.
vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective coefficients are set to 0.0.
lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given default names.

**GRBchgcoeffs**

```c
int GRBchgcoeffs (GRBmodel *model,
 int numchgs,
 int *cind,
 int *vind,
 double *val)
```

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXchgcoeffs variant of this routine.

**Return value:**

A non-zero return value indicates that a problem occurred while performing the modification. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model:** The model to modify.
- **numchgs:** The number of coefficients to modify.
- **cind:** Constraint indices for the coefficients to modify.
- **vind:** Variable indices for the coefficients to modify.
- **val:** The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.

**Example usage:**

```c
int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBchgcoeffs(model, 2, cind, vind, val);
```
GRBdelconstrs

```c
int GRBdelconstrs (GRBmodel *model,
 int numdel,
 int *ind)
```

Delete a list of constraints from an existing model. Note that, due to our lazy update approach, the constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

**Return value:**
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to modify.
- `numdel`: The number of constraints to remove.
- `ind`: The indices of the constraints to remove.

**Example usage:**
```c
int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);
```

GRBdelgenconstrs

```c
int GRBdelgenconstrs (GRBmodel *model,
 int numdel,
 int *ind)
```

Delete a list of general constraints from an existing model. Note that, due to our lazy update approach, the general constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

**Return value:**
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to modify.
- `numdel`: The number of general constraints to remove.
- `ind`: The indices of the general constraints to remove.

**Example usage:**
```c
int first_four[] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);
```

GRBdelq

```c
int GRBdelq (GRBmodel *model)
```

Delete a list of general constraints from an existing model. Note that, due to our lazy update approach, the general constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

**Return value:**
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to modify.

**Example usage:**
```c
int first_four[] = {0, 1, 2, 3};
error = GRBdelq(model);
```
Delete all quadratic objective terms from an existing model. Note that, due to our lazy update approach, the quadratic terms won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic objective terms. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to modify.

Example usage:
```c
error = GRBdelq(model);
```

GRBdelqconstrs
```c
int GRBdelqconstrs (GRBmodel *model,
 int numdel,
 int *ind)
```

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update approach, the quadratic constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to modify.
- numdel: The number of quadratic constraints to remove.
- ind: The indices of the quadratic constraints remove.

Example usage:
```c
int first_four[] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);
```

GRBdelsos
```c
int GRBdelsos (GRBmodel *model,
 int numdel,
 int *ind)
```

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due to our lazy update approach, the SOS constraints won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: The model to modify.
- **numdel**: The number of SOSs to remove.
- **ind**: The indices of the SOSs to remove.

**Example usage:**

```c
int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);
```

### GRBdelvars

```c
int GRBdelvars (GRBmodel *model,
 int numdel,
 int *ind)
```

Delete a list of variables from an existing model. Note that, due to our lazy update approach, the variables won’t actually be removed until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

**Return value:**
- A non-zero return value indicates that a problem occurred while deleting the variables. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: The model to modify.
- **numdel**: The number of variables to remove.
- **ind**: The indices of the variables to remove.

**Example usage:**

```c
int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);
```

### GRBsetobjectiven

```c
int GRBsetobjectiven (GRBmodel *model,
 int index,
 int priority,
 double weight,
 double abstol,
 double reltol,
 const char *name,
 double constant,
 int lnz,
 int *lind,
 double *lval)
```

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Note that you can also modify an alternative objective using the \texttt{ObjN} variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the \texttt{ObjN} attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be added until you update the model (using \texttt{GRBupdatemodel}), optimize the model (using \texttt{GRBoptimize}), or write the model to disk (using \texttt{GRBwrite}).

**Return value:**
A non-zero return value indicates that a problem occurred while setting the alternative objective. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling \texttt{GRBgeterrormsg}.

**Arguments:**
- \texttt{model}: The model in which the new alternative objective should be set.
- \texttt{index}: Index for new objective. If you use an index of 0, this routine will change the primary optimization objective.
- \texttt{priority}: Priority for the alternative objective. This initializes the \texttt{ObjNPriority} attribute for this objective.
- \texttt{weight}: Weight for the alternative objective. This initializes the \texttt{ObjNWeight} attribute for this objective.
- \texttt{abstol}: Absolute tolerance for the alternative objective. This initializes the \texttt{ObjNAbsTol} attribute for this objective.
- \texttt{reltol}: Relative tolerance for the alternative objective. This initializes the \texttt{ObjNRelTol} attribute for this objective.
- \texttt{name}: Name of the alternative objective. This initializes the \texttt{ObjNName} attribute for this objective.
- \texttt{constant}: Constant part of the linear expression for the new alternative objective.
- \texttt{lnz}: Number of non-zero coefficients in new alternative objective.
- \texttt{lind}: Variable indices for non-zero values in new alternative objective.
- \texttt{lval}: Numerical values for non-zero values in new alternative objective.

**Example usage:**
```c
int ind[] = {0, 1, 2};
double val[] = {1.0, 1.0, 1.0};
/* Objective expression: x0 + x1 + x2 */
error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",
 0.0, 3, ind, val);
```

**GRBsetpwlobj**

```c
int GRBsetpwlobj (GRBmodel *model,
 int var,
 int npoints,
 double *x,
 double *y)
```

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective function for a single variable. Specifically, the \(x\) and \(y\) arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

Note that, due to our lazy update approach, the new piecewise-linear objective won’t actually be added until you update the model (using \texttt{GRBupdatemodel})

\begin{itemize}
\item optimize the model (using \texttt{GRBoptimize}), or write the model to disk (using \texttt{GRBwrite}).
\end{itemize}

\textbf{Return value:}

A non-zero return value indicates that a problem occurred while setting the piecewise-linear objective. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling \texttt{GRBgeterrormsg}.

\textbf{Arguments:}

- \texttt{model}: The model to modify.
- \texttt{var}: The variable whose objective function is being changed.
- \texttt{npoints}: The number of points that define the piecewise-linear function.
- \texttt{x}: The \(x\) values for the points that define the piecewise-linear function. Must be in non-decreasing order.
- \texttt{y}: The \(y\) values for the points that define the piecewise-linear function.

\textbf{Example usage:}

\begin{verbatim}
double x[] = {1, 3, 5};
double y[] = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);
\end{verbatim}

\texttt{GRBupdatemodel}

\begin{verbatim}
int GRBupdatemodel ( GRBmodel *model )
\end{verbatim}

Process any pending model modifications.

\textbf{Return value:}

A non-zero return value indicates that a problem occurred while updating the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling \texttt{GRBgeterrormsg}.

\textbf{Arguments:}

- \texttt{model}: The model to update.

\textbf{Example usage:}

\begin{verbatim}
error = GRBupdatemodel(model);
\end{verbatim}

\texttt{GRBfreemodel}

\begin{verbatim}
int GRBfreemodel ( GRBmodel *model )
\end{verbatim}

Free a model and release the associated memory.

\textbf{Return value:}

\begin{verbatim}
A non-zero return value indicates that a problem occurred while freeing the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to be freed.

Example usage:

```c
error = GRBfreemodel(model);
```

GRBXaddconstrs

```c
int GRBXaddconstrs (GRBmodel *model,
 int numconstrs,
 size_t numnz,
 size_t *cbeg,
 int *cind,
 double *cval,
 char *sense,
 double *rhs,
 const char **constrnames)
```

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the new constraints won’t actually be added until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr), since it introduces no significant overhead and we find that it produces simpler code. Feel free to use this routine if you disagree, though.

Return value:

A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to which the new constraints should be added.

numconstrs: The number of new constraints to add.

numnz: The total number of non-zero coefficients in the new constraints.

cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR) format by this routine. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each new constraint has an associated cbeg value, indicating the start position of the non-zeros for that constraint in the cind and cval arrays. This routine requires that the non-zeros for constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in constraint i and the end of the non-zeros for constraint i-1. To give an example of how this representation is used, consider a case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in \texttt{cind[10]} and \texttt{cind[11]}, and the numerical values for those non-zeros can be found in \texttt{cval[10]} and \texttt{cval[11]}.

\textbf{cind}: Variable indices associated with non-zero values. See the description of the \texttt{cbeg} argument for more information.

\textbf{cval}: Numerical values associated with constraint matrix non-zeros. See the description of the \texttt{cbeg} argument for more information.

\textbf{sense}: Sense for the new constraints. Options are \texttt{GRB_LESS_EQUAL}, \texttt{GRB_EQUAL}, or \texttt{GRB_GREATER_EQUAL}.

\textbf{rhs}: Right-hand side values for the new constraints. This argument can be \texttt{NULL}, in which case the right-hand side values are set to 0.0.

\textbf{constrnames}: Names for the new constraints. This argument can be \texttt{NULL}, in which case all constraints are given default names.

\textbf{GRBXaddrangeconstrs}

\begin{verbatim}
int GRBXaddrangeconstrs ( GRBmodel *model,
                          int numconstrs,
                          size_t numnz,
                          size_t *cbeg,
                          int *cind,
                          double *cval,
                          double *lower,
                          double *upper,
                          const char **constrnames )
\end{verbatim}

The \texttt{size_t} version of \texttt{GRBaddrangeconstrs}. The argument that counts non-zero values is of type \texttt{size_t} in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input expression must be between the specified \texttt{lower} and \texttt{upper} bounds in any solution. Note that, due to our lazy update approach, the new constraints won’t actually be added until you update the model (using \texttt{GRBupdatemodel}), optimize the model (using \texttt{GRBoptimize}), or write the model to disk (using \texttt{GRBwrite}).

\textbf{Return value:}
A non-zero return value indicates that a problem occurred while adding the constraints. Refer to the \textbf{Error Code} table for a list of possible return values. Details on the error can be obtained by calling \texttt{GRBgeterrormsg}.

\textbf{Arguments:}
- \texttt{model}: The model to which the new constraints should be added.
- \texttt{numconstrs}: The number of new constraints to add.
- \texttt{numnz}: The total number of non-zero coefficients in the new constraints.
- \texttt{cbeg}: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Row (CSR) format by this routine. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each new constraint has an associated \texttt{cbeg} value, indicating the start position of the non-zeros for that constraint in the \texttt{cind} and \texttt{cval} arrays. This routine requires that the non-zeros for
constraint \( i \) immediately follow those for constraint \( i-1 \) in \( \text{cind} \) and \( \text{cval} \). Thus, \( \text{cbeg}[i] \) indicates both the index of the first non-zero in constraint \( i \) and the end of the non-zero values for constraint \( i-1 \). To give an example of how this representation is used, consider a case where \( \text{cbeg}[2] = 10 \) and \( \text{cbeg}[3] = 12 \). This would indicate that constraint 2 has two non-zero values associated with it. Their variable indices can be found in \( \text{cind}[10] \) and \( \text{cind}[11] \), and the numerical values for those non-zeros can be found in \( \text{cval}[10] \) and \( \text{cval}[11] \).

\( \text{cind} \): Variable indices associated with non-zero values. See the description of the \( \text{cbeg} \) argument for more information.

\( \text{cval} \): Numerical values associated with constraint matrix non-zeros. See the description of the \( \text{cbeg} \) argument for more information.

\( \text{lower} \): Lower bounds for the linear expressions.

\( \text{upper} \): Upper bounds for the linear expressions.

\( \text{constrnames} \): Names for the new constraints. This argument can be \( \text{NULL} \), in which case all constraints are given default names.

**Important notes:**

Note that adding a range constraint to the model adds both a new constraint and a new variable. If you are keeping a count of the variables in the model, remember to add one for each range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra variable that is added with a range constraint to capture the range information. Thus, the Sense attribute on a range constraint will always be \text{GRB_EQUAL}.

**GRBXaddvars**

```c
int GRBXaddvars (GRBmodel *model,
 int numvars,
 size_t numnz,
 size_t *vbeg,
 int *vind,
 double *vval,
 double *obj,
 double *lb,
 double *ub,
 char *vtype,
 const char **varnames)
```

The \text{size_t} version of \text{GRBaddvars}. The two arguments that count non-zero values are of type \text{size_t} in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables won’t actually be added until you update the model (using \text{GRBupdatemodel}), optimize the model (using \text{GRBoptimize}), or write the model to disk (using \text{GRBwrite}).

**Return value:**

A non-zero return value indicates that a problem occurred while adding the variables. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling \text{GRBgeterrormsg}.

**Arguments:**
model: The model to which the new variables should be added.

numvars: The number of new variables to add.

numnz: The total number of non-zero coefficients in the new columns.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC) format. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable in the model has a vbeg, indicating the start position of the non-zeros for that variable in the vind and vval arrays. This routine requires columns to be stored contiguously, so the start position for a variable is the end position for the previous variable. To give an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all variables are given default names.

GRBXchgcoeffs

```c
int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,
double *val)
```

The size_t version of GRBchgccoeffs. The argument that counts non-zero values is of type size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the model until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).
Return value:

A non-zero return value indicates that a problem occurred while performing the modification. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be changed to 2.0.

Example usage:

```c
int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBxchgcoeffs(model, 2, cind, vind, val);
```

GRBXloadmodel

```c
int GRBXloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)
```

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type size_t in this version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data (objective function, variable bounds, constraint matrix, etc.). The model is then ready for optimization, or for modification (e.g., addition of variables or constraints, changes to variable types or bounds, etc.).
Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
  env: The environment in which the new model should be created. Note that the new model gets a copy of this environment, so subsequent modifications to the original environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the environment associated with a model.
  modelP: The location in which the pointer to the newly created model should be placed.
  Pname: The name of the model.
  numvars: The number of variables in the model.
  numconstrs: The number of constraints in the model.
  objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1 (maximization).
  objcon: Constant objective offset.
  obj: Objective coefficients for the new variables. This argument can be NULL, in which case the objective coefficients are set to 0.0.
  sense: The senses of the new constraints. Options are '=' (equal), '<' (less-than-or-equal), or '>' (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL, or GRB_GREATER_EQUAL.
  rhs: Right-hand side values for the new constraints. This argument can be NULL, in which case the right-hand side values are set to 0.0.
  vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse Column (CSC) format. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable in the model has a vbeg and vlen value, indicating the start position of the non-zeros for that variable in the vind and vval arrays, and the number of non-zero values for that variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].
  vlen: Number of constraint matrix non-zero values associated with each variable. See the description of the vbeg argument for more information.
  vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.
  vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.
  lb: Lower bounds for the new variables. This argument can be NULL, in which case all variables get lower bounds of 0.0.
  ub: Upper bounds for the new variables. This argument can be NULL, in which case all variables get infinite upper bounds.
  vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

**varnames**: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

**constrnames**: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

**Important notes**: We recommend that you build a model one constraint or one variable at a time, using GRBaddconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once. It is much simpler, less error prone, and it introduces no significant overhead.

**Example usage**:

```c
/* maximize x + y + 2 z
 subject to x + 2 y + 3 z <= 4
 x + y >= 1
 x, y, z binary */

int vars = 3;
int constrs = 2;
size_t vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
 obj, sense, rhs, vbeg, vlen, vind, vval,
 NULL, NULL, vtype, NULL, NULL);
```
2.3 Model Solution

GRBoptimize

int GRBoptimize ( GRBmodel *model )

Optimize a model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether the optimization ran into an error. Query the Status attribute to determine the result of the optimization (see the Attributes section for more information on querying attributes).

Example usage:
error = GRBoptimize(model);

GRBoptimizeasync

int GRBoptimizeasync ( GRBmodel *model )

Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations while optimization proceeds in the background. To check the state of the asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When you are done with your foreground tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below). Any other calls on the running model, or on any other models that were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.
Return value:
A non-zero return value indicates that a problem occurred while optimizing the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether launching the asynchronous job ran into an error. Query the Status attribute to determine the result of the optimization (see the Attributes section for more information on querying attributes). The return value of GRBsync indicates whether the background optimization ran into an error.

Example usage:

```c
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);
```

GRBcomputeIIS

```c
int GRBcomputeIIS (GRBmodel *model)
```

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB attributes. You can also obtain information about the results of the IIS computation by writing a .ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Note that this routine can be used to compute IISs for both continuous and MIP models.

Return value:
A non-zero return value indicates that a problem occurred while computing the IIS. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:
This routine only reports whether the computation ran into an error. Query the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the computation (see the Attributes section for more information on querying attributes).

Example usage:
error = GRBcomputeIIS(model);

GRBfeasrelax

int GRBfeasrelax ( GRBmodel *model,
                               int relaxobjtype,
                               int minrelax,
                               double *lbpen,
                               double *ubpen,
                               double *rhspen,
                               double *feasiobjP )

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBoptimize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This routine provides a number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or linear constraint may not be violated.

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:
A non-zero return value indicates that a problem occurred while computing the feasibility relaxation. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
**model**: The original (infeasible) model. The model is modified by this routine.

**relaxobjtype**: The cost function used when finding the minimum cost relaxation.

**minrelax**: The type of feasibility relaxation to perform.

**lbpen**: The penalty associated with violating a lower bound. Can be NULL, in which case no lower bound violations are allowed.

**ubpen**: The penalty associated with violating an upper bound. Can be NULL, in which case no upper bound violations are allowed.

**rhspen**: The penalty associated with violating a linear constraint. Can be NULL, in which case no constraint violations are allowed.

**feasobjP**: When **minrelax**=1, this returns the objective value for the minimum cost relaxation.

**Example usage:**

```c
double penalties[];
error = GRBfeasrelax(model, 0, 0, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);
```

**GRBfixmodel**

```c
int GRBfixmodel (GRBmodel *model,
 GRBmodel **fixedP)
```

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call to **GRBoptimize**). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

**Return value:**

A non-zero return value indicates that a problem occurred while creating the fixed model. Refer to the **Error Code** table for a list of possible return values. Details on the error can be obtained by calling **GRBgeterrormsg**.

**Arguments:**

- **model**: The MIP model (with a solution loaded).
- **fixedP**: The computed fixed model.

**Example usage:**

```c
GRBmodel *fixed;
error = GRBfixmodel(model, &fixed);
```

**GRBreset**

```c
int GRBreset (GRBmodel *model,
 int clearall)
```

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:
A non-zero return value indicates that a problem occurred while resetting the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to reset.
- clearall: Should additional information such as MIP starts, variable hints, branching priorities, lazy flags, and partition information be cleared?

Example usage:
```c
error = GRBreset(model, 0);
```

GRBsync

```c
int GRBsync (GRBmodel *model)
```

Wait for a previous asynchronous optimization call to complete.

Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can perform other computations while optimization proceeds, and can check on the progress of the optimization by querying various model attributes. The GRBsync call forces the calling program to wait until the asynchronous optimization completes. You must call GRBsync before the corresponding model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems. In other words, error codes returned by this method are those that GRBoptimize itself would have returned, had the original method not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has already completed.

Return value:
A non-zero return value indicates that a problem occurred while solving the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model that is currently being solved.

Example usage:
```c
error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);
```
2.4 Model Queries

While most model related queries are handled through the attribute interface, a few fall outside of that interface. These are described here.

**GRBgetcoeff**

```c
int GRBgetcoeff (GRBmodel *model,
 int constrind,
 int varind,
 double *valP)
```

Retrieve a single constraint matrix coefficient.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the coefficient. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model from which the coefficient should be retrieved.
- `constrind`: The constraint index for the desired coefficient.
- `varind`: The variable index for the desired coefficient.
- `valP`: The location in which the requested matrix coefficient should be placed.

**Example usage:**

```c
double A12;
error = GRBgetcoeff(model, 1, 2, &A12);
```

**GRBgetconstrbyname**

```c
int GRBgetconstrbyname (GRBmodel *model,
 const char *name,
 int *constrnumP)
```

Retrieves a linear constraint from its name. If multiple linear constraints have the same name, this routine chooses one arbitrarily.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model from which the linear constraint should be retrieved.
- `name`: The name of the desired linear constraint.
- `constrnumP`: Constraint number for a linear constraint with the indicated name. Returns -1 if no matching name is found.
GRBgetconstrs

```c
int GRBgetconstrs (GRBmodel *model,
 int *numnzP,
 int *cbeg,
 int *cind,
 double *cval,
 int start,
 int len)
```

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this routine twice. In the first call, you specify the requested set of constraints, with NULL values for `cbeg`, `cind`, and `cval`. The routine returns the number of non-zero values for the specified constraint range in `numnzP`. That allows you to make certain that `cind` and `cval` are of sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXgetconstrs variant of this routine.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model from which the linear constraints should be retrieved.
- `numnzP`: The number of non-zero values retrieved.
- `cbeg`: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each constraint has an associated `cbeg` value, indicating the start position of the non-zeros for that constraint in the `cind` and `cval` arrays. The non-zeros for constraint `i` immediately follow those for constraint `i-1` in `cind` and `cval`. Thus, `cbeg[i]` indicates both the index of the first non-zero in constraint `i` and the end of the non-zeros for constraint `i-1`. For example, consider the case where `cbeg[2] = 10` and `cbeg[3] = 12`. This would indicate that constraint 2 has two non-zero values associated with it. Their variable indices can be found in `cind[10]` and `cind[11]`, and the numerical values for those non-zeros can be found in `cval[10]` and `cval[11]`.
- `cind`: Variable indices associated with non-zero values. See the description of the `cbeg` argument for more information.
- `cval`: Numerical values associated with constraint matrix non-zeros. See the description of the `cbeg` argument for more information.
- `start`: The index of the first linear constraint to retrieve.
- `len`: The number of linear constraints to retrieve.

GRBgetenv

```c
GRBenv * GRBgetenv (GRBmodel *model)
```

Retrieve the environment associated with a model.
Return value:
The environment associated with the model. A NULL return value indicates that there was a problem retrieving the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:
GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax

```
int GRBgetgenconstrMax (GRBmodel *model,
 int id,
 int *resvarP,
 int *nvarsP,
 int *vars,
 double *constantP)
```

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstr-Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the constraint.
class constantP: The additional constant operand of the constraint.

Example usage:
```
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
```
GRBgetgenconstrMin

```c
int GRBgetgenconstrMin (GRBmodel *model,
 int id,
 int *resvarP,
 int *nvarsP,
 int *vars,
 double *constantP)
```

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstr-Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the `vars` argument. The routine returns the total number of operand variables in the specified general constraint in `nvarsP`. That allows you to make certain that the `vars` array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to which the new general constraint should be added.
- `id`: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
- `resvarP`: The variable index associated with the resultant variable of the constraint.
- `nvarsP`: The number of operand variables of the constraint.
- `vars`: An array to store the variable indices associated with the variable operands of the constraint.
- `constantP`: The additional constant operand of the constraint.

**Example usage:**

```c
int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {
 error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);
```
/* ...allocate vars to hold 'nvars' values... */
   error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);
}

GRBgetgenconstrAbs

int  GRBgetgenconstrAbs (  GRBmodel  *model,
                          int       id,
                          int       *resvarP,
                          int       *argvarP )

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.
See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.

Example usage:

   int type;
   int resvar;
   int argvar;

   error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
   if (type == GRB_GENCONSTR_ABS) {
      error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);
   }

GRBgetgenconstrAnd

int  GRBgetgenconstrAnd (  GRBmodel  *model,
                          int       id,
                          int       *resvarP,
                          int       *nvarsP,
                          int       *vars )

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.
Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of the constraint.

Example usage:

```c
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {
 error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);
 /* ...allocate vars to hold 'nvars' values... */
 error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);
}
```

GRBgetgenconstrOr

```c
int GRBgetgenconstrOr (GRBmodel *model,
 int id,
 int *resvarP,
 int *nvarsP,
 int *vars)
```

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in nvarsP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
- resvar: The variable index associated with the binary resultant variable of the constraint.
- nvars: The number of binary operand variables of the constraint.
- vars: An array to store the variable indices associated with the binary variable operands of
the constraint.

Example usage:
```c
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {
 error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);
 /* ...allocate vars to hold 'nvars' values... */
 error = GRBgetgenconstrOr(model, 3, NULL, NULL, vars);
}
```

GRBgetgenconstrIndicator

```c
int GRBgetgenconstrIndicator (GRBmodel *model, int id, int *binvarP, int *binvalP, int *nvarsP, int *ind, double *val, char *senseP, double *rhsP)
```

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint
type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- **model**: The model to which the new general constraint should be added.
- **id**: The index of the general constraint to retrieve.

Note that any of the following arguments can be **NULL**.
- **binvar**: The variable index associated with the binary indicator variable.
- **binval**: The value that the indicator variable has to take in order to trigger the linear
  constraint.
- **nvars**: The number of non-zero coefficients in the linear constraint triggered by the indica-
  tor.
- **ind**: An array to store the variable indices for non-zero values in the linear constraint.
- **val**: An array to store the numerical values for non-zero values in the linear constraint.
- **sense**: Sense for the linear constraint. Options are **GRB_LESS_EQUAL**, **GRB_EQUAL**, or **GRB_-
  GREATER_EQUAL**.
- **rhs**: Right-hand side value for the linear constraint.

Example usage:
```c
int type;
int binvar;
int binval;
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {
 error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
 NULL, NULL, &sense, &rhs);
 /* ...allocate ind and val to hold 'nvars' values... */
 error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,
 ind, val, NULL, NULL);
}
```

**GRBgetgenconstrPWL**

```c
int GRBgetgenconstrPWL (GRBmodel *model,
 int id,
 int *xvarP,
 int *yvarP,
 int *nptsP,
 double *xpts,
 double *ypts)
```
Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstr-Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint type.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model:** The model to which the new general constraint should be added.
- **id:** The index of the general constraint to retrieve.
- **xvarP:** The index of variable x.
- **yvarP:** The index of variable y.
- **nptsP:** The number of points that define the piecewise-linear function.
- **xpts:** The x values for the points that define the piecewise-linear function.
- **ypts:** The y values for the points that define the piecewise-linear function.

**Example usage:**

```c
int type;
int xvar;
int yvar;
int npts;
double *xpts;
double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTRAINT_PWL) {
 error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
 /* ...allocate xpts and ypts arrays with length npts */
 error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);
}
```

---

**GRBgetgenconstrPoly**

```c
int GRBgetgenconstrPoly (GRBmodel *model,
 int id,
 int *xvarP,
 int *yvarP,
 int *plenP,
 double *p)
```
Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make certain that the p array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
plenP: Pointer to store the array length for p. If \( x^d \) is the highest power term, then \( d + 1 \) will be returned.
p: The coefficients for polynomial function.

Example usage:
```c
int type;
in txvar;
int tvvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {
 error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);
 /* ...allocate p array with length plen */
 error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);
}
```

GRBgetgenconstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.
Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
- xvarP: The index of variable \( x \).
- yvarP: The index of variable \( y \).

Example usage:
```c
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {
 error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);
}
```

GRBgetgenconstrExpA
```c
int GRBgetgenconstrExpA (GRBmodel *model,
 int id,
 int *xvarP,
 int *yvarP,
 double *aP)
```
Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
- xvarP: The index of variable \( x \).
- yvarP: The index of variable \( y \).
- aP: The base of the function.

Example usage:
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {
        error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);
    }

GRBgetgenconstrLog

int GRBgetgenconstrLog ( GRBmodel *model,
                   int id,
                   int *xvarP,
                   int *yvarP )

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOG) {
        error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);
    }
GRBgetgenconstrLogA

```c
int GRBgetgenconstrLogA (GRBmodel *model,
 int id,
 int *xvarP,
 int *yvarP,
 double *aP)
```

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint type.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the data of the general constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to which the new general constraint should be added.
- `id`: The index of the general constraint to retrieve.
- `xvarP`: The index of variable \( x \).
- `yvarP`: The index of variable \( y \).
- `aP`: The base of the function.

**Example usage:**
```c
int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTRTYPE_LOGA) {
 error = GRBgetgenconstrLogA(model, 3, &xvar, &yvar, &a);
}
```

GRBgetgenconstrPow

```c
int GRBgetgenconstrPow (GRBmodel *model,
 int id,
 int *xvarP,
 int *yvarP,
 double *aP)
```

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint of a different type leads to an error return code. You can query the GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
- xvarP: The index of variable x.
- yvarP: The index of variable y.
- aP: The exponent of the function.

Example usage:

    int type;
    int xvar;
    int yvar;
    double a;

    error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
    if (type == GRB_GENCONSTR_POW) {
        error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);
    }

GRBgetgenconstrSin

int GRBgetgenconstrSin ( GRBmodel *model,
                          int id,
                          int *xvarP,
                          int *yvarP )

Retrieve the data associated with a general constraint of type SIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.
See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: The model to which the new general constraint should be added.
- id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
- xvarP: The index of variable x.
- yvarP: The index of variable y.

Example usage:

    int type;
    int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {
    error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);
}

GRBgetgenconstrCos

int GRBgetgenconstrCos ( GRBmodel  *model,
                      int    id,
                      int    *xvarP,
                      int    *yvarP )

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.
See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.
Note that any of the following arguments can be NULL.
xvarP: The index of variable \( x \).
yvarP: The index of variable \( y \).

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_COS) {
    error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);
}

GRBgetgenconstrTan

int GRBgetgenconstrTan ( GRBmodel  *model,
                      int    id,
                      int    *xvarP,
                      int    *yvarP )
Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

```c
int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTRAINT) {
 error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);
}
```

GRBgetjsonsolution

```c
int GRBgetjsonsolution (GRBmodel model,
 char** buffP)
```

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.

Return value:
A non-zero return value indicates that there was a problem generating the JSON solution
string. Refer to the Error Code table for a list of possible return values.

Arguments:
model: Model from which to query its current JSON solution string.
buffP: The location in which the pointer to the newly created JSON string should be placed.

Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling
program. You must call GRBfree to free it.
GRBgetpwlobj

```c
int GRBgetpwlobj (GRBmodel *model,
 int var,
 int *npointsP,
 double *x,
 double *y)
```

Retrieve the piecewise-linear objective function for a variable. The $x$ and $y$ arguments must be large enough to hold the result. If either are NULL, then npointsP will contain the number of points in the function on return.

Refer to this discussion for additional information on what the values in $x$ and $y$ mean.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the piecewise-linear objective function. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model from which the piecewise-linear objective function is being retrieved.
- `var`: The variable whose objective function is being retrieved.
- `npointsP`: The number of points that define the piecewise-linear function.
- `x`: The $x$ values for the points that define the piecewise-linear function. These will always be in non-decreasing order.
- `y`: The $y$ values for the points that define the piecewise-linear function.

**Example usage:**
```c
double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold 'npoints' values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);
```

GRBgetq

```c
int GRBgetq (GRBmodel *model,
 int *numqnzP,
 int *qrow,
 int *qcol,
 double *qval)
```

Retrieve all quadratic objective terms. The `qrow`, `qcol`, and `qval` arguments must be large enough to hold the result. You can query the NumQNZs attribute to determine how many terms will be returned.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the quadratic objective terms. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model from which the quadratic objective terms should be retrieved.
numqnzP: The number of quadratic objective terms retrieved.

qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The three argument arrays provide the corresponding values for each quadratic term. To give an example, to represent $2x_0^2 + x_0x_1 + x_1^2$, you would have *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.

qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more information.

Example usage:

```c
int qnz;
int *qrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold 'qnz' values... */
error = GRBgetq(model, &qnz, qrow, qcol, qval);
```

GRBgetqconstr

```c
int GRBgetqconstr (GRBmodel *model,
int qconstr,
int *numlnzP,
int *lind,
double *lval,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)
```

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical usage is to call this routine twice. In the first call, you specify the requested quadratic constraint, with NULL values for the array arguments. The routine returns the total number of linear and quadratic terms in the specified quadratic constraint in numlnzP and numqnzP, respectively. That allows you to make certain that lind, lval, qrow, qcol, and qval are of sufficient size to hold the result of the second call.

Return value:

A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- model: The model from which the quadratic constraint should be retrieved.
- qconstr: The index of the requested quadratic constraint.
- numlnzP: The number of linear terms retrieved for the requested quadratic constraint.
- lind: Variable indices associated with linear terms.
lval: Numerical coefficients associated with linear terms.
numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval). The associated arguments arrays provide the corresponding values for each quadratic term. To give an example, if the requested quadratic constraint has quadratic terms $2x_0^2 + x_0x_1 + x_1^2$, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow argument for more information.
qval: Numerical values associated with quadratic terms. See the description of the qrow argument for more information.

GRBgetqconstrbyname

int GRBgetqconstrbyname ( GRBmodel *model, const char *name, int *constrnumP )

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same name, this routine chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
name: The name of the desired quadratic constraint.
constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns -1 if no matching name is found.

GRBgetos

int GRBgetos ( GRBmodel *model, int *nummembersP, int *sostype, int *beg, int *ind, double *weight, int start, int len )

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind and weight. The routine returns the total number of members for the specified SOS constraints in nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the SOS members. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- **model**: The model from which the SOS constraints should be retrieved.
- **nummembers**: The total number of SOS members retrieved.
- **sostype**: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_SOS_TYPE2.
- **beg**: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS constraint in the model is represented as a list of index-value pairs, where each index entry provides the variable index for an SOS member, and each value entry provides the corresponding SOS constraint weight. Each SOS constraint has an associated **beg** value, indicating the start position of the members of that constraint in the **ind** and **weight** arrays. The members for SOS constraint \( i \) immediately follow those for constraint \( i-1 \) in **ind** and **weight**. Thus, **beg**\[i\] indicates both the index of the first member of SOS constraint \( i \) and the end of the member list for SOS constraint \( i-1 \). For example, consider the case where \( \text{beg}[2] = 10 \) and \( \text{beg}[3] = 12 \). This would indicate that SOS constraint 2 has two members. Their variable indices can be found in **ind**[10] and **ind**[11], and their SOS weights can be found in **weight**[10] and **weight**[11].
- **ind**: Variable indices associated with SOS members. See the description of the **beg** argument for more information.
- **weight**: Weights associated with SOS members. See the description of the **beg** argument for more information.
- **start**: The index of the first SOS constraint to retrieve.
- **len**: The number of SOS constraints to retrieve.

**GRBgetvarbyname**

```c
int GRBgetvarbyname (GRBmodel *model,
 const char *name,
 int *varnumP)
```

Retrieves a variable from its name. If multiple variables have the same name, this routine chooses one arbitrarily.

**Return value:**
- A non-zero return value indicates that a problem occurred while retrieving the variable. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: The model from which the variable should be retrieved.
- **name**: The name of the desired variable.
- **varnumP**: Variable number for a variable with the indicated name. Returns -1 if no matching name is found.
GRBgetvars

int GRBgetvars ( GRBmodel *model,
                int *numnzP,
                int *vbeg,
                int *vind,
                double *vval,
                int start,
                int len )

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider using the GRBXgetvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].
vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.
vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.
start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel ( GRBmodel *model,
                            GRBmodel **singlescenarioP )
Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario to capture.

**Return value:**
A non-zero return value indicates that a problem occurred while extracting the single-scenario model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model:** The model from which the scenario should be extracted.
- **singlescenarioP:** The location in which the pointer to the requested single-scenario model should be placed.

---

**GRBXgetconstrs**

```c
int GRBXgetconstrs (GRBmodel *model, size_t *numnzP, size_t *cbeg, int *cind, double *cval, int start, int len)
```

The `size_t` version of GRBgetconstrs. The two arguments that count non-zero values are of type `size_t` in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage is to call this routine twice. In the first call, you specify the requested set of constraints, with NULL values for `cbeg`, `cind`, and `cval`. The routine returns the number of non-zero values for the specified constraint range in `numnzP`. That allows you to make certain that `cind` and `cval` are of sufficient size to hold the result of the second call.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the constraint coefficients. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model:** The model from which the constraints should be retrieved.
- **numnzP:** The number of non-zero values retrieved.
- **cbeg:** Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) format. Each constraint in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the variable index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each constraint has an associated `cbeg` value, indicating the start position of the non-zeros for that constraint in the `cind` and `cval` arrays. The non-zeros for constraint i immediately follow those for constraint i-1 in `cind` and `cval`. Thus, `cbeg[i]` indicates both the index of the first non-zero in constraint i and the end of the non-zeros for constraint i-1. For example, consider the case where `cbeg[2] = 10` and `cbeg[3] = 12`. This would indicate that constraint 2 has two non-zero values associated with it. Their variable indices can be found in `cind[10]` and `cind[11]`, and the numerical values for those non-zeros can be found in `cval[10]` and `cval[11]`. 

---

81
cind: Variable indices associated with non-zero values. See the description of the cbeg argument for more information.
cval: Numerical values associated with constraint matrix non-zeros. See the description of the cbeg argument for more information.
start: The index of the first constraint to retrieve.
len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars ( GRBmodel *model,
    size_t *numnzP,
    size_t *vbeg,
    int *vind,
    double *vval,
    int start,
    int len )

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call this routine twice. In the first call, you specify the requested set of variables, with NULL values for vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable coefficients. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC) format by this routine. Each column in the constraint matrix is represented as a list of index-value pairs, where each index entry provides the constraint index for a non-zero coefficient, and each value entry provides the corresponding non-zero value. Each variable has an associated vbeg value, indicating the start position of the non-zeros for that constraint in the vind and vval arrays. The non-zeros for variable i immediately follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index of the first non-zero in variable i and the end of the non-zeros for variable i-1. For example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate that variable 2 has two non-zero values associated with it. Their constraint indices can be found in vind[10] and vind[11], and the numerical values for those non-zeros can be found in vval[10] and vval[11].
vind: Constraint indices associated with non-zero values. See the description of the vbeg argument for more information.
vval: Numerical values associated with constraint matrix non-zeros. See the description of the vbeg argument for more information.
**start**: The index of the first variable to retrieve.
**len**: The number of variables to retrieve.
2.5 Input/Output

GRBreadmodel

```c
int GRBreadmodel (GRBenv *env,
 const char *filename,
 GRBmodel **modelP)
```

Read a model from a file.

**Return value:**
A non-zero return value indicates that a problem occurred while reading the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `env`: The environment in which to load the new model. This should come from a previous call to GRBloadenv.
- `filename`: The path to the file to be read. Note that the type of the file is encoded in the file name suffix. Valid suffixes are `.mps`, `.rew`, `.lp`, `.rlp`, `.ilp`, or `.opb`. The files can be compressed, so additional suffixes of `.zip`, `.gz`, `.bz2`, or `.7z` are accepted.
- `modelP`: The location in which the pointer to the model should be placed.

**Example usage:**

```c
gt int *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);
```

GRBread

```c
int GRBread (GRBmodel *model,
 const char *filename)
```

Import optimization data from a file. This routine is the general entry point for importing data from a file into a model. It can be used to read start vectors for MIP models, basis files for LP models, or parameter settings. The type of data read is determined by the file suffix. File formats are described in the File Format section.

**Return value:**
A non-zero return value indicates that a problem occurred while reading the file. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model that will receive the start vector.
- `filename`: The path to the file to be read. The suffix on the file must be either `.mst` or `.sol` for a MIP start file, `.hnt` for a MIP hint file, `.ord` for a priority order file, `.bas` for a basis file, or `.prm` for a parameter file. The suffix may optionally be followed by `.zip`, `.gz`, `.bz2`, or `.7z`.

**Example usage:**

```c
gt int error = GRBread(model, "/tmp/model.mst.bz2");
```
GRBwrite

```c
int GRBwrite (GRBmodel *model,
 const char *filename)
```

This routine is the general entry point for writing optimization data to a file. It can be used to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. However, writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.

Return value:

A non-zero return value indicates that a problem occurred while writing the file. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- **model**: The model containing the data to be written.
- **filename**: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes are `.mps`, `.rew`, `.lp`, or `.rlp` for writing the model itself, `.ilp` for writing just the IIS associated with an infeasible model (see GRBcomputeIIS for further information), `.sol` for writing the current solution, `.mst` for writing a start vector, `.hnt` for writing a hint file, `.bas` for writing an LP basis, `.prm` for writing modified parameter settings, `.attr` for writing model attributes, or `.json` for writing solution information in JSON format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so additional suffixes of `.gz`, `.bz2`, or `.7z` are accepted.

Example usage:

```c
error = GRBwrite(model, "/tmp/model.rlp.gz");
```
2.6 Attribute Management

GRBgetattrinfo

```c
int GRBgetattrinfo (GRBmodel *model,
 const char *attrname,
 int *datatypeP,
 int *attrtypeP,
 int *settableP)
```

Obtain information about an attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while obtaining information about the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of an attribute. Available attributes are listed and described in the Attributes section of this document.
- `datatypeP`: On completion, the integer pointed to by this argument will indicate the data type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This argument can be `NULL`.
- `attrtypeP`: On completion, the integer pointed to by this argument will indicate the type of the attribute. Possible types are model attribute (0), variable attribute (1), linear constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute, or (5) general constraint attribute. This argument can be `NULL`.
- `settableP`: On completion, the integer pointed to by this argument will indicate whether the attribute can be set (1) or not (0). This argument can be `NULL`.

**Example usage:**

```c
int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);
```

GRBgetintattr

```c
int GRBgetintattr (GRBmodel *model,
 const char *attrname,
 int *valueP)
```

Query the value of an integer-valued model attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued model attribute. Available attributes are listed and described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.

Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element of an array attribute, use GRBgetintattrelement instead.

Example usage:

```c
error = GRBgetintattr(model, "NumBinVars", &numbin);
```

### GRBsetintattr

```c
int GRBsetintattr (GRBmodel *model,
 const char *attrname,
 int newvalue)
```

Set the value of an integer-valued model attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- **attrname**: The name of an integer-valued model attribute. Available attributes are listed and described in the Attributes section of this document.
- **newvalue**: The desired new value of this attribute.

Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single element of an array attribute, use GRBsetintattrelement instead.

Example usage:

```c
error = GRBsetintattr(model, "ModelSense", -1);
```

### GRBgetintattrelement

```c
int GRBgetintattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 int *valueP)
```

Query a single value from an integer-valued array attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
**model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.

**attrname**: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.

**element**: The index of the requested array element.

**valueP**: A pointer to the location where the requested value should be returned.

**Important note:**
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.

**Example usage:**
```c
int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);
```

**GRBsetintattrelement**

```c
int GRBsetintattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 int newvalue)
```

Set a single value in an integer-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- **attrname**: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- **element**: The index of the array element to be changed.
- **newvalue**: The value to which the attribute element should be set.

**Important note:**
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.

**Example usage:**
```c
error = GRBsetintattrelement(model, "VBasis", 0, GRB_BASIC);
```

**GRBgetintattrarray**

```c
int GRBgetintattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 int *values)
```

Query the values of an integer-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array must be as long as the requested sub-array.

Example usage:

int cbasis[NUMCONSTRS];
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);

GRBsetintattrarray

Set the values of an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values array must be as long as the sub-array to be changed.

Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);
GRBgetintattrlist

int GRBgetintattrlist ( GRBmodel *model,
                          const char *attrname,
                          int len,
                          int *ind,
                          int *values )

Query the values of an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist ( GRBmodel *model,
                          const char *attrname,
                          int len,
                          int *ind,
                          int *values )

Set the values of an integer-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of an integer-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values array must be as long as the list of indices.

Example usage:

```c
int change[] = {0, 1, 3};
int newbas[] = {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);
```

**GRBgetdblattr**

```c
int GRBgetdblattr (GRBmodel *model,
 const char *attrname,
 double *valueP)
```

Query the value of a double-valued model attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- **attrname**: The name of a double-valued model attribute. Available attributes are listed and described in the Attributes section of this document.
- **valueP**: The location in which the current value of the requested attribute should be placed.

**Important note:**
Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element of an array attribute, use GRBgetdblattrelement instead.

Example usage:

```c
error = GRBgetdblattr(model, "ObjCon", &objcon);
```

**GRBsetdblattr**

```c
int GRBsetdblattr (GRBmodel *model,
 const char *attrname,
 double newvalue)
```

Set the value of a double-valued model attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- **attrname**: The name of a double-valued model attribute. Available attributes are listed and described in the Attributes section of this document.
**newvalue**: The desired new value of this attribute.

**Important note:***
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single element of an array attribute, use `GRBsetdblattrelement` instead.

**Example usage:**

```c
error = GRBsetdblattrelement(model, "ObjCon", 0.0);
```

---

**GRBgetdblattrelement**

```c
int GRBgetdblattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 double *valueP)
```

Query a single value from a double-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine `GRBnewmodel` or `GRBreadmodel`.
- `attrname`: The name of a double-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `element`: The index of the requested array element.
- `valueP`: A pointer to the location where the requested value should be returned.

**Important note:**
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query a scalar attribute (i.e., a model attribute), use `GRBgetdblattretr` instead.

**Example usage:**

```c
double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);
```

---

**GRBsetdblattrelement**

```c
int GRBsetdblattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 double newvalue)
```

Set a single value in a double-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**
**model**: A loaded optimization model, typically created by routine `GRBnewmodel` or `GRBreadmodel`.

**attrname**: The name of a double-valued array attribute. Available attributes are listed and described in the **Attributes** section of this document.

**element**: The index of the array element to be changed.

**newvalue**: The value to which the attribute element should be set.

**Important note:**
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify a scalar attribute (i.e., a model attribute), use `GRBsetdblattr` instead.

**Example usage:**

```c
error = GRBsetdblattrelement(model, "Start", 0, 1.0);
```

---

**GRBgetdblattrarray**

```c
int GRBgetdblattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 double *values)
```

Query the values of a double-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the **Error Code** table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**

- **model**: A loaded optimization model, typically created by routine `GRBnewmodel` or `GRBreadmodel`.
- **attrname**: The name of a double-valued array attribute. Available attributes are listed and described in the **Attributes** section of this document.
- **start**: The index of the first entry in the array to retrieve.
- **len**: The number of array entries to retrieve.
- **values**: A pointer to the location where the array attribute should be returned. Note that the result array must be as long as the requested sub-array.

**Example usage:**

```c
double lb[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, lb);
```

---

**GRBsetdblattrarray**

```c
int GRBsetdblattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 double *values)
```

Set the values of a double-valued array attribute.
Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- attrname: The name of a double-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- start: The index of the first entry in the array to set.
- len: The number of array entries to set.
- values: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values array must be as long as the sub-array to be changed.

Example usage:
```c
double start[] = {1.0, 1.0, 0.0, 1.0};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);
```

GRBgetdblattrlist

```c
int GRBgetdblattrlist (GRBmodel *model, const char *attrname, int len, int *ind, double *values)
```

Query the values of a double-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- attrname: The name of a double-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- len: The number of attribute elements to retrieve.
- ind: The indices of the desired attribute elements.
- values: A pointer to the location where the requested attribute elements should be returned. Note that the result array must be as long as the requested index list.

Example usage:
```c
int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);
```
GRBsetdblattrlist

```c
int GRBsetdblattrlist (GRBmodel *model,
 const char *attrname,
 int len,
 int *ind,
 double *values)
```

Set the values of a double-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a double-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `len`: The number of array entries to set.
- `ind`: The indices of the array attribute elements that will be set.
- `values`: A pointer to the desired new values for the specified elements of the attribute. Note that the values array must be as long as the list of indices.

**Example usage:**

```c
int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);
```

GRBgetcharattrelement

```c
int GRBgetcharattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 char *valueP)
```

Query a single value from a character-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `element`: The index of the requested array element.
- `values`: A pointer to the location where the requested value should be returned.

**Example usage:**

```c
```
char first_one;
error = GRBgetcharattrelement(model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement ( GRBmodel *model,
                          const char *attrname,
                          int element,
                          char newvalue )

Set a single value in a character-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Example usage:

error = GRBsetcharattrelement(model, "VType", 0, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray ( GRBmodel *model,
                         const char *attrname,
                         int start,
                         int len,
                         char *values )

Query the values of a character-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array must be as long as the requested sub-array.

Example usage:

```c
char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", 0, NUMVARS, vtypes);
```

**GRBsetcharattrarray**

```c
int GRBsetcharattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 char *values)
```

Set the values of a character-valued array attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- **model**: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- **attrname**: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- **start**: The index of the first entry in the array to set.
- **len**: The number of array entries to set.
- **values**: A pointer to the desired new values for the specified sub-array of the attribute. Note that the values array must be as long as the sub-array to be changed.

Example usage:

```c
char vtypes[] = {GRB_BINARY, GRB_CONTINUOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);
```

**GRBgetcharattrlist**

```c
int GRBgetcharattrlist (GRBmodel *model,
 const char *attrname,
 int len,
 int *ind,
 char *values)
```

Query the values of a character-valued array attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned. Note that the result array must be as long as the requested index list.

Example usage:

```c
int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);
```

GRBsetcharattrlist

```c
int GRBsetcharattrlist (GRBmodel *model,
 const char *attrname,
 int len,
 int *ind,
 char *values)
```

Set the values of a character-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a character-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note that the values array must be as long as the list of indices.

Example usage:

```c
int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);
```

GRBgetstrattr

```c
int GRBgetstrattr (GRBmodel *model,
 const char *attrname,
 char **valueP)
```

Query the value of a string-valued model attribute.
Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the Attributes section of this document.
valueP: The location in which the current value of the requested attribute should be placed.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi data structures. The user should copy the contents of the pointer to a different data structure before the next call to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:
```c
char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);
```

GRBsetstrattr

```c
int GRBsetstrattr (GRBmodel *model,
 const char *attrname,
 const char *newvalue)
```

Set the value of a string-valued model attribute.

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued model attribute. Available attributes are listed and described in the Attributes section of this document.
newvalue: The desired new value of this attribute.

Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To modify a single element of an array attribute, use GRBsetstrattrelement instead.

Example usage:
```c
error = GRBsetstrattr(model, "ModelName", "Modified name");
```
GRBgetstrattrelement

```c
int GRBgetstrattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 char **valueP)
```

Query a single value from a string-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `element`: The index of the requested array element.
- `valueP`: A pointer to the location where the requested value should be returned.

**Important notes:**
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi data structures. The user should copy the contents of the pointer to a different data structure before the next call to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

**Example usage:**
```c
char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);
```

GRBsetstrattrelement

```c
int GRBsetstrattrelement (GRBmodel *model,
 const char *attrname,
 int element,
 char *newvalue)
```

Set a single value in a string-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
element: The index of the array element to be changed.

newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.

Example usage:

```
error = GRBsetstrattrelement(model, "ConstrName", 0, "NewConstr");
```

GRBgetstrattrarray

```c
int GRBgetstrattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 char **values)
```

Query the values of a string-valued array attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
attrname: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that the result array must be as long as the requested sub-array.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi data structures. The user should copy the contents of the pointer to a different data structure before the next call to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned character pointer.

Example usage:
```
char **varnames[NUMVARS];
error = GRBgetstrattrarray(model, "VarName", 0, NUMVARS, varnames);
```

GRBsetstrattrarray

```c
int GRBsetstrattrarray (GRBmodel *model,
 const char *attrname,
 int start,
 int len,
 char **values)
```
Set the values of a string-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `start`: The index of the first entry in the array to set.
- `len`: The number of array entries to set.
- `values`: A pointer to the desired new values for the specified sub-array of the attribute.
  Note that the values array must be as long as the sub-array to be changed.

**Example usage:**

```c
char **varnames[NUMVARS];
error = GRBsetstrattrarray(model, "VarName", 0, NUMVARS, varnames);
```

**GRBgetstrattrlist**

```c
int GRBgetstrattrlist (GRBmodel *model,
 const char *attrname,
 int len,
 int *ind,
 char **values)
```

Query the values of a string-valued array attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `len`: The number of attribute elements to retrieve.
- `ind`: The indices of the desired attribute elements.
- `values`: A pointer to the location where the requested attribute elements should be returned.
  Note that the result array must be as long as the requested index list.

**Important notes:**
Note that all interface routines that return string-valued attributes are returning pointers into internal Gurobi data structures. The user should copy the contents of the pointer to a different data structure before the next call to a Gurobi library routine. The user should also be careful to never modify the data pointed to by the returned character pointer.

**Example usage:**
int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

**GRBsetstrattrlist**

```c
int GRBsetstrattrlist (GRBmodel *model,
 const char *attrname,
 int len,
 int *ind,
 char **values)
```

Set the values of a string-valued array attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while setting the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- `model`: A loaded optimization model, typically created by routine GRBnewmodel or GRBreadmodel.
- `attrname`: The name of a string-valued array attribute. Available attributes are listed and described in the Attributes section of this document.
- `len`: The number of array entries to set.
- `ind`: The indices of the array attribute elements that will be set.
- `values`: A pointer to the desired new values for the specified elements of the attribute. Note that the values array must be as long as the list of indices.

**Example usage:**

```c
int change[] = {0, 1, 3};
char **varnames[] = {"Var0", "Var1", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);
```

**GRBgetbatchattrinfo**

```c
int GRBgetbatchattrinfo (GRBbatch *batch,
 const char *attrname,
 int *datatypeP,
 int *settableP)
```

Obtain information about a Batch attribute.

**Return value:**

A non-zero return value indicates that a problem occurred while obtaining information about a batch attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- `batch`: A batch request handle, typically created by routine GRBgetbatch.
**attrname**: The name of a batch attribute. Available attributes are listed and described in the Attributes section of this document.

**datatype**: On completion, the integer pointed to by this argument will indicate the data type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This argument can be NULL.

**settable**: On completion, the integer pointed to by this argument will indicate whether the attribute can be set (1) or not (0). This argument can be NULL.

**Example usage:**

```c
int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);
```
2.7 Parameter Management and Tuning

GRBtunemodel

```c
int GRBtunemodel (GRBmodel *model)
```

Perform an automated search for parameter settings that improve performance on a model. Upon completion, this routine stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of the TuneResultCount attribute. The actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.

**Return value:**
A non-zero return value indicates that a problem occurred while tuning the model. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model to be tuned.

**Example usage:**
```
error = GRBtunemodel(model);
if (error) goto QUIT;
```

GRBgettuneresult

```c
int GRBgettuneresult (GRBmodel *model, int n)
```

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine with argument `n` causes tuned parameter set `n` to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving a tuning result. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: A model that has previously been used as the argument of GRBtunemodel.
- `n`: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored results is available in attribute TuneResultCount.

**Example usage:**
```c
```
error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
    error = GRBgettuneresult(model, 0);
    if (error) goto QUIT;
}

GRBgetdblparam

int GRBgetdblparam ( GRBenv *env,
                    const char *paramname,
                    double *valueP )

Retrieve the value of a double-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
  env: The environment whose parameter value is being queried.
  paramname: The name of the parameter. Please consult the parameter section for a
            complete list of Gurobi parameters, including descriptions of their purposes and their
            minimum, maximum, and default values.
  valueP: The location in which the current value of the requested parameter should be placed.

Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam ( GRBenv *env,
                    const char *paramname,
                    int *valueP )

Retrieve the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
  env: The environment whose parameter value is being queried.
**paramname**: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**valueP**: The location in which the current value of the requested parameter should be placed.

**Example usage**:

```c
int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);
```

**GRBgetstrparam**

```c
int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *value)
```

Retrieve the value of a string-valued parameter.

**Return value**: A non-zero return value indicates that a problem occurred while retrieving the parameter. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments**: 
- **env**: The environment whose parameter value is being queried.
- **paramname**: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **value**: The location in which the current value of the requested parameter should be placed.

**Example usage**:

```c
char logfilename[GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);
```

**GRBsetdblparam**

```c
int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)
```

Modify the value of a double-valued parameter.

**Return value**: A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments**: 
- **env**: The environment whose parameter value is being modified.
- **paramname**: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newvalue**: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a parameter change to affect that model.

Example usage:

```c
error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);
```

GRBsetintparam

```c
int GRBsetintparam (GRBenv *env,
 const char *paramname,
 int newvalue)
```

Modify the value of an integer-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- `env`: The environment whose parameter value is being modified.
- `paramname`: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `newvalue`: The desired new value of the parameter.

Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the original environment have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a parameter change to affect that model.

Example usage:

```c
error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);
```

GRBsetstrparam

```c
int GRBsetstrparam (GRBenv *env,
 const char *paramname,
 const char *newvalue)
```

Modify the value of a string-valued parameter.

Return value:
A non-zero return value indicates that a problem occurred while modifying the parameter. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
- `env`: The environment whose parameter value is being modified.
- `paramname`: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
newvalue: The desired new value of the parameter.

Important note:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment have no effect on the copy. Use GRBgetenv to retrieve the environment associated with a model if you would like a parameter change to affect that model.

Example usage:

```c
error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");
```

GRBgetdblparaminfo

```c
int GRBgetdblparaminfo (GRBenv *env,
 const char *paramname,
 double *valueP,
 double *minP,
 double *maxP,
 double *defaultP)
```

Retrieve information about a double-valued parameter. Specifically, retrieve the current value of the parameter, the minimum and maximum allowed values, and the default value.

Return value:

A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- `env`: The environment whose parameter information is being queried.
- `paramname`: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `valueP` (optional): The location in which the current value of the specified parameter should be placed.
- `minP` (optional): The location in which the minimum allowed value of the specified parameter should be placed.
- `maxP` (optional): The location in which the maximum allowed value of the specified parameter should be placed.
- `defaultP` (optional): The location in which the default value of the specified parameter should be placed.

Example usage:

```c
error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", ¤tGap,
 &minAllowedGap, NULL, &defaultGap);
```
GRBgetintparaminfo

int GRBgetintparaminfo ( GRBenv *env,
                          const char *paramname,
                          int      *valueP,
                          int      *minP,
                          int      *maxP,
                          int      *defaultP )

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of the parameter, the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valueP (optional): The location in which the current value of the specified parameter should be placed.
minP (optional): The location in which the minimum allowed value of the specified parameter should be placed.
maxP (optional): The location in which the maximum allowed value of the specified parameter should be placed.
defaultP (optional): The location in which the default value of the specified parameter should be placed.

Example usage:

erreur = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", &current,
                          &minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo ( GRBenv *env,
                          const char *paramname,
                          char      *value,
                          char      *default )

Retrieve information about a string-valued parameter. Specifically, retrieve the current and default values of the parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter information. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
**paramname:** The name of the parameter. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**value (optional):** The location in which the current value of the specified parameter should be placed.

**default (optional):** The location in which the default value of the specified parameter should be placed.

**Example usage:**

```c
char defaultval[GRB_MAX_STRLEN];
char currentval[GRB_MAX_STRLEN];
error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,
 defaultval);
```

**GRBreadparams**

```c
int GRBreadparams (GRBenv *env,
 const char *filename)
```

Import a set of parameter modifications from a file. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
A non-zero return value indicates that a problem occurred while reading the parameter file. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- *env: The environment into which the parameter changes should be imported.
- *filename: The path to the file to be read. The suffix on a parameter file should be .prm, optionally followed by .zip, .gz, .bz2, or .7z.

**Example usage:**

```c
error = GRBreadparams(env, "/tmp/model.prm.bz2");
```

**GRBwriteparams**

```c
int GRBwriteparams (GRBenv *env,
 const char *filename)
```

Write the set of changed parameter values to a file. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
A non-zero return value indicates that a problem occurred while writing the parameter file. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- *env: The environment whose parameter changes are being written.
filename: The path to the file to be written. The suffix on a parameter file should be .prm, optionally followed by .gz, .bz2, or .7z.

Example usage:

```c
error = GRBwriteparams(env, "/tmp/model.prm");
```
2.8 Monitoring Progress - Logging and Callbacks

GRBmsg

```c
void GRBmsg (GRBenv *env,
 const char *message)
```

Insert a message into the Gurobi log file.

**Arguments:**
- `env`: The environment whose log file should receive the message.
- `message`: The message to be appended to the log.

**Example usage:**

```c
error = GRBmsg(env, "Add this message to the log");
```

GRBsetcallbackfunc

```c
int GRBsetcallbackfunc (GRBmodel *model,
 int (*cb)(GRBmodel *model, void *cbdata, int
 where, void *usrdata),
 void *usrdata)
```

Set up a user callback function. Note that a model can only have a single callback method, so this call will replace an existing callback. To disable a previously set callback, call this function with a `cb` argument of `NULL`.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

**Return value:**
A non-zero return value indicates that a problem occurred while setting the user callback. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model in which the callback should be installed.
- `cb`: A function pointer to the user callback function. The callback will be called regularly from the Gurobi optimizer. The `where` argument to the callback function will indicate where in the optimization process the callback was invoked. Possible values are described in the Callback Codes section. The user callback can then call a number of routines to retrieve additional details about the state of the optimization (e.g., GRBcbget), or to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes if the user callback would like the optimization to stop and return an error result.
- `usrdata`: An optional pointer to user data that will be passed back to the user callback function each time it is invoked (in the `usrdata` argument).

**Example usage:**

```c
int mycallback(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);
```
GRBgetcallbackfunc

```c
int GRBgetcallbackfunc (GRBmodel *model,
 int (**cb)(GRBmodel *model, void *cbdata,
 int where, void *usrdata))
```

Retrieve the current user callback function.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the user callback. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `model`: The model in which the callback should be installed.
- `cb`: A function pointer to the user callback function.

**Example usage:**

```c
int (*mycallback)(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);
```

GRBcbget

```c
int GRBcbget (void *cbdata,
 int where,
 int what,
 void *resultP)
```

Retrieve additional information about the progress of the optimization. Note that this routine can only be called from within a user callback function.

**Return value:**
A non-zero return value indicates that a problem occurred while retrieving the requested data. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `cbdata`: The `cbdata` argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to GRBcbget().
- `where`: The `where` argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to GRBcbget().
- `what`: The data requested by the user callback. Valid values are described in the Callback Codes section.
- `resultP`: The location in which the requested data should be placed.

**Example usage:**

```c
if (where == GRB_CB_MIP) {
 double nodecount;
 error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
 if (error) return 0;
 printf("MIP node count is %d\n", nodecount);
}
```
GRBversion

void GRBversion ( int *majorP,
                 int *minorP,
                 int *technicalP )

Return the Gurobi library version number (major, minor, and technical).

Arguments:
  majorP: The location in which the major version number should be placed. May be NULL.
  minorP: The location in which the minor version number should be placed. May be NULL.
  technicalP: The location in which the technical version number should be placed. May be NULL.

Example usage:

    int major, minor, technical;
    GRBversion(&major, &minor, &technical);
    printf("Gurobi library version %d.%d.%d\n", major, minor, technical);
2.9 Modifying Solver Behavior - Callbacks

GRBcbcut

```c
int GRBcbcut (void *cbdata,
 int cutlen,
 const int *cutind,
 const double *cutval,
 char cutsense,
 double cutrhs)
```

Add a new cutting plane to the MIP model from within a user callback routine. Note that this routine can only be called when the `where` value on the callback routine is GRB_CB_MIPNODE (see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be added sparingly, since they increase the size of the relaxation model that is solved at each node and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution at the current node, call GRBcbget with `what` = GRB_CB_MIPNODE_REL.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts off a few presolve reductions that sometimes prevent cuts on the original model from being applied to the presolved model.

One very important note: you should only add cuts that are implied by the constraints in your model. If you cut off an integer solution that is feasible according to the original model constraints, you are likely to obtain an incorrect solution to your MIP problem.

**Return value:**
A non-zero return value indicates that a problem occurred while adding the cut. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `cbdata`: The `cbdata` argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to GRBcbcut().
- `cutlen`: The number of non-zero coefficients in the new cutting plane.
- `cutind`: Variable indices for non-zero values in the new cutting plane.
- `cutval`: Numerical values for non-zero values in the new cutting plane.
- `cutsense`: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
- `cutrhs`: Right-hand side value for the new cutting plane.

**Example usage:**

```c
if (where == GRB_CB_MIPNODE) {
 int cutind[] = {0, 1};
 double cutval[] = {1.0, 1.0};
 error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS_EQUAL, 1.0);
 if (error) return 0;
}
```
GRBcblazy

```c
int GRBcblazy (void *cbdata,
 int lazylen,
 const int *lazyind,
 const double *lazyval,
 char lazysense,
 double lazyrhs)
```

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this routine can only be called when the `where` value on the callback routine is either `GRB_CB_MIPNODE` or `GRB_CB_MIPSOL` (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling `GRBcbget` from a `GRB_CB_MIPSOL` or `GRB_CB_MIPNODE` callback, using `what=GRB_CB_MIPSOL_SOL` or `what=GRB_CB_MIPNODE_REL`), and then calling `GRBcblazy()` to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the `LazyConstraints` parameter if you want to use lazy constraints.

**Return value:**

A non-zero return value indicates that a problem occurred while adding the lazy constraint. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**

- `cbdata`: The `cbdata` argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to `GRBcblazy()`.
- `lazylen`: The number of non-zero coefficients in the new lazy constraint.
- `lazyind`: Variable indices for non-zero values in the new lazy constraint.
- `lazyval`: Numerical values for non-zero values in the new lazy constraint.
- `lazysense`: Sense for the new lazy constraint. Options are `GRB_LESS_EQUAL`, `GRB_EQUAL`, or `GRB_GREATER_EQUAL`.
- `lazyrhs`: Right-hand side value for the new lazy constraint.

**Example usage:**

```c
if (where == GRB_CB_MIPSOL) {
 int lazyind[] = {0, 1};
 double lazyval[] = {1.0, 1.0};
 error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
 if (error) return 0;
}
```
**GRBcbsolution**

```c
int GRBcbsolution (void *cbdata,
 const double *solution,
 double *objP)
```

Provide a new feasible solution for a MIP model from within a user callback routine. Note that this routine can only be called when the `where` value on the callback routine is `GRB_CB_MIPNODE` (see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the relaxation solution at the current node, call `GRBcbget` with `what = GRB_CB_MIPNODE_REL`.

When providing a solution, you can specify values for any subset of the variables in the model. To leave a variable value unspecified, set the variable to `GRB_UNDEFINED` in the `solution` vector. The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

**Return value:**
A non-zero return value indicates that a problem occurred while adding the new solution. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling `GRBgeterrormsg`.

**Arguments:**
- `cbdata`: The `cbdata` argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to `GRBcbsolution()`.
- `solution`: The solution vector. You must provide one entry for each variable in the model. Note that you can leave an entry unspecified by setting it to `GRB_UNDEFINED`. The Gurobi optimizer will attempt to find appropriate values for the unspecified variables.
- `objP`: Objective value for solution that results from this call. Returns `GRB_INFINITY` if no solution is found.

**Example usage:**
```c
if (where == GRB_CB_MIPNODE) {
 error = GRBcbsolution(cbdata, solution, &obj);
 if (error) return 0;
}
```

**GRBcbstoponemultiobj**

```c
int GRBcbstoponemultiobj (GRBmodel *model,
 void* cbdata,
 int objnum)
```

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process. Note that this routine can only be called for multi-objective MIP models and when the `where` value on the callback routine is not equal to `GRB_CB_MULTIOBJ` (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if any) as shown in the following example:

**Example usage:**
```c
```
#include <time.h>

typedef struct {
    int objcnt;
    time_t starttime;
} usrdatal;

int mycallback(GRBmodel *model,
    void *cbdata,
    int where,
    void *usrdata)
{
    int error = 0;
    usrdatal *ud = (usrdatal*)usrdata;

    if (where == GRB_CB_MULTIOBJ) {
        /* get current objective number */
        error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void*)&ud->objcnt);
        if (error) goto QUIT;

        /* reset start time to current time */
        ud->starttime = time();
    }
    else if (time() - ud->starttime > BIG ||
             /* takes too long or good enough */) {
        /* stop only this optimization step */
        error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);
        if (error) goto QUIT;
    }

    QUIT:
    return error;
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

**Return value:**
A non-zero return value indicates that a problem occurred while stopping the multi-objective step specified by objcnt. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **model**: The model argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj().
- **cbdata**: The cbdata argument that was passed into the user callback by the Gurobi optimizer. This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj().
**objnum**: The number of the multi-objective optimization step to interrupt. For processes running locally, this argument can have the special value -1, meaning to stop the current step.

**GRBterminate**

```c
void GRBterminate (GRBmodel *model)
```

Generate a request to terminate the current optimization. This routine can be called at any time during an optimization. When the optimization stops, the **Status** attribute will be equal to **GRB_INTERRUPTED**.

**Arguments:**
- **model**: The model to terminate.

**Example usage:**

```c
if (time_to_quit)
 GRBterminate(model);
```
2.10 Batch Requests

GRBabortbatch

| int GRBabortbatch ( GRBbatch *batch ) |

This function instructs the Cluster Manager to abort the processing of this batch request, changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:

```c
/* request to abort the batch */
error = GRBabortbatch(batch);
if (error) goto QUIT;
```

GRBdiscardbatch

| int GRBdiscardbatch ( GRBbatch *batch ) |

This function instructs the Cluster Manager to remove all information related to the batch request in question, including the stored solution if available. Further queries for the associated batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be discarded.

Example usage:

```c
/* discard the batch object in the manager */
error = GRBdiscardbatch(batch);
if (error) goto QUIT;
```

GRBfreebatch

| int GRBfreebatch ( GRBbatch *batch ) |

Free a batch structure and release the associated memory.

Return value:
A non-zero return value indicates that a problem occurred while freeing the batch. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **batch**: The batch structure to be freed.

**Example usage:**
```c
GRBfreebatch(batch);
```

**GRBgetbatch**

```c
int GRBgetbatch (GRBenv *env,
 const char *BatchID,
 GRBbatch **batchP)
```

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropriately), this function returns a GRBbatch structure. With it, you can query the current status of the associated batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization section for details and examples.

**Return value:**
A non-zero return value indicates that a problem occurred while creating a GRBbatch structure. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- **env**: The environment in which the new batch structure should be created.
- **BatchID**: ID of the batch you want to access.
- **batchP**: The location in which the pointer to the batch structure should be placed.

**Example usage:**
```c
/* create batch - object */
error = GRBgetbatch(env, BatchID, &batch);
if (error) goto QUIT;
```

**GRBgetbatchenv**

```c
GRBenv * GRBgetbatchenv (GRBbatch *batch)
```

Retrieve the environment associated with a batch.

**Return value:**
The environment associated with the batch. A NULL return value indicates that there was a problem retrieving the environment.

**Arguments:**
- **batch**: The batch from which the environment should be retrieved.

**Example usage:**
```c
GRBenv *env = GRBgetbatchenv(batch);
```
GRBgetbatchintattr

```c
int GRBgetbatchintattr (GRBbatch *batch,
 const char *attrname,
 int *valueP)
```

Query the value of an integer-valued batch attribute.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the attribute. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `batch`: A batch structure, typically created by routine GRBgetbatch.
- `attrname`: The name of an integer-valued batch attribute. Available attributes are listed and described in the Attributes section of this document.
- `valueP`: The location in which the current value of the requested attribute should be placed.

**Example usage:**

```c
/* query the last error code */
error = GRBgetbatchintattr(batch, "BatchErrorCode", &errorCode);
if (error || !errorCode) goto QUIT;
```

**Important notes:**
Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for C, update for Python, etc.).

GRBgetbatchjsonsolution

```c
int GRBgetbatchjsonsolution (GRBbatch *batch,
 char** jsonsolP)
```

This function retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

**Return value:**
A non-zero return value indicates that a problem occurred while querying the batch solution. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**
- `batch`: The batch to query.
- `jsonsolP`: The location in which the pointer to the newly created JSON string should be placed.

**Important note:**
On Windows, the string returned in `jsonsolP` is allocated in a different heap from the calling program. You must call GRBfree to free it.

**Example usage:**
/* print JSON solution into string */
error = GRBgetbatchjsonsolution(batch, &jsonsol);
if (error) goto QUIT;
printf("JSON solution: %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr ( GRBbatch *batch,
                         const char *attrname,
                         char **valueP )

Query the value of a string-valued batch attribute.

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
  batch: A batch structure, typically created by routine GRBgetbatch.
  attrname: The name of a string-valued batch attribute. Available attributes are listed and
described in the Attributes section of this document.
  valueP: The location in which the current value of the requested attribute should be placed.

Example usage:

/* query the last error message */
error = GRBgetbatchstrattr(batch, "BatchErrorMessage", &errorMsg);
if (error) goto QUIT;

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into
internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch ( GRBmodel *model,
                        char *BatchID )

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
Return value:
A non-zero return value indicates that a problem occurred while submit a batch request. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether the batch request ran into an error.
BatchID: On success, the location in which the BatchID of the newly created batch request should be stored. The pointer must point to a string of length \texttt{GRB\_MAX\_STRLEN+1} or more.

Example usage:

```c
/* submit batch request to the Manager */
error = GRBoptimizebatch (model , BatchID);
if (error)
goto QUIT ;
```

GRBretrybatch

```c
int GRBretrybatch (GRBbatch *batch)
```

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its status to \texttt{SUBMITTED}. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while retrying the batch. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch to retry.

Example usage:

```c
/* retry the batch request */
error = GRBretrybatch (batch) ;
if (error)
goto QUIT ;
```

GRBupdatebatch

```c
int GRBupdatebatch (GRBbatch *batch)
```

All Batch attribute values are cached locally, so queries return the value received during the last communication with the Cluster Manager. This function refreshes the values of all attributes with the values currently available in the Cluster Manager (which involves network communication).

Return value:
A non-zero return value indicates that a problem occurred while updating the batch request. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be updated.

Example usage:
/* update local attributes */
error = GRBupdatebatch(batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution
int GRBwritebatchjsonsolution ( GRBbatch *batch,
                                 const char* filename )

This function returns the stored solution of a completed batch request from a Cluster Manager. The solution is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while writing the JSON solution string into the given filename. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch request from qhere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name ending with the .json.gz extension.

Example usage:
/* save solution into a file */
error = GRBwritebatchjsonsolution(batch, "batch-sol.json.gz");
if (error) goto QUIT;
2.11 Error Handling

GRBgeterrormsg

char * GRBgeterrormsg ( GRBenv *env )

Retrieve the error message associated with the most recent error that occurred in an environment.

**Return value:**
A string containing the error message.

**Arguments:**
- `env`: The environment in which the error occurred.

**Example usage:**
```
error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)
 printf("%s\n", GRBgeterrormsg(env));
```
2.12 Advanced simplex routines

This section describes a set of advanced basis routines. These routines allow you to compute solutions to various linear systems involving the simplex basis matrix. Note that these should only be used by advanced users. We provide no technical support for these routines.

Before describing the routines, we should first describe the GRBsvec data structure that is used to input or return sparse vectors:

```c
typedef struct SVector {
 int len;
 int *ind;
 double *val;
} GRBsvec;
```

The `len` field gives the number of non-zero values in the vector. The `ind` and `val` fields give the index and value for each non-zero, respectively. Indices are zero-based. To give an example, the sparse vector [0, 2.0, 0, 1.0] would be represented as `len=2`, `ind = [1, 3]`, and `val = [2.0, 1.0]`.

The user is responsible for allocating and freeing the `ind` and `val` fields. The length of the result vector for these routines is not known in advance, so the user must allocate these arrays to hold the longest possible result (whose length is noted in the documentation for each routine).

**GRBFSolve**

```c
int GRBFSolve (GRBmodel *model, GRBsvec *b, GRBsvec *x)
```

Computes the solution to the linear system $Bx = b$, where $B$ is the current simplex basis matrix, $b$ is an input vector, and $x$ is the result vector.

**Return value:**

A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

**Arguments:**

- `model`: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
- `b`: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
- `x`: The sparse result vector. The user is responsible for allocating the `ind` and `val` fields to be large enough to hold as many as one non-zero entry per constraint in the model.

**GRBBSolve**

```c
int GRBBSolve (GRBmodel *model, GRBsvec *b, GRBsvec *x)
```

Computes the solution to the linear system $B^T x = b$, where $B^T$ is the transpose of the current simplex basis matrix, $b$ is an input vector, and $x$ is the result vector.
Return value:

A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- **model**: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
- **b**: The sparse right-hand side vector. It should contain one entry for each non-zero value in the input.
- **x**: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough to hold as many as one non-zero entry per constraint in the model.

**GRBBinvColj**

```c
int GRBBinvColj (GRBmodel *model,
 int j,
 GRBsvec *x)
```

Computes the solution to the linear system $Bx = A_j$, where $B$ is the current simplex basis matrix and $A_j$ is the column of the constraint matrix $A$ associated with variable $j$.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

- **model**: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
- **j**: Indicates the index of the column of $A$ to use as the right-hand side for the linear solve. The index $j$ must be between 0 and cols-1, where cols is the number of columns in the model.
- **x**: The sparse result vector. The user is responsible for allocating the ind and val fields to be large enough to hold as many as one non-zero entry per constraint in the model.

**GRBBinvRowi**

```c
int GRBBinvRowi (GRBmodel *model,
 int i,
 GRBsvec *x)
```

Computes a single tableau row. More precisely, this routine returns row $i$ from the matrix $B^{-1}A$, where $B^{-1}$ is the inverse of the basis matrix and $A$ is the constraint matrix. Note that the tableau will contain columns corresponding to the variables in the model, and also columns corresponding to artificial and slack variables associated with constraints.

Return value:

A non-zero return value indicates that a problem occurred while computing the desired vector. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.
Arguments:

model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
i: The index of the desired tableau row.
x: The result vector. The result will contain one entry for each non-zero value. Note that the result may contain values for slack variables; the slack on row i will have index cols+i, where cols is the number of columns in the model. The user is responsible for allocating the ind and val fields to be large enough to hold the largest possible result. For this routine, the result could have one entry for each variable in the model, plus one entry for each constraint.

GRBgetBasisHead

int GRBgetBasisHead ( GRBmodel *model,  
                          int         *bhead )

Returns the indices of the variables that make up the current basis matrix.

Return value:

A non-zero return value indicates that a problem occurred while extracting the basis. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:

model: The model. Note that the model must have a current optimal basis, as computed by GRBoptimize.
bhead: The constraint matrix columns that make up the current basis. The result contains one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B is column j from the constraint matrix A. Note that the basis may contain slack or artificial variables. If bhead[i] is greater than or equal to cols (the number of columns in A), then the corresponding basis column is the artificial or slack variable from row bhead[i]-cols.
This section documents the Gurobi C++ interface. This manual begins with a quick overview of the classes exposed in the interface and the most important methods on those classes. It then continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments are represented using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization runs. You will generally only need one environment object in your program.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then, programmatically, set all required options for your specific requirements. For further details see the Environment section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic objective function on those variables (specified using GRBModel::setObjective), and a set of constraints on these variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::addVars to add additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS, or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default, optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize will only perform further optimization if relevant data has changed since the model was last optimized. If you would like to discard previously computed solution information and restart the optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the associated fixed model. This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

- **Solution Pool**: Allows you to find more solutions.

- **Multiple Scenarios**: Allows you to find solutions to multiple, related models.

- **Multiple Objectives**: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call GRBModel::computeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated with the variables of the model, some with the constraints of the model, and some with the model itself. To give a simple example, solving an optimization model causes the \( X \) variable attribute to be populated. Attributes such as \( X \) that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the variable lower bound (the \( \text{LB} \) attribute) can.

Attributes are queried using \texttt{GRBVar::get}, \texttt{GRBConstr::get}, \texttt{GRBQConstr::get}, \texttt{GRBSOS::get}, \texttt{GRBGenConstr::get}, or \texttt{GRBModel::get}, and modified using \texttt{GRBVar::set}, \texttt{GRBConstr::set}, \texttt{GRBQConstr::set}, \texttt{GRBGenConstr::set}, or \texttt{GRBModel::set}. Attributes are grouped into a set of enums by type (GRB\_CharAttr, GRB\_DoubleAttr, GRB\_IntAttr, GRB\_StringAttr). The \texttt{get()} and \texttt{set()} methods are overloaded, so the type of the attribute determines the type of the returned value. Thus, \texttt{constr.get(GRB.DoubleAttr.RHS)} returns a double, while \texttt{constr.get(GRB.CharAttr.Sense)} returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the array methods on the associated \texttt{GRBModel} object. Method \texttt{GRBModel::get} includes signatures that allow you to query or modify attribute values for arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the \texttt{chgCoeffs} method on a \texttt{GRBModel} object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you remove a variable or constraint from the model (through the \texttt{GRBModel::remove} method). The non-zero values associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that captures the objective function (a \texttt{GRBLinExpr} or \texttt{GRBQuadExpr} object), and then pass that expression to method \texttt{GRBModel::setObjective}. If you wish to modify the objective, you can simply call \texttt{setObjective} again with a new \texttt{GRBLinExpr} or \texttt{GRBQuadExpr} object.

For linear objective functions, an alternative to \texttt{setObjective} is to use the \texttt{Obj} variable attribute to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the \texttt{GRBModel::setPWLObj} method. Call this method once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function, simply set the \texttt{Obj} attribute on the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for information about the model before your modifications have been applied, the details of the lazy update approach may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by an explicit call to GRBModel::update. The second is by a call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model. The first case gives you fine-grained control over when modifications are applied. The second and third make the assumption that you want all pending modifications to be applied before you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach makes it much easier to perform multiple modifications to a model, since the model remains unchanged between modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server environment, where modifications require communication between machines. Thus, it is useful to have visibility into exactly when these modifications are applied. In general, if your program needs to make multiple modifications to the model, you should aim to make them in phases, where you make a set of modifications, then update, then make more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a `NOT_IN_MODEL` exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run into an issue.

### Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters can be of type `int`, `double`, or `string`.

The simplest way to set parameters is through the `GRBModel::set` method on the model object. Similarly, parameter values can be queried with `GRBModel::get`.

Parameters can also be set on the Gurobi environment object, using `GRBEnv::set`. Note that each model gets its own copy of the environment when it is created, so parameter changes to the original environment have no effect on existing models.

You can read a set of parameter settings from a file using `GRBEnv::readParams`, or write the set of changed parameters using `GRBEnv::writeParams`.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in order to find a set that improves performance. You can call `GRBModel::tune` to invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.
Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi library and the user program share the same C++ heap, so the user must be aware of certain aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using the Gurobi optimizer are as follows:

- As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be freed using the associated destructors. In other words, given a GRBModel object \( m \), you should call `delete m` when you are no longer using \( m \).

- Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRBGenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model will delete all of the associated objects. Similarly, removing an object from a model (using GRBModel::remove) will also delete the object.

- Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars returns an array of GRBVar objects. It is the user’s responsibility to free the returned array (using `delete[]`). The reference manual indicates when a method returns a heap-allocated result.

One consequence of these rules is that you must be careful not to use an object once it has been freed. This is no doubt quite clear for environments and models, where you call the destructors explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the associated model is deleted.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel::setCallback method allows you to receive a periodic callback from the Gurobi optimizer. You do this by sub-classing the GRBCallback abstract class, and writing your own `callback()` method on this class. You can call GRBCallback::getDoubleInfo, GRBCallback::getIntInfo, GRBCallback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Method `GRBCallback::stopOneMultiObj` allows you to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

**Batch Optimization**

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this. One important one, *batch optimization*, allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a `Batch` object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

**Error Handling**

All of the methods in the Gurobi C++ library can throw an exception of type `GRBException`. When an exception occurs, additional information on the error can be obtained by retrieving the error code (using method `GRBException::getErrorCode`), or by retrieving the exception message (using method `GRBException::getMessage`). The list of possible error return codes can be found in the Error Codes section.
3.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must create an environment before you can create and populate a model. You will generally only need a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamInfo, set).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi models on the local machine, a client environment for a Gurobi compute server, which will solve Gurobi models on a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server and solve models on that server. Choose the appropriate signature for the type of environment you wish to launch.

GRBEnv ( )

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv ( bool empty )

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.

If the environment is not empty, this method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=true if you want to set parameters before actually starting the environment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or a Cluster Manager. See the Environment Section for more details.

Return value:

An environment object.

GRBEnv  GRBEnv ( const string& logFileName )

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:

logFileName: The desired log file name.

Return value:

An environment object.

GRBEnv  GRBEnv ( const string& logFileName, const string& computeServer, const string& router, const string& password, const string& group, int CStlsInsecure, int priority, double timeout )

Create a client Gurobi environment on a compute server. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:

logFileName: The name of the log file for this environment. Pass an empty string for no log file.
computeServer: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You should refer to the router using either its name or its IP address. If no router is used (which is the typical case), pass an empty string.

password: The password for gaining access to the specified Compute Server cluster. Pass an empty string if no password is required.

group: The name of the Compute Server group.

CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. Depending on the configuration of the server, a job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash. This behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that the call should never timeout.

Return value:
An environment object.

```
GRBEnv GRBEnv (const string& logFileName, const string& accessID, const string& secretKey, const string& pool, int priority)
```

Create a Gurobi Instant Cloud environment. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:

logfilename: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.
**accessID**: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **secretKey**, this allows you to launch Instant Cloud instances and submit jobs to them.

**secretKey**: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **accessID**, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.

**pool**: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restart the configuration information each time you launch a machine. May be **NULL** (or an empty string), in which case your job will be launched in the default pool associated with your cloud license.

**priority**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs.

**Return value**: An environment object.

**GRBEnv::get()**

Query the value of a parameter.

```cpp
double get (GRB_DoubleParam param)
```

Query the value of a double-valued parameter.

**Arguments:**
- `param`: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
- The current value of the requested parameter.

```cpp
int get (GRB_IntParam param)
```

Query the value of an int-valued parameter.

**Arguments:**
- `param`: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
- The current value of the requested parameter.

```cpp
const string get (GRB_StringParam param)
```
Query the value of a string-valued parameter.

**Arguments:**

- `param`: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**

The current value of the requested parameter.

---

**GRBEnv::getErrorMsg()**

Query the error message for the most recent exception associated with this environment.

```cpp
const string getErrorMsg ()
```

**Return value:**

The error string.

---

**GRBEnv::getParamInfo()**

Obtain information about a parameter.

```cpp
void getParamInfo (GRB_DoubleParam param,
 double* valP,
 double* minP,
 double* maxP,
 double* *defP)
```

Obtain detailed information about a double parameter.

**Arguments:**

- `param`: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `valP`: The current value of the parameter.
- `minP`: The minimum allowed value of the parameter.
- `maxP`: The maximum allowed value of the parameter.
- `defP`: The default value of the parameter.

```cpp
void getParamInfo (GRB_IntParam param,
 int* valP,
 int* minP,
 int* maxP,
 int* defP)
```

Obtain detailed information about an integer parameter.

**Arguments:**

- `param`: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

```cpp
void getParamInfo (GRB_StringParam param,
 string* valP,
 string* defP)
```

Obtain detailed information about a string parameter.

**Arguments:**
- **param**: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **valP**: The current value of the parameter.
- **defP**: The default value of the parameter.

---

**GRBEnv::message()**

Write a message to the console and the log file.

```cpp
void message (const string& message)
```

**Arguments:**
- **message**: Print a message to the console and to the log file. Note that this call has no effect unless the OutputFlag parameter is set.

---

**GRBEnv::readParams()**

Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```cpp
void readParams (const string& paramfile)
```

**Arguments:**
- **paramfile**: Name of the file containing parameter settings. Parameters should be listed one per line, with the parameter name first and the desired value second. For example:

```
Gurobi parameter file
Threads 1
MIPGap 0
```

Blank lines and lines that begin with the hash symbol are ignored.
GRBEnv::resetParams()

Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```cpp
void resetParams ()
```

GRBEnv::set()

Set the value of a parameter.

**Important notes:**

Note that a model gets its own copy of the environment when it is created. Changes to the original environment have no effect on the copy. Use GRBModel::set to change a parameter on an existing model.

```cpp
void set (GRB_DoubleParam param,
 double newvalue)
```

Set the value of a double-valued parameter.

**Arguments:**

- `param`: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `newvalue`: The desired new value of the parameter.

```cpp
void set (GRB_IntParam param,
 int newvalue)
```

Set the value of an int-valued parameter.

**Arguments:**

- `param`: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `newvalue`: The desired new value of the parameter.

```cpp
void set (GRB_StringParam param,
 const string& newvalue)
```

Set the value of a string-valued parameter.

**Arguments:**

- `param`: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `newvalue`: The desired new value of the parameter.
```cpp
void set (const string& param,
 const string& newvalue)
Set the value of any parameter using strings alone.

Arguments:
param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.
newvalue: The desired new value of the parameter.
```

```cpp
GRBEnv::start()
Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
```

```cpp
void start ()
```

```cpp
GRBEnv::writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
```

```cpp
void writeParams (const string& paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.
```
3.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr (adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr to populate the model with variables and constraints. The more complex constructors can read a model from a file, or make a copy of an existing model.

GRBModel  GRBModel (  const GRBEnv&  env )

Model constructor.

Arguments:
  env: Environment for new model.

Return value:
  New model object. Model initially contains no variables or constraints.

GRBModel  GRBModel (  const GRBEnv&  env,
  const string&  filename )

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
  env: Environment for new model.
  modelname: Name of the file containing the model.

Return value:
  New model object.

GRBModel  GRBModel (  const GRBModel&  model )

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call update before copying it.

Arguments:
  model: Model to copy.

Return value:
  New model object. Model is a clone of the input model.
GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

```
GRBConstr addConstr (const GRBLinExpr& lhsExpr,
 char sense,
 const GRBLinExpr& rhsExpr,
 string name="")
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new linear constraint.
- `sense`: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
- `rhsExpr`: Right-hand side expression for new linear constraint.
- `name` (optional): Name for new constraint.

**Return value:**
New constraint object.

```
GRBConstr addConstr (const GRBLinExpr& lhsExpr,
 char sense,
 GRBVar rhsVar,
 string name="")
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new linear constraint.
- `sense`: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
- `rhsVar`: Right-hand side variable for new linear constraint.
- `name` (optional): Name for new constraint.

**Return value:**
New constraint object.

```
GRBConstr addConstr (const GRBLinExpr& lhsExpr,
 char sense,
 double rhsVal,
 string name="")
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new linear constraint.
- `sense`: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
- `rhsVal`: Right-hand side value for new linear constraint.
- `name` (optional): Name for new constraint.

**Return value:**
GRBConstr addConstr ( GRBVar lhsVar,  
    char     sense,  
    GRBVar rhsVar,  
    string   name="" )

Add a single linear constraint to a model.

Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr ( GRBVar lhsVar,  
    char     sense,  
    double   rhsVal,  
    string   name="" )

Add a single linear constraint to a model.

Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr ( GRBTempConstr& tc,  
    string   name="" )

Add a single linear constraint to a model.

Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr for more information.
name (optional): Name for new constraint.

Return value:
New constraint object.
GRBModel::addConstrs()

Add new linear constraints to a model.
We recommend that you build your model one constraint at a time (using addConstr), since it introduces no significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

GRBConstr* addConstrs ( int count )

Add count new linear constraints to a model.
Arguments:
  count: Number of constraints to add to the model. The new constraints are all of the form 0 <= 0.
Return value:
  Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap by the user.

GRBConstr* addConstrs ( const GRBLinExpr* lhsExprs, const char* senses, const double* rhsVals, const string* names, int count )

Add count new linear constraints to a model.
Arguments:
  lhsExprs: Left-hand side expressions for the new linear constraints.
  senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
  rhsVals: Right-hand side values for the new linear constraints.
  names: Names for new constraints.
  count: Number of constraints to add.
Return value:
  Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function) constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent.
to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

- **addGenConstrMax**: \( y = \max(x_1, x_2, ..., c) \)
- **addGenConstrMin**: \( y = \min(x_1, x_2, ..., c) \)
- **addGenConstrAbs**: \( y = |x| \)
- **addGenConstrAnd**: \( y = x_1 \land x_2 \land x_3... \)
- **addGenConstrOr**: \( y = x_1 \lor x_2 \lor x_3... \)
- **addGenConstrIndicator**: \( y = 1 \rightarrow a'x \leq b \) (an indicator constraint)
- **addGenConstrPWL**: \( y = pwl(x) \) (a piecewise-linear function, specified using breakpoints)
- **addGenConstrPoly**: \( y = p_0x^d + p_1x^{d-1} + ... + p_{d-1}x + p_d \)
- **addGenConstrExp**: \( y = e^x \)
- **addGenConstrExpA**: \( y = a^x \)
- **addGenConstrLog**: \( y = \log_e(x) \)
- **addGenConstrLogA**: \( y = \log_a(x) \)
- **addGenConstrPow**: \( y = x^a \)
- **addGenConstrSin**: \( y = \sin(x) \)
- **addGenConstrCos**: \( y = \cos(x) \)
- **addGenConstrTan**: \( y = \tan(x) \)

Please refer to this section for additional details on general constraints.

**GRBModel::addGenConstrMax()**

Add a new general constraint of type **GRB_GENCONSTR_MAX** to a model.

A MAX constraint \( r = \max\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the maximum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resvar</td>
<td>GRBVar</td>
<td>Resultant variable</td>
</tr>
<tr>
<td>vars</td>
<td>const GRBVar*</td>
<td>Variables</td>
</tr>
<tr>
<td>len</td>
<td>int</td>
<td>Length of variables</td>
</tr>
<tr>
<td>constant</td>
<td>double</td>
<td>Constant value</td>
</tr>
<tr>
<td>name</td>
<td>string</td>
<td>Name of the constraint</td>
</tr>
</tbody>
</table>

Please provide the names of the variables, the constant, and any other parameters required to define the constraint.
**resvar**: The resultant variable of the new constraint.

**vars**: Array of variables that are the operands of the new constraint.

**len**: Number of operands in the new constraint (length of **vars** array).

**constant** (optional): The additional constant operand of the new constraint.

**name** (optional): Name for the new general constraint.

**Return value:**
New general constraint.

---

**GRBModel::addGenConstrMin()**

Add a new general constraint of type `GRB_GENCONSTR_MIN` to a model.

A MIN constraint \( r = \min\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the minimum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

**GRBGenConstr addGenConstrMin**

( **GRBVar** resvar,
  const **GRBVar**\* vars,
  int len,
  double constant=GRB_INFINITY,
  string name="" )

**Arguments:**
- **resvar**: The resultant variable of the new constraint.
- **vars**: Array of variables that are the operands of the new constraint.
- **len**: Number of operands in the new constraint (length of **vars** array).
- **constant** (optional): The additional constant operand of the new constraint.
- **name** (optional): Name for the new general constraint.

**Return value:**
New general constraint.

---

**GRBModel::addGenConstrAbs()**

Add a new general constraint of type `GRB_GENCONSTR_ABS` to a model.

An ABS constraint \( r = \text{abs}\{x\} \) states that the resultant variable \( r \) should be equal to the absolute value of the argument variable \( x \).

**GRBGenConstr addGenConstrAbs**

( **GRBVar** resvar,
  **GRBVar** argvar,
  string name="" )

**Arguments:**
- **resvar**: The resultant variable of the new constraint.
- **argvar**: The argument variable of the new constraint.
- **name** (optional): Name for the new general constraint.

**Return value:**
New general constraint.
GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTRTYPE_AND to a model.

An AND constraint $r = \text{and}\{x_1, \ldots, x_n\}$ states that the binary resultant variable $r$ should be 1 if and only if all of the operand variables $x_1, \ldots, x_n$ are equal to 1. If any of the operand variables is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

```cpp
GRBGenConstr addGenConstrAnd (GRBVar resvar,
 const GRBVar* vars,
 int len,
 string name="")
```

**Arguments:**
- **resvar**: The resultant binary variable of the new constraint.
- **vars**: Array of binary variables that are the operands of the new constraint.
- **len**: Number of operands in the new constraint (length of `vars` array).
- **name (optional)**: Name for the new general constraint.

**Return value:**
New general constraint.

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTRTYPE_OR to a model.

An OR constraint $r = \text{or}\{x_1, \ldots, x_n\}$ states that the binary resultant variable $r$ should be 1 if and only if any of the operand variables $x_1, \ldots, x_n$ is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

```cpp
GRBGenConstr addGenConstrOr (GRBVar resvar,
 const GRBVar* vars,
 int len,
 string name="")
```

**Arguments:**
- **resvar**: The resultant binary variable of the new constraint.
- **vars**: Array of binary variables that are the operands of the new constraint.
- **len**: Number of operands in the new constraint (length of `vars` array).
- **name (optional)**: Name for the new general constraint.

**Return value:**
New general constraint.
GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.

An INDICATOR constraint $z = f \rightarrow a^T x \leq b$ states that if the binary indicator variable $z$ is equal to $f \in \{0, 1\}$, then the linear constraint $a^T x \leq b$ should hold. On the other hand, if $z = 1 - f$, the linear constraint may be violated. The sense of the linear constraint can also be specified to be $=$ or $\geq$.

Note that the indicator variable $z$ of a constraint will be forced to be binary, independent of how it was created.

Multiple signatures are available.

```c
GRBGenConstr addGenConstrIndicator (GRBVar binvar,
 int binval,
 const GRBLinExpr& expr,
 char sense,
 double rhs,
 string name="")
```

**Arguments:**
- `binvar`: The binary indicator variable.
- `binval`: The value for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- `expr`: Left-hand side expression for the linear constraint triggered by the indicator.
- `sense`: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
- `rhs`: Right-hand side value for the linear constraint.
- `name` (optional): Name for the new general constraint.

**Return value:**
New general constraint.

```c
GRBGenConstr addGenConstrIndicator (GRBVar binvar,
 int binval,
 const GRBTempConstr& constr,
 string name="")
```

**Arguments:**
- `binvar`: The binary indicator variable.
- `binval`: The value for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- `constr`: Temporary constraint object defining the linear constraint that is triggered by the indicator. The temporary constraint object is created using an overloaded comparison operator. See GRBTempConstr for more information.
- `name` (optional): Name for the new general constraint.

**Return value:**
New general constraint.
Add a new general constraint of type GRB_GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship \( y = f(x) \) must hold between variables \( x \) and \( y \), where \( f \) is a piecewise-linear function. The breakpoints for \( f \) are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

```
GRBGenConstr addGenConstrPWL (GRBVar xvar,
 GRBVar yvar,
 int npts,
 const double* xpts,
 const double* ypts,
 std::string name="")
```

**Arguments:**
- `xvar`: The \( x \) variable.
- `yvar`: The \( y \) variable.
- `npts`: The number of points that define the piecewise-linear function.
- `xpts`: The \( x \) values for the points that define the piecewise-linear function. Must be in non-decreasing order.
- `ypts`: The \( y \) values for the points that define the piecewise-linear function.
- `name (optional)`: Name for the new general constraint.

**Return value:**
New general constraint.

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.

A polynomial function constraint states that the relationship \( y = p_0 x^d + p_1 x^{d-1} + \ldots + p_{d-1} x + p_d \) should hold between variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```
GRBGenConstr addGenConstrPoly (GRBVar xvar,
 GRBVar yvar,
 int plen,
 const double* p,
 std::string name="",
 std::string options="")
```

**Arguments:**
- `xvar`: The \( x \) variable.
- `yvar`: The \( y \) variable.
- `plen`: The length of coefficient array \( p \). If \( x^d \) is the highest power term, then `plen` should be \( d + 1 \).
p: The coefficients for the polynomial function (starting with the coefficient for the highest power).

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship $y = \exp(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship $y = a^x$ should hold for variables $x$ and $y$, where $a > 0$ is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.
GRBGenConstr `addGenConstrExpA` ( GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="" )

Arguments:
  xvar: The $x$ variable.
  yvar: The $y$ variable.
  a: The base of the function, $a > 0$.
  name (optional): Name for the new general constraint.
  options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
  New general constraint.

GRBModel::addGenConstrLog()

Add a new general constraint of type `GRB_GENCONSTR_LOG` to a model.

A natural logarithmic function constraint states that the relationship $y = \log(x)$ should hold
for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

GRBGenConstr `addGenConstrLog` ( GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="" )

Arguments:
  xvar: The $x$ variable.
  yvar: The $y$ variable.
  name (optional): Name for the new general constraint.
  options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
  New general constraint.
GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship \( y = \log_a(x) \) should hold for variables \( x \) and \( y \), where \( a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

\[
\text{GRBGenConstr addGenConstrLogA ( GRBVar xvar, GRBVar yvar, double a, std::string name="", std::string options="" )}
\]

Arguments:
\begin{itemize}
  \item \textit{xvar}: The \( x \) variable.
  \item \textit{yvar}: The \( y \) variable.
  \item \textit{a}: The base of the function, \( a > 0 \).
  \item \textit{name (optional)}: Name for the new general constraint.
  \item \textit{options (optional)}: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').
\end{itemize}

Return value:
New general constraint.

GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.

A power function constraint states that the relationship \( y = x^a \) should hold for variables \( x \) and \( y \), where \( a \) is the (constant) exponent. The lower bound of variable \( x \) must be nonnegative, even if \( a \) is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

\[
\text{GRBGenConstr addGenConstrPow ( GRBVar xvar, GRBVar yvar, double a, std::string name="", std::string options="" )}
\]

Arguments:
\begin{itemize}
  \item \textit{xvar}: The \( x \) variable.
\end{itemize}
yvar: The y variable.

a: The exponent of the function, $a > 0$.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**

New general constraint.

---

**GRBModel::addGenConstrSin()**

Add a new general constraint of type `GRB_GENCONSTR_SIN` to a model.

A sine function constraint states that the relationship $y = \sin(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```cpp
GRBGenConstr addGenConstrSin (GRBVar xvar,
 GRBVar yvar,
 std::string name="",
 std::string options="")
```

**Arguments:**

xvar: The x variable.

yvar: The y variable.

name (optional): Name for the new general constraint.

options (optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**

New general constraint.

---

**GRBModel::addGenConstrCos()**

Add a new general constraint of type `GRB_GENCONSTR_COS` to a model.

A cosine function constraint states that the relationship $y = \cos(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.
addGenConstrCos

Arguments:
xvar: The $x$ variable.
yvar: The $y$ variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

addGenConstrTan

Add a new general constraint of type GRB_GENCONSTRTL TAN to a model.

A tangent function constraint states that the relationship $y = \tan(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
xvar: The $x$ variable.
yvar: The $y$ variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.
Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between them can be both important and subtle. Refer to this discussion for additional information.

```cpp
GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
 char sense,
 const GRBQuadExpr& rhsExpr,
 string name="")
```

Add a quadratic constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new quadratic constraint.
- `sense`: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
- `rhsExpr`: Right-hand side expression for new quadratic constraint.
- `name` (optional): Name for new constraint.

**Return value:**
- New quadratic constraint object.

```cpp
GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
 char sense,
 GRBVar rhsVar,
 string name="")
```

Add a quadratic constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new quadratic constraint.
- `sense`: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
- `rhsVar`: Right-hand side variable for new quadratic constraint.
- `name` (optional): Name for new constraint.

**Return value:**
- New quadratic constraint object.

```cpp
GRBQConstr addQConstr (GRBTempConstr& tc,
 string name="")
```

Add a quadratic constraint to a model.

**Arguments:**
- `tc`: Temporary constraint object, created using an overloaded comparison operator. See GRBTempConstr for more information.
- `name` (optional): Name for new constraint.

**Return value:**
- New quadratic constraint object.
GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB_EQUAL.

```cpp
GRBConstr addRange (const GRBLinExpr& expr,
double lower,
double upper,
string name="")
```

Arguments:
- `expr`: Linear expression for new range constraint.
- `lower`: Lower bound for linear expression.
- `upper`: Upper bound for linear expression.
- `name (optional)`: Name for new constraint.

Return value:
- New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

```cpp
GRBConstr* addRanges (const GRBLinExpr* exprs,
const double* lower,
const double* upper,
const string* names,
int count)
```

Arguments:
- `exprs`: Linear expressions for the new range constraints.
- `lower`: Lower bounds for linear expressions.
- `upper`: Upper bounds for linear expressions.
- `name`: Names for new range constraints.
- `count`: Number of range constraints to add.

Return value:
- Array of new constraint objects. Note that the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.
GRBSOS  addSOS (  const GRBVar*  vars,
            const double*  weights,
              int       len,
              int       type )

Arguments:
  vars: Array of variables that participate in the SOS constraint.
  weights: Weights for the variables in the SOS constraint.
  len: Number of members in the new SOS set (length of vars and weights arrays).
  type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
  New SOS constraint.

GRBModel::addVar()

Add a single decision variable to a model.

GRBVar  addVar (  double   lb,
            double   ub,
            double   obj,
                char   type,
              string   name="" )

Add a variable; non-zero entries will be added later.

Arguments:
  lb: Lower bound for new variable.
  ub: Upper bound for new variable.
  obj: Objective coefficient for new variable.
  type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT).
  name (optional): Name for new variable.

Return value:
  New variable object.

GRBVar  addVar (  double   lb,
            double   ub,
            double   obj,
                char   type,
              int      numnz,
            const     GRBConstr*     constrs,
            const     double*        coeffs,
              string   name="" )

Add a variable, and the associated non-zero coefficients.

Arguments:
  lb: Lower bound for new variable.
  ub: Upper bound for new variable.
  obj: Objective coefficient for new variable.
**type:** Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT).

**numnz:** Number of constraints in which this new variable participates.

**constrs:** Array of constraints in which the variable participates.

**coeffs:** Array of coefficients for each constraint in which the variable participates.

**name (optional):** Name for new variable.

**Return value:**

New variable object.

---

```cpp
GRBVar addVar(double lb, double ub, double obj, char type, const GRBColumn& col, string name="")
```

Add a variable, and the associated non-zero coefficients.

**Arguments:**

- **lb:** Lower bound for new variable.
- **ub:** Upper bound for new variable.
- **obj:** Objective coefficient for new variable.
- **type:** Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT).
- **col:** GRBColumn object for specifying a set of constraints to which new variable belongs.
- **name (optional):** Name for new variable.

**Return value:**

New variable object.

---

**GRBModel::addVars()**

Add new decision variables to a model.

```cpp
GRBVar* addVars(int count, char type=GRB_CONTINUOUS)
```

Add count new decision variables to a model. All associated attributes take their default values, except the variable **type**, which is specified as an argument.

**Arguments:**

- **count:** Number of variables to add.
- **type (optional):** Variable type for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_SEMICONT, or GRB_SEMIINT).

**Return value:**

Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by the user.
Add \texttt{count} new decision variables to a model. This signature allows you to use arrays to hold the various variable attributes (lower bound, upper bound, etc.).

**Arguments:**
- \texttt{lb}: Lower bounds for new variables. Can be \texttt{NULL}, in which case the variables get lower bounds of 0.0.
- \texttt{ub}: Upper bounds for new variables. Can be \texttt{NULL}, in which case the variables get infinite upper bounds.
- \texttt{obj}: Objective coefficients for new variables. Can be \texttt{NULL}, in which case the variables get objective coefficients of 0.0.
- \texttt{type}: Variable types for new variables (\texttt{GRB\_CONTINUOUS}, \texttt{GRB\_BINARY}, \texttt{GRB\_INTEGER}, \texttt{GRB\_SEMICONT}, or \texttt{GRB\_SEMIINT}). Can be \texttt{NULL}, in which case the variables are assumed to be continuous.
- \texttt{names}: Names for new variables. Can be \texttt{NULL}, in which case all variables are given default names.
- \texttt{count}: The number of variables to add.

**Return value:**
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by the user.

Add new decision variables to a model. This signature allows you to specify the set of constraints to which each new variable belongs using an array of \texttt{GRBColumn} objects.

**Arguments:**
- \texttt{lb}: Lower bounds for new variables. Can be \texttt{NULL}, in which case the variables get lower bounds of 0.0.
- \texttt{ub}: Upper bounds for new variables. Can be \texttt{NULL}, in which case the variables get infinite upper bounds.
- \texttt{obj}: Objective coefficients for new variables. Can be \texttt{NULL}, in which case the variables get objective coefficients of 0.0.
- \texttt{type}: Variable types for new variables (\texttt{GRB\_CONTINUOUS}, \texttt{GRB\_BINARY}, \texttt{GRB\_INTEGER}, \texttt{GRB\_SEMICONT}, or \texttt{GRB\_SEMIINT}). Can be \texttt{NULL}, in which case the variables are assumed to be continuous.
names: Names for new variables. Can be NULL, in which case all variables are given default names.
cols: GRBColumn objects for specifying a set of constraints to which each new column belongs.
count: The number of variables to add.

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::chgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

```c
void chgCoeff (GRBConstr constr,
 GRBVar var,
 double newvalue)
```

Arguments:

- `constr`: Constraint for coefficient to be changed.
- `var`: Variable for coefficient to be changed.
- `newvalue`: Desired new value for coefficient.

GRBModel::chgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object, a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each correspond to a single desired coefficient change. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

```c
void chgCoeffs (const GRBConstr* constrs,
 const GRBVar* vars,
 const double* vals,
 int len)
```

Arguments:

- `constrs`: Constraints for coefficients to be changed.
- `vars`: Variables for coefficients to be changed.
- `vals`: Desired new values for coefficients.
- `len`: Number of coefficients to change (length of `vars`, `constrs`, and `vals` arrays).
**GRBModel::computeIIS()**

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes, the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain information about the results of the IIS computation by writing a .ilp format file (see GRBModel::write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

```cpp
void computeIIS();
```

**GRBModel::discardConcurrentEnvs()**

Discard concurrent environments for a model.

The concurrent environments created by getConcurrentEnv will be used by every subsequent call to the concurrent optimizer until the concurrent environments are discarded.

```cpp
void discardConcurrentEnvs();
```

**GRBModel::discardMultiobjEnvs()**

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

```cpp
void discardMultiobjEnvs();
```

**GRBModel::feasRelax()**

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This method provides a number of options for specifying the relaxation.
If you specify \texttt{relaxobjtype=0}, the objective of the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations. The \texttt{lbpen}, \texttt{ubpen}, and \texttt{rhspen} arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify \texttt{relaxobjtype=1}, the objective of the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations. The \texttt{lbpen}, \texttt{ubpen}, and \texttt{rhspen} arguments specify the coefficients on the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify \texttt{relaxobjtype=2}, the objective of the feasibility relaxation is to minimize the weighted count of bound and constraint violations. The \texttt{lbpen}, \texttt{ubpen}, and \texttt{rhspen} arguments specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with \texttt{rhspen} value \(p\) is violated by 2.0, it would contribute \(2*p\) to the feasibility relaxation objective for \texttt{relaxobjtype=0}, it would contribute \(2*2*p\) for \texttt{relaxobjtype=1}, and it would contribute \(p\) for \texttt{relaxobjtype=2}.

The \texttt{minrelax} argument is a boolean that controls the type of feasibility relaxation that is created. If \texttt{minrelax=false}, optimizing the returned model gives a solution that minimizes the cost of the violation. If \texttt{minrelax=true}, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that \texttt{feasRelax} must solve an optimization problem to find the minimum possible relaxation when \texttt{minrelax=true}, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The simpler signature takes a pair of boolean arguments, \texttt{vrelax} and \texttt{crelax}, that indicate whether variable bounds and/or constraints can be violated. If \texttt{vrelax/crelax} is \texttt{true}, then every bound/constraint is allowed to be violated, respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify your original model, use the \texttt{GRBModel constructor} to create a copy before invoking this method.

```c
double feasRelax (int relaxobjtype, bool minrelax, int vlen, const GRBVar* vars, const double* lbpen, const double* ubpen, int clen, const GRBConstr* constrs, const double* rhspen)
```

Create a feasibility relaxation model.

**Arguments:**
- \texttt{relaxobjtype}: The cost function used when finding the minimum cost relaxation.
- \texttt{minrelax}: The type of feasibility relaxation to perform.
- \texttt{vlen}: The length of the list of variables whose bounds are allowed to be violated.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
clen: The length of the list of linear constraints that are allowed to be violated.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument constrs.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

double feasRelax ( int relaxobjtype,
    bool minrelax,
    bool vrelax,
    bool crelax )
Simplified method for creating a feasibility relaxation model.

Arguments:
  relaxobjtype: The cost function used when finding the minimum cost relaxation.
  minrelax: The type of feasibility relaxation to perform.
  vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
  crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

GRBModel::fixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

GRBModel fixedModel ( )
Return value:
Fixed model associated with calling object.
GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for arrays of constraint or variable attributes.

```cpp
double get (GRB_DoubleParam param)
```

Query the value of a double-valued parameter.

Arguments:
- **param**: The parameter being queried.

Return value:
- The current value of the requested parameter.

```cpp
int get (GRB_IntParam param)
```

Query the value of an int-valued parameter.

Arguments:
- **param**: The parameter being queried.

Return value:
- The current value of the requested parameter.

```cpp
string get (GRB_StringParam param)
```

Query the value of a string-valued parameter.

Arguments:
- **param**: The parameter being queried.

Return value:
- The current value of the requested parameter.

```cpp
char* get (GRB_CharAttr attr,
 const GRBVar* vars,
 int count)
```

Query a char-valued variable attribute for an array of variables.

Arguments:
- **attr**: The attribute being queried.
- **vars**: An array of variables whose attribute values are being queried.
- **count**: The number of variable attributes to retrieve.

Return value:
- The current values of the requested attribute for each input variable. Note that the result is heap-allocated, and must be returned to the heap by the user.

```cpp
char* get (GRB_CharAttr attr,
 const GRBConstr* conss,
 int count)
```
Query a char-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of constraints whose attribute values are being queried.
- `count`: The number of constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
char* get (GRB_CharAttr attr,
 const GRBQConstr* qconstrs,
 int count)
```

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of quadratic constraints whose attribute values are being queried.
- `count`: The number of quadratic constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input quadratic constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
double get (GRB_DoubleAttr attr)
```

Query the value of a double-valued model attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```c
double* get (GRB_DoubleAttr attr,
 const GRBVar* vars,
 int count)
```

Query a double-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being queried.
- `vars`: An array of variables whose attribute values are being queried.
- `count`: The number of variable attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input variable. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
double* get (GRB_DoubleAttr attr,
 const GRBConstr* constrs,
 int count)
```
Query a double-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of constraints whose attribute values are being queried.
- `count`: The number of constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
double* get (GRB_DoubleAttr attr,
 const GRBQConstr* qconstrs,
 int count)
```

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of quadratic constraints whose attribute values are being queried.
- `count`: The number of quadratic constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input quadratic constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
int get (GRB_IntAttr attr)
```

Query the value of an int-valued model attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```c
int* get (GRB_IntAttr attr,
 const GRBVar* vars,
 int count)
```

Query an int-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being queried.
- `vars`: An array of variables whose attribute values are being queried.
- `count`: The number of variable attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input variable. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
int* get (GRB_IntAttr attr,
 const GRBConstr* constrs,
 int count)
```
Query an int-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of constraints whose attribute values are being queried.
- `count`: The number of constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
string get (GRB_StringAttr attr)
```

Query the value of a string-valued model attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```c
string* get (GRB_StringAttr attr, const GRBVar* vars, int count)
```

Query a string-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being queried.
- `vars`: An array of variables whose attribute values are being queried.
- `count`: The number of variable attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input variable. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
string* get (GRB_StringAttr attr, const GRBConstr* constrs, int count)
```

Query a string-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: An array of constraints whose attribute values are being queried.
- `count`: The number of constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

```c
string* get (GRB_StringAttr attr, const GRBQConstr* qconstrs, int count)
```
Query a string-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **constrs**: An array of quadratic constraints whose attribute values are being queried.
- **count**: The number of quadratic constraint attributes to retrieve.

**Return value:**
The current values of the requested attribute for each input quadratic constraint. Note that the result is heap-allocated, and must be returned to the heap by the user.

**GRBModel::getCoeff()**

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

```cpp
double getCoeff (GRBConstr constr,
 GRBVar var)
```

**Arguments:**
- **constr**: The requested constraint.
- **var**: The requested variable.

**Return value:**
The current value of the requested coefficient.

**GRBModel::getCol()**

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned as a GRBColumn object.

```cpp
GRBColumn getCol (GRBVar var)
```

**Arguments:**
- **var**: The variable of interest.

**Return value:**
A GRBColumn object that captures the set of constraints in which the variable participates.

**GRBModel::getConcurrentEnv()**

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments, and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example, if you want three concurrent environments, they must be numbered 0, 1, and 2.
Once you create concurrent environments, they will be used for every subsequent concurrent optimization on that model. Use `discardConcurrentEnvs` to revert back to default concurrent optimizer behavior.

```cpp
GRBEnv getConcurrentEnv (int num)

Arguments:
 num: The concurrent environment number.

Return value:
 The concurrent environment for the model.
```

```cpp
GRBModel::getConstrByName()
```

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses one arbitrarily.

```cpp
GRBConstr getConstrByName (const string& name)

Arguments:
 name: The name of the desired linear constraint.

Return value:
 The requested linear constraint.
```

```cpp
GRBModel::getConstrs()
```

Retrieve an array of all linear constraints in the model.

```cpp
GRBConstr* getConstrs ()

Return value:
 An array of all linear constraints in the model. Note that this array is heap-allocated, and must be returned to the heap by the user.
```

```cpp
GRBModel::getEnv()
```

Query the environment associated with the model. Note that each model makes its own copy of the environment when it is created. To change parameters for a model, for example, you should use this method to obtain the appropriate environment object.

```cpp
GRBEnv getEnv ()

Return value:
 The environment for the model.
```
GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

```
void getGenConstrMax (GRBGenConstr genc,
 GRBVar* resvarP,
 GRBVar* vars,
 int* lenP,
 double* constantP)
```

Arguments:

- `genc`: The general constraint object.
- `resvarP`: Pointer to store the resultant variable of the constraint.
- `vars`: Array to store the operand variables of the constraint.
- `lenP`: Pointer to store the number of operand variables of the constraint.
- `constantP`: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

```
void getGenConstrMin (GRBGenConstr genc,
 GRBVar* resvarP,
 GRBVar* vars,
 int* lenP,
 double* constantP)
```

Arguments:

- `genc`: The general constraint object.
Any of the following arguments can be NULL.

- `resvarP`: Pointer to store the resultant variable of the constraint.
- `vars`: Array to store the operand variables of the constraint.
- `lenP`: Pointer to store the number of operand variables of the constraint.
- `constantP`: Pointer to store the additional constant operand of the constraint.

### GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of a different type leads to an exception. You can query the `GenConstrType` attribute to determine the type of the general constraint.

See also `addGenConstrAbs` for a description of the semantics of this general constraint type.

```cpp
void getGenConstrAbs (GRBGenConstr genc,
 GRBVar* resvarP,
 GRBVar* argvarP)
```

**Arguments:**
- `genc`: The general constraint object.
- Any of the following arguments can be NULL.
- `resvarP`: Pointer to store the resultant variable of the constraint.
- `argvarP`: Pointer to store the argument variable of the constraint.

### GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of a different type leads to an exception. You can query the `GenConstrType` attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the `vars` argument. The routine returns the total number of operand variables in the specified general constraint in `lenP`. That allows you to make certain that the `vars` array is of sufficient size to hold the result of the second call.

See also `addGenConstrAnd` for a description of the semantics of this general constraint type.

```cpp
void getGenConstrAnd (GRBGenConstr genc,
 GRBVar* resvarP,
 GRBVar* vars,
 int* lenP)
```

**Arguments:**
- `genc`: The general constraint object.
- Any of the following arguments can be NULL.
- `resvarP`: Pointer to store the resultant variable of the constraint.
- `vars`: Array to store the operand variables of the constraint.
- `lenP`: Pointer to store the number of operand variables of the constraint.
GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in lenP. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

```c
void getGenConstrOr (GRBGenConstr genc,
 GRBVar* resvarP,
 GRBVar* vars,
 int* lenP)
```

**Arguments:**
- **genc**: The general constraint object.
- **resvarP**: Pointer to store the resultant variable of the constraint.
- **vars**: Array to store the operand variables of the constraint.
- **lenP**: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.

```c
void getGenConstrIndicator (GRBGenConstr genc,
 GRBVar* binvarP,
 int* binvalP,
 GRBLinExpr* exprP,
 char* senseP,
 double* rhsP)
```

**Arguments:**
- **genc**: The general constraint object.
- **binvarP**: Pointer to store the binary indicator variable of the constraint.
- **binvalP**: Pointer to store the value that the indicator variable has to take in order to trigger the linear constraint.
- **exprP**: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear constraint that is triggered by the indicator.
- **senseP**: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
**rhsP**: Pointer to store the right-hand side value for the linear constraint.

**GRBModel::getGenConstrPWL**

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

```c
void getGenConstrPWL (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP,
 int* nptsP,
 double* xpts,
 double* ypts)
```

**Arguments:**

- `genc`: The general constraint object.
- `xvarP`: Pointer to store the x variable.
- `yvarP`: Pointer to store the y variable.
- `nptsP`: Pointer to store the number of points that define the piecewise-linear function.
- `xpts`: The x values for the points that define the piecewise-linear function.
- `ypts`: The y values for the points that define the piecewise-linear function.

**GRBModel::getGenConstrPoly**

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a NULL value for the p argument. The routine returns the length of the p array in plenP. That allows you to make certain that the p array is of sufficient size to hold the result of the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

```c
void getGenConstrPoly (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP,
 int* plenP,
 double* p)
```

**Arguments:**
**genc**: The general constraint object. Any of the following arguments can be **NULL**.

- **xvarP**: Pointer to store the $x$ variable.
- **yvarP**: Pointer to store the $y$ variable.
- **plenP**: Pointer to store the array length for $p$. If $x^d$ is the highest power term, then $d + 1$ will be returned.
- **p**: The coefficients for polynomial function.

### GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

```c
void getGenConstrExp (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP)
```

**Arguments:**
- **genc**: The general constraint object. Any of the following arguments can be **NULL**.
- **xvarP**: Pointer to store the $x$ variable.
- **yvarP**: Pointer to store the $y$ variable.

### GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

```c
void getGenConstrExpA (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP,
 double* aP)
```

**Arguments:**
- **genc**: The general constraint object. Any of the following arguments can be **NULL**.
- **xvarP**: Pointer to store the $x$ variable.
- **yvarP**: Pointer to store the $y$ variable.
- **aP**: Pointer to store the base of the function.
**GRBModel::getGenConstrLog**

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

```c
void getGenConstrLog (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP)
```

**Arguments:**
- `genc`: The general constraint object.
- `xvarP`: Pointer to store the x variable.
- `yvarP`: Pointer to store the y variable.

**GRBModel::getGenConstrLogA**

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

```c
void getGenConstrLogA (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP,
 double* aP)
```

**Arguments:**
- `genc`: The general constraint object.
- `xvarP`: Pointer to store the x variable.
- `yvarP`: Pointer to store the y variable.
- `aP`: Pointer to store the base of the function.

**GRBModel::getGenConstrPow**

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

```c
void getGenConstrPow (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP,
 double* aP)
```
Arguments:

genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the \( x \) variable.
yvarP: Pointer to store the \( y \) variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

```c
void getGenConstrSin (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the \( x \) variable.
yvarP: Pointer to store the \( y \) variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

```c
void getGenConstrCos (GRBGenConstr genc,
 GRBVar* xvarP,
 GRBVar* yvarP)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be NULL.
xvarP: Pointer to store the \( x \) variable.
yvarP: Pointer to store the \( y \) variable.

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.
void getGenConstrTan ( GRBGenConstr genc,  
    GRBVar* xvarP,  
    GRBVar* yvarP )

Arguments:
  genc: The general constraint object.
  Any of the following arguments can be NULL.
  xvarP: Pointer to store the x variable.
  yvarP: Pointer to store the y variable.

GRBModel::getGenConstrs()
Retrieve an array of all general constraints in the model.

GRBGenConstr* getGenConstrs ( )
Return value:
  An array of all general constraints in the model. Note that this array is heap-allocated, and
  must be returned to the heap by the user.

GRBModel::getJSONSolution()
After a call to optimize, this method returns the resulting solution and related model attributes as
a JSON string. Please refer to the JSON solution format section for details.

getJSONSolution GRBModel ( )
Return value:
  A JSON string.

GRBModel::getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.
  Each multi-objective environment starts with a copy of the current model environment.
  Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
  Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

GRBEnv getMultiobjEnv ( int index )
Arguments:
  index: The objective index.
Return value:
  The multi-objective environment for the model.
GRBModel::getObjective()

Retrieve the optimization objective(s).

<table>
<thead>
<tr>
<th>GRBQuadExpr</th>
<th>getObjective( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieve the optimization objective.</td>
<td></td>
</tr>
<tr>
<td>Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj attributes.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>The model objective.</td>
<td></td>
</tr>
</tbody>
</table>

GRBLinExpr getObjective( int index )

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

**Arguments:**

- **index**: The index for the requested alternative objective.

**Return value:**

- The requested alternate objective.

GRBModel::getPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define the function, and the x and y arguments give the coordinates of the points, respectively. The x and y arguments must be large enough to hold the result. Call this method with NULL values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in x and y mean.

```c
int getPWLObj(GRBVar var, double[] x, double[] y)
```

**Arguments:**

- **var**: The variable whose objective function is being retrieved.
- **x**: The x values for the points that define the piecewise-linear function. These will always be in non-decreasing order.
- **y**: The y values for the points that define the piecewise-linear function.

**Return value:**

- The number of points that define the piecewise-linear objective function.
GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

| GRBQuadExpr getQCRow ( GRBQConstr qconstr ) |

**Arguments:**
- `qconstr`: The quadratic constraint of interest.

**Return value:**
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

| GRBQConstr* getQConstrs ( ) |

**Return value:**
An array of all quadratic constraints in the model. Note that this array is heap-allocated, and must be returned to the heap by the user.

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as a GRBLinExpr object.

| GRBLinExpr getRow ( GRBConstr constr ) |

**Arguments:**
- `constr`: The constraint of interest.

**Return value:**
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value is the length of this list. If you would like to allocate space for the result before retrieving the result, call the method first with NULL array arguments to determine the appropriate array lengths.

| int getSOS ( GRBSOS sos, GRBVar* vars, double* weights, int* typeP ) |
Arguments:

- **sos**: The SOS set of interest.
- **vars**: A list of variables that participate in `sos`.
- **weights**: The SOS weights for each participating variable.
- **type**: The type of the SOS set (either `GRB_SOS_TYPE1` or `GRB_SOS_TYPE2`).

Return value:
The length of the result arrays.

**GRBModel::getSOSs()**

Retrieve an array of all SOS constraints in the model.

```cpp
GRBSOS* getSOSs();
```

Return value:
An array of all SOS constraints in the model. Note that this array is heap-allocated, and must be returned to the heap by the user.

**GRBModel::getTuneResult()**

Use this method to retrieve the results of a previous `tune` call. Calling this method with argument `n` causes tuned parameter set `n` to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter set 0 being the best. The number of available sets is stored in attribute `TuneResultCount`.

Once you have retrieved a tuning result, you can call `optimize` to use these parameter settings to optimize the model, or `write` to write the changed parameters to a `.prm` file.

Please refer to the parameter tuning section for details on the tuning tool.

```cpp
void getTuneResult(int n);
```

- `n`: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored results is available in attribute `TuneResultCount`.

**GRBModel::getVarByName()**

Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily.

```cpp
GRBVar getVarByName(const string& name);
```

Arguments:
- **name**: The name of the desired variable.

Return value:
The requested variable.
GRBModel::getVars()

Retrieve an array of all variables in the model.

<table>
<thead>
<tr>
<th>GRBVar* getVars()</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Return value:</strong></td>
</tr>
</tbody>
</table>
| An array of all variables in the model. Note that this array is heap-allocated, and must be returned to the heap by the user.

GRBModel::optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

| void optimize() |

GRBModel::optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations while optimization proceeds in the background. To check the state of the asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS indicates that the optimization has not yet completed. When you are done with your foreground tasks, you must call sync to sync your foreground program with the asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below). Any other calls on the running model, or on any other models that were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asynchronous optimization is in progress. The other attributes that can be queried are: ObjVal, ObjBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress in the optimization to that point. Any attempt to query the value of an attribute not on this list will return an OPTIMIZATION_IN_PROGRESS error.

| void optimizeasync() |
GRBModel::optimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which uniquely identifies the job in the Cluster Manager and can be used to query the status of this request (from this program or from any other). Once the request has completed, the BatchID can also be used to retrieve the associated solution. To submit a batch request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

```cpp
string optimizeBatch()
```

Example usage:

GRBModel::presolve()

Perform presolve on a model.

```cpp
GRBModel presolve()
```

Return value:

Presolved version of original model.

GRBModel::read()

This method is the general entry point for importing data from a file into a model. It can be used to read basis files for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

```cpp
void read(const string& filename)
```

Arguments:

- `filename`: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.
GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

<table>
<thead>
<tr>
<th>void remove ( GRBConstr constr )</th>
</tr>
</thead>
</table>
| Remove a linear constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

**Arguments:**

- constr: The linear constraint to remove.

<table>
<thead>
<tr>
<th>void remove ( GRBGenConstr genconstr )</th>
</tr>
</thead>
</table>
| Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

**Arguments:**

- genconstr: The general constraint to remove.

<table>
<thead>
<tr>
<th>void remove ( GRBQConstr qconstr )</th>
</tr>
</thead>
</table>
| Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

**Arguments:**

- qconstr: The quadratic constraint to remove.

<table>
<thead>
<tr>
<th>void remove ( GRBSOS sos )</th>
</tr>
</thead>
</table>
| Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

**Arguments:**

- sos: The SOS constraint to remove.

<table>
<thead>
<tr>
<th>void remove ( GRBVar var )</th>
</tr>
</thead>
</table>
| Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

**Arguments:**

- var: The variable to remove.
GRBModel::reset()

```cpp
void reset (int clearall=0)
```

Reset the model to an unsolved state, discarding any previously computed solution information. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `GRBModel::update`), optimize the model (using `GRBModel::optimize`), or write the model to disk (using `GRBModel::write`).

**clearall (optional):** Should additional information such as MIP starts, variable hints, branching priorities, lazy flags, and partition information be cleared?

**Arguments:**

GRBModel::setCallback()

Set the callback object for a model. The `callback()` method on this object will be called periodically from the Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization from this callback. See the documentation for `GRBCallback` for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback. To disable a previously set callback, call this method with a NULL argument.

```cpp
void setCallback (GRBCallback* cb)
```

GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for arrays of constraint or variable attributes.

```cpp
void set (GRB_DoubleParam param,
 double newvalue)
Set the value of a double-valued parameter.
```

The difference between setting a parameter on a model and setting it on an environment (i.e., through `GRBEnv::set`) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**

- **param**: The parameter being modified.
- **newvalue**: The desired new value for the parameter.

```cpp
void set (GRB_IntParam param,
 int newvalue)
Set the value of an int-valued parameter.
```
The difference between setting a parameter on a model and setting it on an environment (i.e., through \texttt{GRBEnv:set}) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- \texttt{param}: The parameter being modified.
- \texttt{newvalue}: The desired new value for the parameter.

```c
void set (GRB_StringParam param,
 string newvalue)
```
Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through \texttt{GRBEnv:set}) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- \texttt{param}: The parameter being modified.
- \texttt{newvalue}: The desired new value for the parameter.

```c
void set (GRB_CharAttr attr,
 const GRBVar* vars,
 char* newvalues,
 int count)
```
Set a char-valued variable attribute for an array of variables.

**Arguments:**
- \texttt{attr}: The attribute being modified.
- \texttt{vars}: An array of variables whose attribute values are being modified.
- \texttt{newvalues}: The desired new values for the attribute for each input variable.
- \texttt{count}: The number of variable attributes to set.

```c
void set (GRB_CharAttr attr,
 const GRBConstr* constrs,
 char* newvalues,
 int count)
```
Set a char-valued constraint attribute for an array of constraints.

**Arguments:**
- \texttt{attr}: The attribute being modified.
- \texttt{constrs}: An array of constraints whose attribute values are being modified.
- \texttt{newvalues}: The desired new values for the attribute for each input constraint.
- \texttt{count}: The number of constraint attributes to set.

```c
void set (GRB_CharAttr attr,
 const GRBQConstr* qconstrs,
 char* newvalues,
 int count)
```
Set a char-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: An array of quadratic constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input quadratic constraint.
- `count`: The number of quadratic constraint attributes to set.

```c
void set (GRB_DoubleAttr attr,
 double newvalue)
```

Set the value of a double-valued model attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value for the attribute.

```c
void set (GRB_DoubleAttr attr,
 double newvalue)
```

Set a double-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: An array of variables whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input variable.
- `count`: The number of variable attributes to set.

```c
void set (GRB_DoubleAttr attr,
 const GRBVar* vars,
 double* newvalues,
 int count)
```

Set a double-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: An array of constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input constraint.
- `count`: The number of constraint attributes to set.

```c
void set (GRB_DoubleAttr attr,
 const GRBConstr* constrs,
 double* newvalues,
 int count)
```

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: An array of quadratic constraints whose attribute values are being modified.

```c
void set (GRB_DoubleAttr attr,
 const GRBQConstr* qconstrs,
 double* newvalues,
 int count)
```
**newvalues**: The desired new values for the attribute for each input quadratic constraint.

**count**: The number of quadratic constraint attributes to set.

```c
void set (GRB_IntAttr attr,
 int newvalue)
```
Set the value of an int-valued model attribute.

**Arguments:**

- **attr**: The attribute being modified.
- **newvalue**: The desired new value for the attribute.

```c
void set (GRB_IntAttr attr,
 const GRBVar* vars,
 int* newvalues,
 int count)
```
Set an int-valued variable attribute for an array of variables.

**Arguments:**

- **attr**: The attribute being modified.
- **vars**: An array of variables whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input variable.
- **count**: The number of variable attributes to set.

```c
void set (GRB_IntAttr attr,
 const GRBConstr* constrs,
 int* newvalues,
 int count)
```
Set an int-valued constraint attribute for an array of constraints.

**Arguments:**

- **attr**: The attribute being modified.
- **constrs**: An array of constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input constraint.
- **count**: The number of constraint attributes to set.

```c
void set (GRB_StringAttr attr,
 string newvalue)
```
Set the value of a string-valued model attribute.

**Arguments:**

- **attr**: The attribute being modified.
- **newvalue**: The desired new value for the attribute.

```c
void set (GRB_StringAttr attr,
 const GRBVar* vars,
 string* newvalues,
 int count)
```
Set a string-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: An array of variables whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input variable.
- `count`: The number of variable attributes to set.

```c
void set (GRB_StringAttr attr,
 const GRBConstr* constrs,
 string* newvalues,
 int count)
```

Set a string-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: An array of constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input constraint.
- `count`: The number of constraint attributes to set.

```c
void set (GRB_StringAttr attr,
 const GRBQConstr* qconstrs,
 string* newvalues,
 int count)
```

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: An array of quadratic constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input quadratic constraint.
- `count`: The number of quadratic constraint attributes to set.

**GRBModel::setObjective()**

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see `setObjectiveN`).

Note that you can also modify the linear portion of a model objective using the `Obj` variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the `Obj` attribute can be used to modify individual linear terms.

```c
void setObjective (GRBLinExpr linexpr,
 int sense=0)
```

**Arguments:**
- `linexpr`: New linear model objective.
- `sense` (optional): Optimization sense (`GRB_MINIMIZE` for minimization, `GRB_MAXIMIZE` for maximization). Omit this argument to use the `ModelSense` attribute value to determine the sense.
void setObjective ( GRBQuadExpr quadexpr,
    int sense=0 )

Arguments:

quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE for maximization). Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN ( GRBLinExpr expr,
    int index,
    int priority=0,
    double weight=1,
    double abstol=0,
    double reltol=0,
    string name="" )

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:

expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary optimization objective.
priority: Priority for the alternative objective. This initializes the_ObjNPriority attribute for this objective.
weight: Weight for the alternative objective. This initializes the_ObjNWeight attribute for this objective.
abstol: Absolute tolerance for the alternative objective. This initializes the_ObjNAbsTol attribute for this objective.
reltol: Relative tolerance for the alternative objective. This initializes the_ObjNRelTol attribute for this objective.
name: Name of the alternative objective. This initializes the_ObjNName attribute for this objective.

GRBModel::setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single variable. Specifically, the $x$ and $y$ arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.
void setPWLObj ( GRBvar var,
         int npoints,
         double[] x,
         double[] y )

Set the piecewise-linear objective function for a variable.

Arguments:
var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario model.

GRBModel singleScenarioModel ( )

Return value:
Model for a single scenario.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform other computations while optimization proceeds, and can check on the progress of the optimization by querying various model attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You must call sync before the corresponding model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other words, exceptions thrown by this method are those that optimize itself would have thrown, had the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

void sync ( )

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time during an optimization.

void terminate ( )
GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion, this method stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

```cpp
void tune()
```

GRBModel::update()

Process any pending model modifications.

```cpp
void update()
```

GRBModel::write()

This method is the general entry point for writing optimization data to a file. It can be used to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. However, writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.

```cpp
void write(const string& filename)
```

Arguments:

  filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp for writing just the IIS associated with an infeasible model (see GRBModel::computeIIS for further information), .sol for writing the current solution, .mst for writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.
3.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a variable object by adding a variable to a model (using GRBModel::addVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information can be queried by calling get( GRB_DoubleAttr_X). Note that you can also query attributes for a set of variables at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

**GRBVar::get()**

Query the value of a variable attribute.

```cpp
char get (GRB_CharAttr attr)
```

Query the value of a char-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```cpp
double get (GRB_DoubleAttr attr)
```

Query the value of a double-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```cpp
int get (GRB_IntAttr attr)
```

Query the value of an int-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```cpp
string get (GRB_StringAttr attr)
```

Query the value of a string-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.
GRBVar::index()

```cpp
int index()
```

This method returns the current index, or order, of the variable in the underlying constraint matrix.

**Return value:**
- = -2: removed
- = -1: not in model
- ≥ 0 : index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.

GRBVar::sameAs()

```cpp
bool sameAs(GRBVar var2)
```

Check whether two variable objects refer to the same variable.

**Arguments:**
- `var2`: The other variable.

**Return value:**
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()

Set the value of a variable attribute.

```cpp
void set(GRB_CharAttr attr, char newValue)
```

Set the value of a char-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newValue`: The desired new value of the attribute.

```cpp
void set(GRB_DoubleAttr attr, double newValue)
```

Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newValue`: The desired new value of the attribute.

```cpp
void set(GRB_IntAttr attr, int newValue)
```

Set the value of an int-valued attribute.
**Arguments:**
- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.

```cpp
void set (GRB_StringAttr attr,
 const string& newvalue)
```

Set the value of a string-valued attribute.

**Arguments:**
- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.
3.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-hand sides can be queried by calling get( GRB_DoubleAttr_RHS). Note that you can also query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBConstr::get()

Query the value of a constraint attribute.

<table>
<thead>
<tr>
<th>char get ( GRB_CharAttr attr )</th>
</tr>
</thead>
</table>

Query the value of a char-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

<table>
<thead>
<tr>
<th>double get ( GRB_DoubleAttr attr )</th>
</tr>
</thead>
</table>

Query the value of a double-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

<table>
<thead>
<tr>
<th>int get ( GRB_IntAttr attr )</th>
</tr>
</thead>
</table>

Query the value of an int-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.

<table>
<thead>
<tr>
<th>string get ( GRB_StringAttr attr )</th>
</tr>
</thead>
</table>

Query the value of a string-valued attribute.

**Arguments:**
attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.
GRBConstr::index()

```c
int index()
```

This method returns the current index, or order, of the constraint in the underlying constraint matrix.

**Return value:**
- $-2$: removed
- $-1$: not in model
- $\geq 0$: index of the constraint in the model

Note that the index of a constraint may change after subsequent model modifications.

GRBConstr::sameAs()

```c
bool sameAs (GRBConstr constr2)
```

Check whether two constraint objects refer to the same constraint.

**Arguments:**
- `constr2`: The other constraint.

**Return value:**
Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr::set()

Set the value of a constraint attribute.

```c
void set (GRB_CharAttr attr,
 char newvalue)
```

Set the value of a char-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void set (GRB_DoubleAttr attr,
 double newvalue)
```

Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void set (GRB_IntAttr attr,
 int newvalue)
```


Set the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```cpp
void set (GRB_StringAttr attr,
 const string& newvalue)
```

Set the value of a string-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.
3.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create a quadratic constraint object by adding a constraint to a model (using GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint attributes. For example, quadratic constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

**GRBQConstr::get()**

Query the value of a quadratic constraint attribute.

```cpp
char get (GRB_CharAttr attr)
```

Query the value of a char-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```cpp
double get (GRB_DoubleAttr attr)
```

Query the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```cpp
int get (GRB_IntAttr attr)
```

Query the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```cpp
string get (GRB_StringAttr attr)
```

Query the value of a string-valued attribute.

**Arguments:**
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

GRBQConstr::set()
Set the value of a quadratic constraint attribute.

```c
void set (GRB_CharAttr attr,
 char newvalue)
```
Set the value of a char-valued attribute.

Arguments:
- attr: The attribute being modified.
- newvalue: The desired new value of the attribute.

```c
void set (GRB_DoubleAttr attr,
 double newvalue)
```
Set the value of a double-valued attribute.

Arguments:
- attr: The attribute being modified.
- newvalue: The desired new value of the attribute.

```c
void set (GRB_StringAttr attr,
 const string& newvalue)
```
Set the value of a string-valued attribute.

Arguments:
- attr: The attribute being modified.
- newvalue: The desired new value of the attribute.
3.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS), rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS constraint is a set of variables for which at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS::get method.

GRBSOS::get()

Query the value of an SOS attribute.

```c
int get (GRB_IntAttr attr)
```

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.
3.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular model. You create a general constraint object by adding a constraint to a model (using one of the GRBModel::addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes. For example, general constraint types can be queried by calling get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel::get).

GRBGenConstr::get()

Query the value of a general constraint attribute.

```c
double get (GRB_DoubleAttr attr)
```

Query the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```c
int get (GRB_IntAttr attr)
```

Query the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```c
string get (GRB_StringAttr attr)
```

Query the value of a string-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

GRBGenConstr::set()

Set the value of a general constraint attribute.

```c
void set (GRB_DoubleAttr attr, double newvalue)
```
Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void set (GRB_IntAttr attr,
 int newvalue)
```

Set the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void set (GRB_StringAttr attr,
 const string& newvalue)
```

Set the value of a string-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.
3.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and constraints. They are temporary objects that typically have short lifespans.

**GRBExpr::getValue()**

Compute the value of an expression for the current solution.

```cpp
double getValue()
```

*Return value:* Value of the expression for the current solution.
3.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions using overloaded operators. For example, if \( x \) is a GRBVar object, then \( x + 1 \) is a GRBLinExpr object. Expressions can be built from constants (e.g., \( \text{expr} = 0 \)), variables (e.g., \( \text{expr} = 1 \times x + 2 \times y \)), or from other expressions (e.g., \( \text{expr2} = 2 \times \text{expr1} + x \), or \( \text{expr3} = \text{expr1} + 2 \times \text{expr2} \)). You can also modify existing expressions (e.g., \( \text{expr} += x \), or \( \text{expr2} -= \text{expr1} \)).

Another option for building expressions is to use the addTerms method, which adds an array of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- You should avoid using \( \text{expr} = \text{expr} + x \) in a loop. It will lead to runtimes that are quadratic in the number of terms in the expression.
- Using \( \text{expr} += x \) (or \( \text{expr} -= x \)) is much more efficient than \( \text{expr} = \text{expr} + x \). Building a large expression by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.
- The most efficient way to build a large expression is to make a single call to addTerms.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create a constant expression or an expression with one term.

<table>
<thead>
<tr>
<th>GRBLinExpr GRBLinExpr ( double constant=0.0 )</th>
</tr>
</thead>
</table>

Create a constant linear expression.

**Arguments:**

- constant (optional): Constant value for expression.

**Return value:**

A constant expression object.

| GRBLinExpr GRBLinExpr ( GRBVar var, double coeff=1.0 ) |
Create an expression with one term.

**Arguments:**
- `var`: Variable for expression term.
- `coeff (optional)`: Coefficient for expression term.

**Return value:**
An expression object containing one linear term.

**GRBLinExpr::addTerms()**
Add new terms into a linear expression.

```cpp
void addTerms (const double* coeffs,
 const GRBVar* vars,
 int count)
```

**Arguments:**
- `coeffs`: Coefficients for new terms.
- `vars`: Variables for new terms.
- `count`: Number of terms to add to the expression.

**GRBLinExpr::clear()**
Set a linear expression to 0.
You should use the overloaded `expr = 0` instead. The `clear` method is mainly included for consistency with our interfaces to non-overloaded languages.

```cpp
void clear ()
```

**GRBLinExpr::getConstant()**
Retrieve the constant term from a linear expression.

```cpp
double getConstant ()
```

**Return value:**
Constant from expression.

**GRBLinExpr::getCoeff()**
Retrieve the coefficient from a single term of the expression.

```cpp
double getCoeff (int i)
```

**Arguments:**
- `i`: Index for coefficient of interest.

**Return value:**
Coefficient for the term at index `i` in the expression.
**GRBLinExpr::getValue()**

Compute the value of a linear expression for the current solution.

```cpp
double getValue() {
 Return value:
 Value of the expression for the current solution.
}
```

**GRBLinExpr::getVar()**

Retrieve the variable object from a single term of the expression.

```cpp
GRBVar getVar(int i)
```

**Arguments:**

- `i`: Index for term of interest.

**Return value:**

Variable for the term at index `i` in the expression.

**GRBLinExpr::operator=**

Set an expression equal to another expression.

```cpp
GRBLinExpr operator= (const GRBLinExpr& rhs)
```

**Arguments:**

- `rhs`: Source expression.

**Return value:**

New expression object.

**GRBLinExpr::operator+**

Add one expression into another, producing a result expression.

```cpp
GRBLinExpr operator+ (const GRBLinExpr& rhs)
```

**Arguments:**

- `rhs`: Expression to add.

**Return value:**

Expression object which is equal the sum of the invoking expression and the argument expression.
GRBLinExpr::operator-  
Subtract one expression from another, producing a result expression.

```
GRBLinExpr operator- (const GRBLinExpr& rhs)
```

**Arguments:**
- `rhs`: Expression to subtract.

**Return value:**
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=  
Add an expression into the invoking expression.

```
void operator+= (const GRBLinExpr& expr)
```

**Arguments:**
- `expr`: Expression to add.

GRBLinExpr::operator-=  
Subtract an expression from the invoking expression.

```
void operator-= (const GRBLinExpr& expr)
```

**Arguments:**
- `expr`: Expression to subtract.

GRBLinExpr::operator*=
Multiply the invoking expression by a constant.

```
void operator*=(double multiplier)
```

**Arguments:**
- `multiplier`: Constant multiplier.
**GRBLinExpr::remove()**

Remove a term from a linear expression.

```cpp
void remove (int i)
```

Remove the term stored at index `i` of the expression.

**Arguments:**
- `i`: The index of the term to be removed.

```cpp
boolean remove (GRBVar var)
```

Remove all terms associated with variable `var` from the expression.

**Arguments:**
- `var`: The variable whose term should be removed.

**Return value:**
- Returns `true` if the variable appeared in the linear expression (and was removed).

**GRBLinExpr::size()**

Retrieve the number of terms in the linear expression (not including the constant).

```cpp
unsigned int size ()
```

**Return value:**
- Number of terms in the expression.
3.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions using overloaded operators. For example, if x is a GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x * x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBQuadExpr constructor), and then add terms. Terms can be added individually (using addTerm) or in groups (using addTerms). Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are quadratic in the number of terms in the expression.
- Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Building a large expression by looping over += statements is reasonably efficient, but it isn’t the most efficient approach.
- The most efficient way to build a large expression is to make a single call addTerms.

Individual terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoeff methods. You can query the number of quadratic terms in the expression using the size method. To query the constant and linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression using getLinExpr, and then use the getConstant, getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate terms are merged when creating the model objective from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using getVar1 and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create a constant expression or an expression with one term.

| GRBQuadExpr GRBQuadExpr ( double constant=0.0 ) |

Create a constant quadratic expression.

Arguments:
- constant (optional): Constant value for expression.
**Return value:**
A constant expression object.

```c
GRBQuadExpr GRBQuadExpr (GRBVar var,
 double coeff=1.0)
```
Create an expression with one term.

**Arguments:**
- `var`: Variable for expression term.
- `coeff` (optional): Coefficient for expression term.

**Return value:**
An expression object containing one quadratic term.

```c
GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)
```
Initialize a quadratic expression from an existing linear expression.

**Arguments:**
- `orig`: Existing linear expression to copy.

**Return value:**
Quadratic expression object whose initial value is taken from the input linear expression.

**GRBQuadExpr::addTerm()**
Add a single new term into a quadratic expression.

```c
void addTerm (double coeff,
 GRBVar var)
```
Add a new linear term into a quadratic expression.

**Arguments:**
- `coeff`: Coefficient for new linear term.
- `var`: Variable for new linear term.

```c
void addTerm (double coeff,
 GRBVar var1,
 GRBVar var2)
```
Add a new quadratic term into a quadratic expression.

**Arguments:**
- `coeff`: Coefficient for new quadratic term.
- `var1`: Variable for new quadratic term.
- `var2`: Variable for new quadratic term.
GRBQuadExpr::addTerms()
Add new terms into a quadratic expression.

```cpp
void addTerms (const double* coeffs,
 const GRBVar* vars,
 int count)
```
Add new linear terms into a quadratic expression.

**Arguments:**
- `coeffs`: Coefficients for new linear terms.
- `vars`: Variables for new linear terms.
- `count`: Number of linear terms to add to the quadratic expression.

```cpp
void addTerms (const double* coeffs,
 const GRBVar* vars1,
 const GRBVar* vars2,
 int count)
```
Add new quadratic terms into a quadratic expression.

**Arguments:**
- `coeffs`: Coefficients for new quadratic terms.
- `vars1`: First variables for new quadratic terms.
- `vars2`: Second variables for new quadratic terms.
- `count`: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()
Set a quadratic expression to 0.
You should use the overloaded `expr = 0` instead. The clear method is mainly included for consistency with our interfaces to non-overloaded languages.

```cpp
void clear ()
```

GRBQuadExpr::getCoeff()
Retrieve the coefficient from a single quadratic term of the quadratic expression.

```cpp
double getCoeff (int i)
```

**Arguments:**
- `i`: Index for coefficient of interest.

**Return value:**
- Coefficient for the quadratic term at index i in the quadratic expression.
GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the linear expression associated with the quadratic expression.

```
GRBLinExpr getLinExpr()
```

**Return value:**
Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

```
double getValue()
```

**Return value:**
Value of the expression for the current solution.

GRBQuadExpr::getVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

```
GRBVar getVar1(int i)
```

**Arguments:**
i: Index for term of interest.

**Return value:**
First variable for the quadratic term at index `i` in the quadratic expression.

GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

```
GRBVar getVar2(int i)
```

**Arguments:**
i: Index for term of interest.

**Return value:**
Second variable for the quadratic term at index `i` in the quadratic expression.
GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

<table>
<thead>
<tr>
<th>GRBQuadExpr  operator= ( const GRBQuadExpr&amp; rhs )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>rhs: Source quadratic expression.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>New quadratic expression object.</td>
</tr>
</tbody>
</table>

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

<table>
<thead>
<tr>
<th>GRBQuadExpr  operator+ ( const GRBQuadExpr&amp; rhs )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>rhs: Expression to add.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>Expression object which is equal the sum of the invoking expression and the argument expression.</td>
</tr>
</tbody>
</table>

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

<table>
<thead>
<tr>
<th>GRBQuadExpr  operator- ( const GRBQuadExpr&amp; rhs )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>rhs: Expression to subtract.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>Expression object which is equal the invoking expression minus the argument expression.</td>
</tr>
</tbody>
</table>

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

<table>
<thead>
<tr>
<th>void  operator+= ( const GRBQuadExpr&amp; expr )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>expr: Expression to add.</td>
</tr>
</tbody>
</table>
GRBQuadExpr::operator-=
Subtract an expression from the invoking expression.

| void operator-=( const GRBQuadExpr& expr ) |

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=
Multiply the invoking expression by a constant.

| void operator*=( double multiplier ) |

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()
Remove a quadratic term from a quadratic expression.

| void remove ( int i ) |

Remove the quadratic term stored at index i of the expression.

Arguments:
i: The index of the term to be removed.

| boolean remove ( GRBVar var ) |

Remove all quadratic terms associated with variable var from the quadratic expression.

Arguments:
var: The variable whose term should be removed.

Return value:
Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()
Retrieve the number of quadratic terms in the quadratic expression.

| unsigned int size ( ) |

Return value:
Number of quadratic terms in the expression.
3.11 GRBTempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints using overloaded operators. There are no member functions on this class. Instead, GRBTempConstr objects are created by a set of non-member functions: ==, <=, and >=. You will generally never store objects of this class in your own variables.

Consider the following examples:

```cpp
model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);
```

The overloaded <= operator creates an object of type GRBTempConstr, which is then immediately passed to method GRBModel::addConstr or GRBModel::addQConstr.
3.12 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column.

<table>
<thead>
<tr>
<th>GRBColumn</th>
<th>GRBColumn</th>
<th>( )</th>
</tr>
</thead>
</table>

Return value:
An empty column object.

GRBColumn::addTerm()

Add a single term into a column.

<table>
<thead>
<tr>
<th>void</th>
<th>addTerm</th>
<th>( double</th>
<th>coeff,</th>
<th>GRBConstr</th>
<th>constr )</th>
</tr>
</thead>
</table>

Arguments:
- coeff: Coefficient for new term.
- constr: Constraint for new term.

GRBColumn::addTerms()

Add new terms into a column.

| void | addTerms | ( const | double* | coeffs, | const | GRBConstr* | constrs, | int | count ) |
|-----|----------|---------|---------|-------|-----------|----------|-------|--------|

Add a list of terms into a column.

Arguments:
- coeffs: Coefficients for new terms.
- constrs: Constraints for new terms.
- count: Number of terms to add to the column.

GRBColumn::clear()

Remove all terms from a column.

| void | clear | ( ) |
GRBColumn::getCoeff()
Retrieve the coefficient from a single term in the column.

```cpp
double getCoeff (int i)
```

**Return value:**
Coefficient for the term at index `i` in the column.

GRBColumn::getConstr()
Retrieve the constraint object from a single term in the column.

```cpp
GRBConstr getConstr (int i)
```

**Return value:**
Constraint for the term at index `i` in the column.

GRBColumn::remove()
Remove a single term from a column.

```cpp
void remove (int i)
```

Remove the term stored at index `i` of the column.

**Arguments:**
- `i`: The index of the term to be removed.

```cpp
boolean remove (GRBConstr constr)
```

Remove the term associated with constraint `constr` from the column.

**Arguments:**
- `constr`: The constraint whose term should be removed.

**Return value:**
Returns `true` if the constraint appeared in the column (and was removed).

GRBColumn::size()
Retrieve the number of terms in the column.

```cpp
unsigned int size ()
```

**Return value:**
Number of terms in the column.
3.13 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class and implement a `callback()` method. If you pass an object of this subclass to method `GRBModel::setCallback` before calling `GRBModel::optimize`, the `callback()` method of the class will be called periodically. Depending on where the callback is called from, you can obtain various information about the progress of the optimization.

Note that this class contains one protected `int` member variable: `where`. You can query this variable from your `callback()` method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior of the Gurobi optimizer. A simple user callback function might call the `GRBCallback::getIntInfo` or `GRBCallback::getDoubleInfo` methods to produce a custom display, or perhaps to terminate optimization early (using `GRBCallback::abort`). More sophisticated MIP callbacks might use `GRBCallback::getNodeRel` or `GRBCallback::getSolution` to retrieve values from the solution to the current node, and then use `GRBCallback::addCut` or `GRBCallback::addLazy` to add a constraint to cut off that solution, or `GRBCallback::setSolution` to import a heuristic solution built from that solution. For multi-objective problems, you might use `GRBCallback::stopOneMultiObj` to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

You can look at the `callback_c++.cpp` example for details of how to use Gurobi callbacks.

**GRBCallback()**

Callback constructor.

```cpp
GRBCallback GRBCallback()
```

Return value:

A callback object.

**GRBCallback::abort()**

Abort optimization. When the optimization stops, the `Status` attribute will be equal to `GRB_INTERRUPTED`.

```cpp
void abort()
```

**GRBCallback::addCut()**

Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked when the `where` member variable is equal to `GRB_CB_MIPNODE` (see the Callback Codes section for more information).
Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly, since they increase the size of the relaxation model that is solved at each node and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution at the current node, you should first call `getNodeRel`.

When adding your own cuts, you must set parameter `PreCrush` to value 1. This setting shuts off a few presolve reductions that sometimes prevent cuts on the original model from being applied to the presolved model.

Note that cutting planes added through this method must truly be cutting planes -- they can cut off continuous solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this restriction will lead to incorrect solutions.

```cpp
void addCut (const GRBLinExpr& lhsExpr,
 char sense,
 double rhsVal)
```

Arguments:
- `lhsExpr`: Left-hand side expression for new cutting plane.
- `sense`: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
- `rhsVal`: Right-hand side value for new cutting plane.

```cpp
void addCut (GRBTempConstr& tc)
```

Arguments:
- `tc`: Temporary constraint object, created using an overloaded comparison operator. See `GRBTempConstr` for more information.

**GRBCallback::addLazy()**

Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked when the `where` member variable is equal to `GRB_CB_MIPNODE` or `GRB_CB_MIPSOL` (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling `getSolution` from a `GRB_CB_MIPSOL` callback, or `getNodeRel` from a `GRB_CB_MIPNODE` callback), and then calling `addLazy()` to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the `LazyConstraints` parameter if you want to use lazy constraints.
void addLazy ( const GRBLinExpr& lhsExpr,  
        char sense,  
        double rhsVal )

Arguments:

lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new lazy constraint.

void addLazy ( GRBTempConstr& tc )

Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See
    GRBTempConstr for more information.

GRBCallback::getDoubleInfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

double getDoubleInfo ( int what )

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:

Value of requested callback information.

GRBCallback::getIntInfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

int getIntInfo ( int what )

Arguments:

what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:

Value of requested callback information.
GRBCallback::getNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the where member variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to GRB_OPTIMAL.

```cpp
double getNodeRel (GRBVar v)
```

**Arguments:**
- `v`: The variable whose value is desired.

**Return value:**
The value of the specified variable in the node relaxation for the current node.

```cpp
double* getNodeRel (const GRBVar* xvars, int len)
```

**Arguments:**
- `xvars`: The list of variables whose values are desired.
- `len`: The number of variables in the list.

**Return value:**
The values of the specified variables in the node relaxation for the current node. Note that the result is heap-allocated, and must be returned to the heap by the user.

GRBCallback::getSolution()

Retrieve values from the current solution vector. Only available when the where member variable is equal to GRB_CB_MIPSOL or GRB_CB_MULTIOBJ.

```cpp
double getSolution (GRBVar v)
```

**Arguments:**
- `v`: The variable whose value is desired.

**Return value:**
The value of the specified variable in the current solution vector.

```cpp
double* getSolution (const GRBVar* xvars, int len)
```

**Arguments:**
- `xvars`: The list of variables whose values are desired.
- `len`: The number of variables in the list.

**Return value:**
The values of the specified variables in the current solution. Note that the result is heap-allocated, and must be returned to the heap by the user.
**GRBCallback::getStringInfo()**

Request string-valued callback information. The available information depends on the value of the where member. For information on possible values of where, and the string-valued information that can be queried for different values of where, please refer to the Callback section.

```c
string getStringInfo (int what)
```

**Arguments:**
- **what**: Information requested (refer to the list of Gurobi Callback Codes for possible values).

**Return value:**
- Value of requested callback information.

**GRBCallback::setSolution()**

Import solution values for a heuristic solution. Only available when the where member variable is equal to GRB_CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use this method to specify variable values. You can make multiple calls to setSolution from one callback invocation to specify values for multiple sets of variables. After the callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for variables whose values were left undefined. You can also optionally call useSolution within your callback function to try to immediately compute a feasible solution from the specified values.

```c
void setSolution (GRBVar v,
 double val)
```

**Arguments:**
- **v**: The variable whose values is being set.
- **val**: The value of the variable in the new solution.

```c
void setSolution (const GRBVar* xvars,
 const double* sol,
 int len)
```

**Arguments:**
- **xvars**: The variables whose values are being set.
- **sol**: The values of the variable in the new solution.
- **len**: The number of variables.
3.14 GRBCallback::stopOneMultiObj()

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process. Only available for multi-objective MIP models and when the \texttt{where} member variable is not equal to \texttt{GRB_CB_MULTIOBJ} (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if any) as shown in the following example:

\textbf{Example usage:}

```cpp
#include <ctime>

class mycallback: public GRBCallback
{
public:
 int objcnt = 0;
 time_t starttime = time();

protected:
 void callback () {
 if (where == GRB_CB_MULTIOBJ) {
 /* get current objective number */
 objcnt = getIntInfo(GRB_CB_MULTIOBJ_OBJCNT);

 /* reset start time to current time */
 starttime = time();
 } else if (time() - starttime > BIG ||
 /* takes too long or good enough */) {
 /* stop only this optimization step */
 stopOneMultiObj(objcnt);
 }
 }
}
```

You should refer to the section on \texttt{Multiple Objectives} for information on how to specify multiple objective functions and control the trade-off between them.

```cpp
void stopOneMultiObj (int objcnt)
```

\textbf{Arguments:}

\texttt{objnum}: The number of the multi-objective optimization step to interrupt. For processes running locally, this argument can have the special value -1, meaning to stop the current step.
GRBCallback::useSolution()

Once you have imported solution values using setSolution, you can optionally call useSolution to immediately use these values to try to compute a heuristic solution.

```cpp
<table>
<thead>
<tr>
<th>double useSolution()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return value:</td>
</tr>
<tr>
<td>The objective value for the solution obtained from your solution values (or GRB_INFINITY if no improved solution is found).</td>
</tr>
</tbody>
</table>
```
3.15 GRBException
Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++ API.

GRBException()
Exception constructor.

```
GRBException GRBException (int errcode=0)
```
Create a Gurobi exception.

**Arguments:**
- `errcode` (optional): Error code for exception.

**Return value:**
- An exception object.

```
GRBException GRBException (string errmsg,
 int errcode=0)
```
Create a Gurobi exception.

**Arguments:**
- `errmsg`: Error message for exception.
- `errcode` (optional): Error code for exception.

**Return value:**
- An exception object.

**GRBException::getErrorCode()**
Retrieve the error code associated with a Gurobi exception.

```
int getErrorCode ()
```

**Return value:**
- The error code associated with the exception.

**GRBException::getMessage()**
Retrieve the error message associated with a Gurobi exception.

```
const string getMessage ()
```

**Return value:**
- The error message associated with the exception.
3.16 GRBBatch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and later check on the status of the model and retrieve its solution. For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted or failed batch), discard (remove the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

- **BatchID**: Unique ID for the batch request.
- **BatchStatus**: Last batch status.
- **BatchErrorCode**: Last error code.
- **BatchErrorMessage**: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are only updated when you create a client-side batch object or when you explicitly update this cache, which can done by calling update.

**GRBBatch()**

Constructor for GRBBatch.

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropriately), this function returns a GRBBatch object. With it, you can query the current status of the associated batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization section for details and examples.

```cpp
GRBBatch GRBBatch (GRBEnv& env,
 string& batchID)
```

**Arguments:**

- `env`: The environment in which the new batch object should be created.
- `batchID`: ID of the batch request for which you want to access status and other information.

**Return value:**

New batch object.

**Example usage:**

```cpp
GRBBatch batch = GRBBatch(env, batchID);
```
GRBBatch::abort()

This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

```c
void abort ()
```

Example usage:

```c
// Abort this batch if it is taking too long
time_t curtime = time(NULL);
if (curtime - starttime > maxwaittime) {
 batch->abort();
 break;
}
```

GRBBatch::discard()

This method instructs the Cluster Manager to remove all information related to the batch request in question, including the stored solution if available. Further queries for the associated batch request will fail with error code GRB_ERROR_DATA_NOTAVAILABLE. Use this function with care, as the removed information can not be recovered later on.

```c
void discard ()
```

Example usage:

```c
void batchdiscard (string batchID)
```

GRBBatch::getJSONSolution()

This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

```c
void getJSONSolution ()
```

Example usage:

```c
// Pretty printing the general solution information
cout << "JSON solution:" << batch->getJSONSolution() << endl;
```

GRBBatch::get()

Query the value of an attribute.

```c
int get (GRB_IntAttr attr)
```

Query the value of an int-valued batch attribute.
Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

```cpp
string get (GRB_StringAttr attr)
```
Query the value of a string-valued batch attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

GRBBatch::retry()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

```cpp
void retry ()
```
Example usage:
```
// If the batch failed, we try again
if (BatchStatus == GRB_BATCH_FAILED)
 batch->retry();
```

GRBBatch::update()
All Batch attribute values are cached locally, so queries return the value received during the last communication with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the Cluster Manager (which involves network communication).

```cpp
void update ()
```
Example usage:
```
// Update the resident attribute cache of the Batch object with the
// latest values from the cluster manager.
batch->update();
BatchStatus = batch->get(GRB_IntAttr_BatchStatus);
```

GRBBatch::writeJSONSolution()
This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

```cpp
void writeJSONSolution (string& filename)
```
Arguments:

filename: Name of file where the solution should be stored (in JSON format).

Example usage:

```cpp
// Write the full JSON solution string to a file
batch->writeJSONSolution("batch-sol.json.gz");
```
### 3.17 Non-Member Functions

Several Gurobi C++ interface functions aren’t member functions on a particular object.

**operator==**

Create an equality constraint

```cpp
GRBTempConstr operator== (GRBQuadExpr lhsExpr,
 GRBQuadExpr rhsExpr)
```

**Arguments:**
- `lhsExpr`: Left-hand side of equality constraint.
- `rhsExpr`: Right-hand side of equality constraint.

**Return value:**
A constraint of type `GRBTempConstr`. The result is typically immediately passed to `GRBModel::addConstr`.

**operator<=**

Create an inequality constraint

```cpp
GRBTempConstr operator<= (GRBQuadExpr lhsExpr,
 GRBQuadExpr rhsExpr)
```

**Arguments:**
- `lhsExpr`: Left-hand side of inequality constraint.
- `rhsExpr`: Right-hand side of inequality constraint.

**Return value:**
A constraint of type `GRBTempConstr`. The result is typically immediately passed to `GRBModel::addConstr` or `GRBModel::addQConstr`.

**operator>=**

Create an inequality constraint

```cpp
GRBTempConstr operator>= (GRBQuadExpr lhsExpr,
 GRBQuadExpr rhsExpr)
```

**Arguments:**
- `lhsExpr`: Left-hand side of inequality constraint.
- `rhsExpr`: Right-hand side of inequality constraint.

**Return value:**
A constraint of type `GRBTempConstr`. The result is typically immediately passed to `GRBModel::addConstr` or `GRBModel::addQConstr`. 
**operator**

Overloaded operator on expression objects.

```cpp
GRBLinExpr operator+ (const GRBLinExpr& expr1,
 const GRBLinExpr& expr2)
```

Add a pair of expressions.

**Arguments:**
- `expr1`: First expression to be added.
- `expr2`: Second expression to be added.

**Return value:**
- Sum expression.

```cpp
GRBLinExpr operator+ (const GRBLinExpr& expr)
```

Allow plus sign to be used before an expression.

**Arguments:**
- `expr`: Expression.

**Return value:**
- Result expression.

```cpp
GRBLinExpr operator+ (GRBVar x,
 GRBVar y)
```

Add a pair of variables.

**Arguments:**
- `x`: First variable to be added.
- `y`: Second variable to be added.

**Return value:**
- Sum expression.

```cpp
GRBQuadExpr operator+ (const GRBQuadExpr& expr1,
 const GRBQuadExpr& expr2)
```

Add a pair of expressions.

**Arguments:**
- `expr1`: First expression to be added.
- `expr2`: Second expression to be added.

**Return value:**
- Sum expression.

```cpp
GRBQuadExpr operator+ (const GRBQuadExpr& expr)
```

Allow plus sign to be used before an expression.

**Arguments:**
expr: Expression.

Return value:
Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr \textbf{operator-} ( const GRBLinExpr& expr1,
const GRBLinExpr& expr2 )

Subtract one expression from another.

Arguments:
\begin{itemize}
  \item \texttt{expr1}: Start expression.
  \item \texttt{expr2}: Expression to be subtracted.
\end{itemize}

Return value:
Difference expression.

GRBLinExpr \textbf{operator-} ( const GRBLinExpr& expr )

Negate an expression.

Arguments:
\begin{itemize}
  \item \texttt{expr}: Expression.
\end{itemize}

Return value:
Negation of expression.

GRBQuadExpr \textbf{operator-} ( const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2 )

Subtract one expression from another.

Arguments:
\begin{itemize}
  \item \texttt{expr1}: Start expression.
  \item \texttt{expr2}: Expression to be subtracted.
\end{itemize}

Return value:
Difference expression.

GRBQuadExpr \textbf{operator-} ( const GRBQuadExpr& expr )

Negate an expression.

Arguments:
\begin{itemize}
  \item \texttt{expr}: Expression.
\end{itemize}

Return value:
Negation of expression.
operator*

Overloaded operator on expression objects.

GRBLinExpr operator* ( GRBVar x,
                        double a )

Multiply a variable and a constant.

Args:
   x: Variable.
   a: Constant multiplier.

Return value:
   Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* ( double a,
                        GRBVar x )

Multiply a variable and a constant.

Args:
   a: Constant multiplier.
   x: Variable.

Return value:
   Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* ( const GRBLinExpr& expr,
                        double a )

Multiply an expression and a constant.

Args:
   expr: Expression.
   a: Constant multiplier.

Return value:
   Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* ( double a,
                        const GRBLinExpr& expr )

Multiply an expression and a constant.

Args:
   a: Constant multiplier.
   expr: Expression.

Return value:
   Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* ( const GRBQuadExpr& expr,
                        double a )

Multiply an expression and a constant.
**Arguments:**

- `expr`: Expression.
- `a`: Constant multiplier.

**Return value:**

Expression that represents the result of multiplying the expression by a constant.

```cpp
GRBQuadExpr operator* (double a,
 const GRBQuadExpr& expr)
```

Multiply an expression and a constant.

**Arguments:**

- `a`: Constant multiplier.
- `expr`: Expression.

**Return value:**

Expression that represents the result of multiplying the expression by a constant.

```cpp
GRBQuadExpr operator* (GRBVar x,
 GRBVar y)
```

Multiply a pair of variables.

**Arguments:**

- `x`: First variable.
- `y`: Second variable.

**Return value:**

Expression that represents the result of multiplying the argument variables.

```cpp
GRBQuadExpr operator* (GRBVar var,
 const GRBLinExpr& expr)
```

Multiply an expression and a variable.

**Arguments:**

- `var`: Variable.
- `expr`: Expression.

**Return value:**

Expression that represents the result of multiplying the expression by a variable.

```cpp
GRBQuadExpr operator* (const GRBLinExpr& expr,
 GRBVar var)
```

Multiply an expression and a variable.

**Arguments:**

- `var`: Variable.
- `expr`: Expression.

**Return value:**

Expression that represents the result of multiplying the expression by a variable.
Multiply a pair of expressions.

**Arguments:**
- `expr1`: First expression.
- `expr2`: Second expression.

**Return value:**
Expression that represents the result of multiplying the argument expressions.

**operator/**
Overloaded operator to divide a variable or expression by a constant.

```cpp
GRBLinExpr operator/ (GRBVar x,
 double a)
```

**Arguments:**
- `x`: Variable.
- `a`: Constant divisor.

**Return value:**
Expression that represents the result of dividing the variable by a constant.

```cpp
GRBLinExpr operator/ (const GRBLinExpr& expr,
 double a)
```

**Arguments:**
- `expr`: Expression.
- `a`: Constant divisor.

**Return value:**
Expression that represents the result of dividing the expression by a constant.

```cpp
GRBLinExpr operator/ (const GRBQuadExpr& expr,
 double a)
```

**Arguments:**
- `expr`: Expression.
- `a`: Constant divisor.

**Return value:**
Expression that represents the result of dividing the expression by a constant.
3.18 Attribute Enums

These enums are used to get or set Gurobi attributes. The complete list of attributes can be found in the Attributes section.

**GRB_CharAttr**

This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set). Please refer to the Attributes section to see a list of all char attributes and their functions.

**GRB_DoubleAttr**

This enum is used to get or set double-valued attributes (through GRBModel::get or GRBModel::set). Please refer to the Attributes section to see a list of all double attributes and their functions.

**GRB_IntAttr**

This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set). Please refer to the Attributes section to see a list of all int attributes and their functions.

**GRB_StringAttr**

This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set). Please refer to the Attributes section to see a list of all string attributes and their functions.
3.19 Parameter Enums

These enums are used to get or set Gurobi parameters. The complete of parameters can be found in the Parameters section.

GRB_DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set, GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all double parameters and their functions.

GRB_IntParam

This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set, GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.

GRB_StringParam

This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set, GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int parameters and their functions.
This section documents the Gurobi Java interface. This manual begins with a quick overview of the classes exposed in the interface and the most important methods on those classes. It then continues with a comprehensive presentation of all of the available classes and methods.

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file gurobi-javadoc.jar. Javadoc format is particularly helpful when used from an integrated development environment like Eclipse®. Please consult the documentation for your IDE for information on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the classes and methods described here.

**Environments**

The first step in using the Gurobi Java interface is to create an environment object. Environments are represented using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization runs. You will generally only need one environment object in your program.

For more advanced usecases, you can use an empty environment to create an uninitialized environment and then, programmatically, set all required options for your specific requirements. For further details see the Environment section.

**Models**

You can create one or more optimization models within an environment. Each model is represented as an object of class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic objective function on these variables (specified using GRBModel.setObjective), and a set of constraints on these variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section in the Reference Manual for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subsequently calling GRBModel.addVar or GRBModel.addVars to add additional variables, and GRBModel.addConstr, GRBModel.addQConstr, GRBModel.addSOS, or any of the GRBModel.addGenConstrXxx methods to add additional constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default, optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr, and classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize will only perform further optimization if relevant data has changed since the model was last optimized. If you would like to discard previously computed solution information and restart the optimization from scratch without changing the model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the associated fixed model. This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

- **Solution Pool**: Allows you to find more solutions.
- **Multiple Scenarios**: Allows you to find solutions to multiple, related models.
- **Multiple Objectives**: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call GRBModel.computeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This method populates a set of IIS attributes.
To attempt to repair an infeasibility, call `GRBModel.feasRelax` to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

**Querying and Modifying Attributes**

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated with the variables of the model, some with the constraints of the model, and some with the model itself. To give a simple example, solving an optimization model causes the $X$ variable attribute to be populated. Attributes such as $X$ that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the variable lower bound (the `LB` attribute) can.

Attributes are queried using `GRBVar.get`, `GRBConstr.get`, `GRBQConstr.get`, `GRBSOS.get`, `GRBGenConstr.get`, or `GRBModel.get`, and modified using `GRBVar.set`, `GRBConstr.set`, `GRBQConstr.set`, `GRBGenConstr.set`, or `GRBModel.set`. Attributes are grouped into a set of enums by type (`GRB.CharAttr`, `GRB.DoubleAttr`, `GRB.IntAttr`, `GRB.StringAttr`). The `get()` and `set()` methods are overloaded, so the type of the attribute determines the type of the returned value. Thus, `constr.get(GRB.DoubleAttr.RHS)` returns a double, while `constr.get(GRB.CharAttr.Sense)` returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the array methods on the associated `GRBModel` object. Method `GRBModel.get` includes signatures that allow you to query or modify attribute values for one-, two-, and three-dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

**Additional Model Modification Information**

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the `chgCoeff` method on a `GRBModel` object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you remove a variable or constraint from the model (through the `GRBModel.remove` method). The non-zero values associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that captures the objective function (a `GRBLinExpr` or `GRBQuadExpr` object), and then pass that expression to method `GRBModel.setObjective`. If you wish to modify the objective, you can simply call `setObjective` again with a new `GRBLinExpr` or `GRBQuadExpr` object.

For linear objective functions, an alternative to `setObjective` is to use the `Obj` variable attribute to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the `GRBModel.setPWLObj` method. Call this method once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function, simply set the `Obj` attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for information about the model before your modifications have been applied, the details of the lazy update approach may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by an explicit call to GRBModel.update. The second is by a call to GRBModel.optimize. The third is by a call to GRBModel.write to write out the model. The first case gives you fine-grained control over when modifications are applied. The second and third make the assumption that you want all pending modifications to be applied before you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach makes it much easier to perform multiple modifications to a model, since the model remains unchanged between modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server environment, where modifications require communication between machines. Thus, it is useful to have visibility into exactly when these modifications are applied. In general, if your program needs to make multiple modifications to the model, you should aim to make them in phases, where you make a set of modifications, then update, then make more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters can be of type \texttt{int}, \texttt{double}, or \texttt{string}.

The simplest way to set parameters is through the \texttt{GRBModel.set} method on the model object. Similarly, parameter values can be queried with \texttt{GRBModel.get}.

Parameters can also be set on the Gurobi environment object, using \texttt{GRBEnv.set}. Note that each model gets its own copy of the environment when it is created, so parameter changes to the original environment have no effect on existing models.

You can read a set of parameter settings from a file using \texttt{GRBEnv.readParams}, or write the set of changed parameters using \texttt{GRBEnv.writeParams}.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in order to find a set that improves performance. You can call \texttt{GRBModel.tune} to invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.
Memory Management

Users typically do not need to concern themselves with memory management in Java, since it is handled automatically by the garbage collector. The Gurobi Java interface utilizes the same garbage collection mechanism as other Java programs, but there are a few specifics of our memory management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are no longer referenced, they become candidates for garbage collection, and are returned to the pool of free space at the next invocation of the garbage collector. Two important exceptions are the GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated with it in the Java heap, but the majority of the space associated with a model lives in the heap of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in Linux or Mac). The Java heap manager is unaware of the memory associated with the model in the native code library, so it does not consider this memory usage when deciding whether to invoke the garbage collector. When the garbage collector eventually collects the Java GRBModel object, the memory associated with the model in the Gurobi native code library will be freed, but this collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments, we recommend that you call GRBModel.dispose when you are done using the associated GRBModel object, and GRBEnv.dispose when you are done using the associated GRBEnv object and after you have called GRBModel.dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code library (the Gurobi DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an application that uses the Gurobi Java library will load the Gurobi native code library at runtime. In order for this happen, you need to make sure that two things are true. First, you need to make sure that the native code library is available in the search path of the target machine (PATH on Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up as part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that the Java JVM and the Gurobi native library use the same object format. In particular, you need to use a 64-bit Java JVM to use the 64-bit Gurobi native library.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel.setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the `GRBCallback` abstract class, and writing your own `Callback()` method on this class. You can call `GRBCallback.getDoubleInfo`, `GRBCallback.getIntInfo`, `GRBCallback.getStringInfo`, or `GRBCallback.getSolution` from within the callback to obtain additional information about the state of the optimization.

**Modifying Solver Behavior - Callbacks**

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is `GRBCallback.abort`, which asks the optimizer to terminate at the earliest convenient point. Method `GRBCallback.setSolution` allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods `GRBCallback.addCut` and `GRBCallback.addLazy` allow you to add *cutting planes* and *lazy constraints* during a MIP optimization, respectively. Method `GRBCallback.stopOneMultiObj` allows you to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

**Batch Optimization**

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this. One important one, *batch optimization*, allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a `Batch` object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

**Error Handling**

All of the methods in the Gurobi Java library can throw an exception of type `GRBException`. When an exception occurs, additional information on the error can be obtained by retrieving the error code (using method `GRBException.getErrorCode`), or by retrieving the exception message (using method `GRBException.getMessage` from the parent class). The list of possible error return codes can be found in the Error Codes section.
4.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must create an environment before you can create and populate a model. You will generally only need a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get, getParamInfo, set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your program creates multiple GRBEnv objects, we recommend that you call GRBEnv.dispose when you are done using one.

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi models on the local machine, or a client environment for a Gurobi compute server, which will solve Gurobi models on a server machine. For the latter, choose the signature that allows you to specify the names of the Gurobi compute servers and the priority of the associated job.

GRBEnv GRBEnv()

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:

An environment object (with no associated log file).

GRBEnv GRBEnv(bool empty)

Create an empty Gurobi environment. Use start to start the environment.

If the environment is not empty, this method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating...
and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Arguments:**
- empty: Indicates whether the environment should be empty. You should use empty=true if you want to set parameters before actually starting the environment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or a Cluster Manager. See the Environment Section for more details.

**Return value:**
- An environment object.

### GRBEnv

GRBEnv ( String logFileName )

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Arguments:**
- logFileName: The desired log file name.

**Return value:**
- An environment object.

### GRBEnv

GRBEnv ( String logFileName, String computeServer, String router, String password, String group, int CStlsInsecure, int priority, double timeout )

Create a client Gurobi environment on a compute server. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.
program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Arguments:**

- **logFileName**: The name of the log file for this environment. Pass an empty string for no log file.
- **computeServer**: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., `server1:61000`)
- **router**: The router for a Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You should refer to the router using either its name or its IP address. If no router is used (which is the typical case), pass an empty string.
- **password**: The password for gaining access to the specified Compute Server cluster. Pass an empty string if no password is required.
- **group**: The name of the Compute Server group.
- **CStlsInsecure**: Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.
- **priority**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. Depending on the configuration of the server, a job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash. This behavior is managed by the `HARDJOBLIMIT`, and is disabled by default. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server options.
- **timeout**: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before the specified timeout, the call will exit with a `JOB_REJECTED` error. Use -1 to indicate that the call should never timeout.

**Return value:**

An environment object.

```java
GRBEnv GRBEnv (String logfilename,
String accessID,
String secretKey,
String pool,
int priority)
```

Create a Gurobi environment on Gurobi Instant Cloud. This method will also check the current working directory for a file named `gurobi.env`, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Arguments:**

- **logfilename**: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.
- **accessID**: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **secretKey**, this allows you to launch Instant Cloud instances and submit jobs to them.
- **secretKey**: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **accessID**, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.
- **pool**: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restart the configuration information each time you launch a machine. May be NULL (or an empty string), in which case your job will be launched in the default pool associated with your cloud license.
- **priority**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs.

**Return value:**

An environment object.

---

**GRBEnv.dispose()**

Release the resources associated with a **GRBEnv** object. While the Java garbage collector will eventually reclaim these resources, we recommend that you call the **dispose** method when you are done using an environment if your program creates more than one.

The **dispose** method on a **GRBEnv** should be called only after you have called **dispose** on all of the models that were created within that environment. You should not attempt to use a **GRBEnv** object after calling **dispose**.

```java
void dispose()
```

**GRBEnv.get()**

Query the value of a parameter.

```java
double get(GRB.DoubleParam param)
```

Query the value of a double-valued parameter.

**Arguments:**
**param**: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
- The current value of the requested parameter.

```java
int get (GRB.IntParam param)
```
Query the value of an int-valued parameter.

**Arguments:**
- **param**: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
- The current value of the requested parameter.

```java
String get (GRB.StringParam param)
```
Query the value of a string-valued parameter.

**Arguments:**
- **param**: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Return value:**
- The current value of the requested parameter.

**GRBEnv.getErrMsg()**

Query the error message for the most recent exception associated with this environment.

```java
String getErrMsg ()
```

**Return value:**
- The error string.

**GRBEnv.getParamInfo()**

Obtain information about a parameter.

```java
void getParamInfo (GRB.DoubleParam param,
 double[] info)
```
Obtain detailed information about a double parameter.

**Arguments:**
param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

info: The returned information. The result will contain four entries: the current value of the parameter, the minimum allowed value, the maximum allowed value, and the default value.

```java
void getParamInfo (GRB.IntParam param,
 int[] info)
```

Obtain detailed information about an integer parameter.

**Arguments:**

- param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- info: The returned information. The result will contain four entries: the current value of the parameter, the minimum allowed value, the maximum allowed value, and the default value.

```java
void getParamInfo (GRB.StringParam param,
 String[] info)
```

Obtain detailed information about a string parameter.

**Arguments:**

- param: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- info: The returned information. The result will contain two entries: the current value of the parameter and the default value.

**GRBEnv.message()**

Write a message to the console and the log file.

```java
void message (String message)
```

**Arguments:**

- message: Print a message to the console and to the log file. Note that this call has no effect unless the OutputFlag parameter is set.

**GRBEnv.readParams()**

Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
void readParams ( String paramFile )

Arguments:
  paramFile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

# Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()

Release the license associated with this environment. You will no longer be able to call optimize
on models created with this environment after the license has been released.

void release ( )

GRBEnv.resetParams()

Reset all parameters to their default values.

  Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void resetParams ( )

GRBEnv.set()

Set the value of a parameter.

  Important notes:
  Note that a model gets its own copy of the environment when it is created. Changes to the
original environment have no effect on the copy. Use GRBModel.set to change a parameter on an
existing model.

void set ( GRB.DoubleParam param, double newval )

Set the value of a double-valued parameter.

Arguments:
  param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.
  newval: The desired new value of the parameter.

void set ( GRB.IntParam param, int newval )
Set the value of an int-valued parameter.

**Arguments:**
- **param**: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newval**: The desired new value of the parameter.

```java
void set (GRB.StringParam param,
 String newval)
```

Set the value of a string-valued parameter.

**Arguments:**
- **param**: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newval**: The desired new value of the parameter.

```java
void set (String param,
 String newval)
```

Set the value of any parameter using strings alone.

**Arguments:**
- **param**: The name of the parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newval**: The desired new value of the parameter.

```java
void set (String param,
 String newval)
```

**GRBEnv.start()**

Start an empty environment. If the environment has already been started, this method will do nothing. If the call fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (`ComputeServer`, `TokenServer`, `ServerPassword`, etc.) specified in your `gurobi.lic` file. This method will also check the current working directory for a file named `gurobi.env`, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the license file, or in the `gurobi.env` file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.
Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```java
void start()

GRBEnv.writeParams()

Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```java
void writeParams(String paramFile)

Arguments:

paramFile: Name of the file to which non-default parameter settings should be written.

The previous contents are overwritten.
4.2 GRBModel

Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the model), addConstr (adds a new constraint to the model), optimize (optimizes the current model), and get (retrieves the value of an attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast majority of the memory associated with a model is stored outside of the Java heap. As a result, the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We recommend that you call GRBModel.dispose when you are done using a model.

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call addVar and addConstr to populate the model with variables and constraints. The more complex constructors can read a model from a file, or make a copy of an existing model.

<table>
<thead>
<tr>
<th>GRBModel</th>
<th>GRBModel ( GRBEnv env )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model constructor.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>env: Environment for new model.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>New model object. Model initially contains no variables or constraints.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBModel</th>
<th>GRBModel ( GRBEnv env, String filename )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps, .rew, .lp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>env: Environment for new model.</td>
<td></td>
</tr>
<tr>
<td>filename: Name of the file containing the model.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>New model object.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBModel</th>
<th>GRBModel ( GRBModel model )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call update before copying it.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>model: Model to copy.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>New model object. Model is a clone of the input model.</td>
<td></td>
</tr>
</tbody>
</table>
GRBModel.addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

```python
GRBConstr addConstr (GRBLinExpr lhsExpr,
 char sense,
 GRBLinExpr rhsExpr,
 String name)
```
Add a single linear constraint to a model.

**Arguments:**
- **lhsExpr**: Left-hand side expression for new linear constraint.
- **sense**: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- **rhsExpr**: Right-hand side expression for new linear constraint.
- **name**: Name for new constraint.

**Return value:**
New constraint object.

```python
GRBConstr addConstr (GRBLinExpr lhsExpr,
 char sense,
 GRBVar rhsVar,
 String name)
```
Add a single linear constraint to a model.

**Arguments:**
- **lhsExpr**: Left-hand side expression for new linear constraint.
- **sense**: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- **rhsVar**: Right-hand side variable for new linear constraint.
- **name**: Name for new constraint.

**Return value:**
New constraint object.

```python
GRBConstr addConstr (GRBLinExpr lhsExpr,
 char sense,
 double rhs,
 String name)
```
Add a single linear constraint to a model.

**Arguments:**
- **lhsExpr**: Left-hand side expression for new linear constraint.
- **sense**: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- **rhs**: Right-hand side value for new linear constraint.
- **name**: Name for new constraint.

**Return value:**
New constraint object.

```c
GRBConstr addConstr (GRBVar lhsVar,
 char sense,
 GRBLinExpr rhsExpr,
 String name)
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsVar`: Left-hand side variable for new linear constraint.
- `sense`: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- `rhsExpr`: Right-hand side expression for new linear constraint.
- `name`: Name for new constraint.

**Return value:**
- New constraint object.

```c
GRBConstr addConstr (GRBVar lhsVar,
 char sense,
 GRBVar rhsVar,
 String name)
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsVar`: Left-hand side variable for new linear constraint.
- `sense`: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- `rhsVar`: Right-hand side variable for new linear constraint.
- `name`: Name for new constraint.

**Return value:**
- New constraint object.

```c
GRBConstr addConstr (GRBVar lhsVar,
 char sense,
 double rhs,
 String name)
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsVar`: Left-hand side variable for new linear constraint.
- `sense`: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- `rhs`: Right-hand side value for new linear constraint.
- `name`: Name for new constraint.

**Return value:**
- New constraint object.
GRBConstr addConstr ( double lhs, 
    char sense, 
    GRBVar rhsVar, 
    String name )

Add a single linear constraint to a model.

Arguments:
    lhs: Left-hand side value for new linear constraint.
    sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
    rhsVar: Right-hand side variable for new linear constraint.
    name: Name for new constraint.

Return value:
    New constraint object.

GRBConstr addConstr ( double lhs, 
    char sense, 
    GRBLinExpr rhsExpr, 
    String name )

Add a single linear constraint to a model.

Arguments:
    lhs: Left-hand side value for new linear constraint.
    sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
    rhsExpr: Right-hand side expression for new linear constraint.
    name: Name for new constraint.

Return value:
    New constraint object.

GRBModel.addConstrs()

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it introduces no significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

GRBConstr[] addConstrs ( int count )

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.

Arguments:
    count: Number of constraints to add.

Return value:
    Array of new constraint objects.
GRBConstr[] addConstrs ( GRBLinExpr[] lhsExprs,
               char[] senses,
               double[] rhss,
               String[] names )

Add new linear constraints to a model. The number of added constraints is determined by the length of the input arrays (which must be consistent across all arguments).

Arguments:
  lhsExprs: Left-hand side expressions for the new linear constraints.
  senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
  rhss: Right-hand side values for the new linear constraints.
  names: Names for new constraints.

Return value:
  Array of new constraint objects.

GRBConstr[] addConstrs ( GRBLinExpr[] lhsExprs,
               char[] senses,
               double[] rhss,
               String[] names,
               int start,
               int len )

Add new linear constraints to a model. This signature allows you to use arrays to hold the various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint for each entry in the array. The start and len arguments allow you to specify which constraints to add.

Arguments:
  lhsExprs: Left-hand side expressions for the new linear constraints.
  senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
  rhss: Right-hand side values for the new linear constraints.
  names: Names for new constraints.
  start: The first constraint in the list to add.
  len: The number of constraints to add.

Return value:
  Array of new constraint objects.

GRBModel.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

- **addGenConstrMax**: \( y = \max(x_1, x_2, ..., c) \)
- **addGenConstrMin**: \( y = \min(x_1, x_2, ..., c) \)
- **addGenConstrAbs**: \( y = |x| \)
- **addGenConstrAnd**: \( y = x_1 \land x_2 \land x_3... \)
- **addGenConstrOr**: \( y = x_1 \lor x_2 \lor x_3... \)
- **addGenConstrIndicator**: \( y = 1 \rightarrow a'x \leq b \) (an indicator constraint)
- **addGenConstrPWL**: \( y = pwl(x) \) (a piecewise-linear function, specified using breakpoints)
- **addGenConstrPoly**: \( y = p_0x^d + p_1x^{d-1} + ... + p_{d-1}x + p_d \)
- **addGenConstrExp**: \( y = e^x \)
- **addGenConstrExpA**: \( y = a^x \)
- **addGenConstrLog**: \( y = \log_e(x) \)
- **addGenConstrLogA**: \( y = \log_a(x) \)
- **addGenConstrPow**: \( y = x^a \)
- **addGenConstrSin**: \( y = \sin(x) \)
- **addGenConstrCos**: \( y = \cos(x) \)
- **addGenConstrTan**: \( y = \tan(x) \)

For additional details please refer to the General Constraints section in the Reference Manual.

**GRBModel.addGenConstrMax()**

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.

A MAX constraint \( r = \max\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the maximum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).
Arguments:

* resvar: The resultant variable of the new constraint.
* vars: Array of variables that are the operands of the new constraint.
* constant: The additional constant operand of the new constraint.
* name: Name for the new general constraint.

Return value:

New general constraint.

GRBModel.addGenConstrMin()

Add a new general constraint of type `GRB.GENCONSTR_MIN` to a model.

A MIN constraint \( r = \min\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the minimum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

```java
GRBGenConstr addGenConstrMin (GRBVar resvar,
 GRBVar[] vars,
 double constant,
 String name)
```

Arguments:

* resvar: The resultant variable of the new constraint.
* vars: Array of variables that are the operands of the new constraint.
* constant: The additional constant operand of the new constraint.
* name: Name for the new general constraint.

Return value:

New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type `GRB.GENCONSTR_ABS` to a model.

An ABS constraint \( r = \text{abs}\{x\} \) states that the resultant variable \( r \) should be equal to the absolute value of the argument variable \( x \).

```java
GRBGenConstr addGenConstrAbs (GRBVar resvar,
 GRBVar argvar,
 String name)
```

Arguments:

* resvar: The resultant variable of the new constraint.
* argvar: The argument variable of the new constraint.
* name: Name for the new general constraint.

Return value:

New general constraint.
GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTRAINT_GT to a model.

An AND constraint \( r = \text{and}\{x_1, \ldots, x_n\} \) states that the binary resultant variable \( r \) should be 1 if and only if all of the operand variables \( x_1, \ldots, x_n \) are equal to 1. If any of the operand variables is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

```java
GRBGenConstr addGenConstrAnd (GRBVar resvar,
 GRBVar[] vars,
 String name)
```

**Arguments:**
- `resvar`: The resultant variable of the new constraint.
- `vars`: Array of variables that are the operands of the new constraint.
- `name`: Name for the new general constraint.

**Return value:**
- New general constraint.

GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTRAINT_GT to a model.

An OR constraint \( r = \text{or}\{x_1, \ldots, x_n\} \) states that the binary resultant variable \( r \) should be 1 if and only if any of the operand variables \( x_1, \ldots, x_n \) is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

```java
GRBGenConstr addGenConstrOr (GRBVar resvar,
 GRBVar[] vars,
 String name)
```

**Arguments:**
- `resvar`: The resultant variable of the new constraint.
- `vars`: Array of variables that are the operands of the new constraint.
- `name`: Name for the new general constraint.

**Return value:**
- New general constraint.

GRBModel.addGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTRAINT_GT to a model.

An INDICATOR constraint \( z = f \rightarrow a^T x \leq b \) states that if the binary indicator variable \( z \) is equal to \( f \in \{0, 1\} \), then the linear constraint \( a^T x \leq b \) should hold. On the other hand, if \( z = 1 - f \), the linear constraint may be violated. The sense of the linear constraint can also be specified to be \( = \) or \( \geq \).

264
Note that the indicator variable $z$ of a constraint will be forced to be binary, independent of how it was created.

```csharp
GRBGenConstr addGenConstrIndicator (GRBVar binvar,
 int binval,
 GRBLinExpr expr,
 char sense,
 double rhs,
 String name)
```

**Arguments:**
- **binvar**: The binary indicator variable.
- **binval**: The value for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- **expr**: Left-hand side expression for the linear constraint triggered by the indicator.
- **sense**: Sense for the linear constraint. Options are `GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`.
- **rhs**: Right-hand side value for the linear constraint.
- **name**: Name for the new general constraint.

**Return value:**
New general constraint.

```csharp
GRBModel.addGenConstrPWL()
```

Add a new general constraint of type `GRB.GENCONSTR_PWL` to a model.

A piecewise-linear (PWL) constraint states that the relationship $y = f(x)$ must hold between variables $x$ and $y$, where $f$ is a piecewise-linear function. The breakpoints for $f$ are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

```csharp
GRBGenConstr addGenConstrPWL (GRBVar xvar,
 GRBVar yvar,
 double[] xpts,
 double[] ypts,
 String name)
```

**Arguments:**
- **xvar**: The $x$ variable.
- **yvar**: The $y$ variable.
- **xpts**: The $x$ values for the points that define the piecewise-linear function. Must be in non-decreasing order.
- **ypts**: The $y$ values for the points that define the piecewise-linear function.
- **name**: Name for the new general constraint.

**Return value:**
New general constraint.
**GRBModel.addGenConstrPoly()**

Add a new general constraint of type `GRB.GENCONSTR_POLY` to a model.

A polynomial function constraint states that the relationship $y = p_0x^d + p_1x^{d-1} + \ldots + p_{d-1}x + p_d$ should hold between variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrPoly (GRBVar xvar,
 GRBVar yvar,
 double[] p,
 String name,
 String options)
```

**Arguments:**
- `xvar`: The $x$ variable.
- `yvar`: The $y$ variable.
- `p`: The coefficients for the polynomial function (starting with the coefficient for the highest power).
- `name`: Name for the new general constraint.
- `options`: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**
- New general constraint.

**GRBModel.addGenConstrExp()**

Add a new general constraint of type `GRB.GENCONSTR_EXP` to a model.

A natural exponential function constraint states that the relationship $y = \exp(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrExp (GRBVar xvar,
 GRBVar yvar,
 String name,
 String options)
```

**Arguments:**
- `xvar`: The $x$ variable.
- `yvar`: The $y$ variable.

266
name: Name for the new general constraint.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel.addGenConstrExpA()  

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.

An exponential function constraint states that the relationship \( y = a^x \) should hold for variables \( x \) and \( y \), where \( a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrExpA (GRBVar xvar,
 GRBVar yvar,
 double a,
 String name,
 String options)
```

Arguments:

xvar: The \( x \) variable.
yvar: The \( y \) variable.
a: The base of the function, \( a > 0 \).
name: Name for the new general constraint.

options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel.addGenConstrLog()  

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.

A natural logarithmic function constraint states that the relationship \( y = \log(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.
**GRBGenConstr addGenConstrLog** (  GRBVar xvar,
   GRBVar yvar,
   String name,
   String options )

**Arguments:**
- **xvar**: The $x$ variable.
- **yvar**: The $y$ variable.
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**
New general constraint.

**GRBModel.addGenConstrLogA()**

Add a new general constraint of type `GRB.GENCONST_LOGA` to a model.

A logarithmic function constraint states that the relationship $y = \log_a(x)$ should hold for variables $x$ and $y$, where $a > 0$ is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

**GRBGenConstr addGenConstrLogA** (  GRBVar xvar,
   GRBVar yvar,
   double a,
   String name,
   String options )

**Arguments:**
- **xvar**: The $x$ variable.
- **yvar**: The $y$ variable.
- **a**: The base of the function, $a > 0$.
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**
New general constraint.
GRBModel.addGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.

A power function constraint states that the relationship \( y = x^a \) should hold for variables \( x \) and \( y \), where \( a \) is the (constant) exponent. The lower bound of variable \( x \) must be nonnegative, even if \( a \) is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrPow (GRBVar xvar,
 GRBVar yvar,
 double a,
 String name,
 String options)
```

**Arguments:**
- **xvar**: The \( x \) variable.
- **yvar**: The \( y \) variable.
- **a**: The exponent of the function, \( a > 0 \).
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

**Return value:**
New general constraint.

GRBModel.addGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.

A sine function constraint states that the relationship \( y = \sin(x) \) should hold for variables \( x \) and \( y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrSin (GRBVar xvar,
 GRBVar yvar,
 String name,
 String options)
```

**Arguments:**
- **xvar**: The \( x \) variable.
- **yvar**: The \( y \) variable.
**name**: Name for the new general constraint.

**options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

**Return value**: New general constraint.

---

**GRBModel.addGenConstrCos()**

Add a new general constraint of type `GRB.GENCONSTR_COS` to a model.

A cosine function constraint states that the relationship $y = \cos(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

```java
GRBGenConstr addGenConstrCos (GRBVar xvar,
 GRBVar yvar,
 String name,
 String options)
```

**Arguments:**

- **xvar**: The $x$ variable.
- **yvar**: The $y$ variable.
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

**Return value**: New general constraint.

---

**GRBModel.addGenConstrTan()**

Add a new general constraint of type `GRB.GENCONSTR_TAN` to a model.

A tangent function constraint states that the relationship $y = \tan(x)$ should hold for variables $x$ and $y$.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.
GRBGenConstr addGenConstrTan ( GRBVar xvar, 
GRBVar yvar, 
String name, 
String options )

Arguments:
  xvar: The x variable.
  yvar: The y variable.
  name: Name for the new general constraint.
  options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
  New general constraint.

GRBModel.addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between them can be both important and subtle. Refer to this discussion for additional information.

GRBQConstr addQConstr ( GRBQuadExpr lhsExpr, 
char sense, 
GRBQuadExpr rhsExpr, 
String name )

Add a quadratic constraint to a model.

Arguments:
  lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
  sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
  rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
  name: Name for new constraint.

Return value:
  New quadratic constraint object.

GRBQConstr addQConstr ( GRBQuadExpr lhsExpr, 
char sense, 
GRBVar rhsVar, 
String name )

Add a quadratic constraint to a model.

Arguments:
  lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
  sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
  rhsVar: Right-hand side variable for new quadratic constraint.
**name**: Name for new constraint.

**Return value:**
New quadratic constraint object.

```plaintext
GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
 char sense,
 GRBLinExpr rhsExpr,
 String name)
```

Add a quadratic constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side quadratic expression for new quadratic constraint.
- `sense`: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
- `rhsExpr`: Right-hand side linear expression for new quadratic constraint.
- `name`: Name for new constraint.

**Return value:**
New quadratic constraint object.
GRBQConstr addQConstr ( GRBVar lhsVar,  
    char sense,  
    GRBQuadExpr rhsExpr,  
    String name )

Add a quadratic constraint to a model.

Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:

New quadratic constraint object.

GRBQConstr addQConstr ( double lhs,  
    char sense,  
    GRBQuadExpr rhsExpr,  
    String name )

Add a quadratic constraint to a model.

Arguments:

lhs: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:

New quadratic constraint object.

GRBModel.addRange()

Add a single range constraint to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL.

GRBConstr addRange ( GRBLinExpr expr,  
    double lower,  
    double upper,  
    String name )

Arguments:

expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:

New constraint object.
GRBModel.addRanges()

Add new range constraints to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

```java
GRBConstr[] addRanges (GRBLinExpr[] exprs,
 double[] lower,
 double[] upper,
 String[] names)
```

**Arguments:**
- `exprs`: Linear expressions for the new range constraints.
- `lower`: Lower bounds for linear expressions.
- `upper`: Upper bounds for linear expressions.
- `names`: Names for new range constraints.

**Return value:**
Array of new constraint objects.

GRBModel.addSOS()

Add an SOS constraint to the model. Please refer to the SOS Constraints section in the Reference Manual for additional details.

```java
GRBSOS addSOS (GRBVar[] vars,
 double[] weights,
 int type)
```

**Arguments:**
- `vars`: Array of variables that participate in the SOS constraint.
- `weights`: Weights for the variables in the SOS constraint.
- `type`: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

**Return value:**
New SOS constraint.

GRBModel.addVar()

Add a single decision variable to a model.

```java
GRBVar addVar (double lb,
 double ub,
 double obj,
 char type,
 String name)
```

Add a variable to a model; non-zero entries will be added later.

**Arguments:**
- `lb`: Lower bound for new variable.
- `ub`: Upper bound for new variable.
**obj**: Objective coefficient for new variable.

**type**: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT).

**name**: Name for new variable.

**Return value**: New variable object.

```java
GRBVar addVar (double lb,
 double ub,
 double obj,
 char type,
 GRBConstr[] constrs,
 double[] coeffs,
 String name)
```

Add a variable to a model, and the associated non-zero coefficients.

**Arguments:**
- **lb**: Lower bound for new variable.
- **ub**: Upper bound for new variable.
- **obj**: Objective coefficient for new variable.
- **type**: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT).
- **constrs**: Array of constraints in which the variable participates.
- **coeffs**: Array of coefficients for each constraint in which the variable participates. The lengths of the constrs and coeffs arrays must be identical.
- **name**: Name for new variable.

**Return value**: New variable object.

```java
GRBVar addVar (double lb,
 double ub,
 double obj,
 char type,
 GRBColumn col,
 String name)
```

Add a variable to a model. This signature allows you to specify the set of constraints to which the new variable belongs using a GRBColumn object.

**Arguments:**
- **lb**: Lower bound for new variable.
- **ub**: Upper bound for new variable.
- **obj**: Objective coefficient for new variable.
- **type**: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT).
- **col**: GRBColumn object for specifying a set of constraints to which new variable belongs.
- **name**: Name for new variable.
**Return value:**

New variable object.

---

**GRBModel.addVars()**

Add new decision variables to a model.

**GRBVar[] addVars ( int count,
                     char type )**

Add count new decision variables to a model. All associated attributes take their default values, except the variable type, which is specified as an argument.

**Arguments:**
- **count**: Number of variables to add.
- **type**: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT).

**Return value:**
Array of new variable objects.

---

**GRBVar[] addVars ( double[] lb,
                     double[] ub,
                     double[] obj,
                     char[] type,
                     String[] names )**

Add new decision variables to a model. The number of added variables is determined by the length of the input arrays (which must be consistent across all arguments).

**Arguments:**
- **lb**: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
- **ub**: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
- **obj**: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients of 0.0.
- **type**: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.
- **names**: Names for new variables. Can be null, in which case all variables are given default names.

**Return value:**
Array of new variable objects.
GRBVar[] addVars (  double[] lb,
       double[] ub,
       double[] obj,
       char[] type,
       String[] names,
       int     start,
       int     len )

Add new decision variables to a model. This signature allows you to use arrays to hold the various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable for each entry in the array. The start and len arguments allow you to specify which variables to add.

Arguments:

  lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
  ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
  obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients of 0.0.
  type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed to be continuous.
  names: Names for new variables. Can be null, in which case all variables are given default names.
  start: The first variable in the list to add.
  len: The number of variables to add.

Return value:

  Array of new variable objects.

GRBVar[] addVars (  double[] lb,
       double[] ub,
       double[] obj,
       char[] type,
       String[] names,
       GRBColumn[] cols )

Add new decision variables to a model. This signature allows you to specify the list of constraints to which each new variable belongs using an array of GRBColumn objects.

Arguments:

  lb: Lower bounds for new variables. Can be null, in which case the variables get lower bounds of 0.0.
  ub: Upper bounds for new variables. Can be null, in which case the variables get infinite upper bounds.
  obj: Objective coefficients for new variables. Can be null, in which case the variables get objective coefficients of 0.0.
  type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER, GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

**names:** Names for new variables. Can be `null`, in which case all variables are given default names.

**cols:** GRBColumn objects for specifying a set of constraints to which each new column belongs.

**Return value:**

Array of new variable objects.

**GRBModel.chgCoeff()**

Change one coefficient in the model. The desired change is captured using a `GRBVar` object, a `GRBConstr` object, and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `GRBModel.update`), optimize the model (using `GRBModel.optimize`), or write the model to disk (using `GRBModel.write`).

```java
void chgCoeff (GRBConstr constr,
 GRBVar var,
 double newval)
```

**Arguments:**

- `constr`: Constraint for coefficient to be changed.
- `var`: Variable for coefficient to be changed.
- `newval`: Desired new value for coefficient.

**GRBModel.chgCoeffs()**

Change a list of coefficients in the model. Each desired change is captured using a `GRBVar` object, a `GRBConstr` object, and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each correspond to a single desired coefficient change. The lengths of the input arrays must all be the same. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `GRBModel.update`), optimize the model (using `GRBModel.optimize`), or write the model to disk (using `GRBModel.write`).

```java
void chgCoeffs (GRBConstr[] constrs,
 GRBVar[] vars,
 double[] newvals)
```

**Arguments:**

- `constrs`: Constraints for coefficients to be changed.
- `vars`: Variables for coefficients to be changed.
- `newvals`: Desired new values for coefficients.
Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

This method populates the IISCONSTR, IISQCONSTR, and IISGENCONSTR constraint attributes, the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain information about the results of the IIS computation by writing a .ilp format file (see GRBModel.write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.
Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This method provides a number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false, optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable or constraint is not included in one of these lists, the associated bounds or constraints may not be violated. The simpler signature takes a pair of boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated, respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify your original model, use the GRBModel constructor to create a copy before invoking this method.

def feasRelax(self, relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen):
    pass
Create a feasibility relaxation model.

**Arguments:**
- `relaxobjtype`: The cost function used when finding the minimum cost relaxation.
- `minrelax`: The type of feasibility relaxation to perform.
- `vars`: Variables whose bounds are allowed to be violated.
- `lbpen`: Penalty for violating a variable lower bound. One entry for each variable in argument `vars`.
- `ubpen`: Penalty for violating a variable upper bound. One entry for each variable in argument `vars`.
- `constrs`: Linear constraints that are allowed to be violated.
- `rhspen`: Penalty for violating a linear constraint. One entry for each constraint in argument `constrs`.

**Arguments:**

**Return value:**
- Zero if `minrelax` is false. If `minrelax` is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

```java
double feasRelax (int relaxobjtype,
 boolean minrelax,
 boolean vrelax,
 boolean crelax)
```

Simplified method for creating a feasibility relaxation model.

**Arguments:**
- `relaxobjtype`: The cost function used when finding the minimum cost relaxation.
- `minrelax`: The type of feasibility relaxation to perform.
- `vrelax`: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations).
- `crelax`: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations).

**Return value:**
- Zero if `minrelax` is false. If `minrelax` is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

**GRBModel.fixedModel()**

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call to the `optimize` method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.
GRBModel  fixedModel ( )

Return value:
Fixed model associated with calling object.

GRBModel.get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for arrays of constraint or variable attributes.

double  get (  GRB.DoubleParam  param )

Query the value of a double-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

int  get (  GRB.IntParam  param )

Query the value of an int-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

String  get (  GRB.StringParam  param )

Query the value of a string-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

char[]  get (  GRB.CharAttr  attr,
               GRBVar[]  vars )

Query a char-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.
**char[] get ( GRB.CharAttr attr,**
  GRBVar[] vars,**
  int start,**
  int len )**

Query a char-valued variable attribute for a sub-array of variables.

**Arguments:**

- `attr`: The attribute being queried.
- `vars`: A one-dimensional array of variables whose attribute values are being queried.
- `start`: The index of the first variable of interest in the list.
- `len`: The number of variables.

**Return value:**

The current values of the requested attribute for each input variable.

**char[][][] get ( GRB.CharAttr attr,**
  GRBVar[][][] vars )**

Query a char-valued variable attribute for a two-dimensional array of variables.

**Arguments:**

- `attr`: The attribute being queried.
- `vars`: A two-dimensional array of variables whose attribute values are being queried.

**Return value:**

The current values of the requested attribute for each input variable.

**char[][][] get ( GRB.CharAttr attr,**
  GRBVar[][][] vars )**

Query a char-valued variable attribute for a three-dimensional array of variables.

**Arguments:**

- `attr`: The attribute being queried.
- `vars`: A three-dimensional array of variables whose attribute values are being queried.

**Return value:**

The current values of the requested attribute for each input variable.

**char[] get ( GRB.CharAttr attr,**
  GRBConstr[] constrs,**
  int start,**
  int len )**

Query a char-valued constraint attribute for an array of constraints.

**Arguments:**

- `attr`: The attribute being queried.
- `constrs`: The constraints whose attribute values are being queried.

**Return value:**

The current values of the requested attribute for each input constraint.
Query a char-valued constraint attribute for a sub-array of constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **constrs**: A one-dimensional array of constraints whose attribute values are being queried.
- **start**: The index of the first constraint of interest in the list.
- **len**: The number of constraints.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
char[] get (GRB.CharAttr attr,
 GRBConstr[] constrs);
```

Query a char-valued constraint attribute for a two-dimensional array of constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **constrs**: A two-dimensional array of constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
char[][] get (GRB.CharAttr attr,
 GRBConstr[][] constrs);
```

Query a char-valued constraint attribute for a three-dimensional array of constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **constrs**: A three-dimensional array of constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
char[][][] get (GRB.CharAttr attr,
 GRBConstr[][][] constrs);
```

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: The quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

```c
char[] get (GRB.CharAttr attr,
 GRBQConstr[] qconstrs);
```

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **start**: The index of the first constraint of interest in the list.
- **len**: The number of constraints.

```c
char[] get (GRB.CharAttr attr,
 GRBQConstr[] qconstrs,
 int start,
 int len);
```
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
char[][] get (GRB.CharAttr attr,
 GRBQConstr[][] qconstrs)
```
Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
char[][][] get (GRB.CharAttr attr,
 GRBQConstr[][][] qconstrs)
```
Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
double get (GRB.DoubleAttr attr)
```
Query the value of a double-valued model attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

```c
double[] get (GRB.DoubleAttr attr,
 GRBVar[] vars)
```
Query a double-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being queried.
vars: The variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

double[] get ( GRB.DoubleAttr attr,
        GRBVar[] vars,
        int start,
        int len )
Query a double-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[][] get ( GRB.DoubleAttr attr,
        GRBVar[][] vars )
Query a double-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[][][] get ( GRB.DoubleAttr attr,
        GRBVar[][][] vars )
Query a double-valued variable attribute for a three-dimensional array of variables.

Arguments:
attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] get ( GRB.DoubleAttr attr,
        GRBConstr[] constrs )
Query a double-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.
double[] get ( GRB.DoubleAttr attr,
             GRBConstr[] constrs,
             int start,
             int len )

Query a double-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[][] get ( GRB.DoubleAttr attr,
             GRBConstr[][] constrs )

Query a double-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[][][] get ( GRB.DoubleAttr attr,
                 GRBConstr[][][] constrs )

Query a double-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get ( GRB.DoubleAttr attr,
             GRBQConstr[] qconstrs )

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] get ( GRB.DoubleAttr attr,
             GRBQConstr[] qconstrs,
             int start,
             int len )
Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A one-dimensional array of quadratic constraints whose attribute values are being queried.
- **start**: The first quadratic constraint of interest in the list.
- **len**: The number of quadratic constraints.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

```java
double[][] get (GRB.DoubleAttr attr, GRBQConstr[][] qconstrs)
```

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A two-dimensional array of quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

```java
double[][][] get (GRB.DoubleAttr attr, GRBQConstr[][][] qconstrs)
```

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A three-dimensional array of quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

```java
int get (GRB.IntAttr attr)
```

Query the value of an int-valued model attribute.

**Arguments:**
- **attr**: The attribute being queried.

**Return value:**
The current value of the requested attribute.

```java
int[] get (GRB.IntAttr attr, GRBVar[] vars)
```

Query an int-valued variable attribute for an array of variables.
Arguments:

`attr`: The attribute being queried.

`vars`: The variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.

```c
int[] get (GRB.IntAttr attr,
 GRBVar[] vars,
 int start,
 int len)
```

Query an int-valued variable attribute for a sub-array of variables.

Arguments:

`attr`: The attribute being queried.

`vars`: A one-dimensional array of variables whose attribute values are being queried.

`start`: The index of the first variable of interest in the list.

`len`: The number of variables.

Return value:

The current values of the requested attribute for each input variable.

```c
int[] get (GRB.IntAttr attr,
 GRBVar[][] vars)
```

Query an int-valued variable attribute for a two-dimensional array of variables.

Arguments:

`attr`: The attribute being queried.

`vars`: A two-dimensional array of variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.

```c
int[][] get (GRB.IntAttr attr,
 GRBVar[][][] vars)
```

Query an int-valued variable attribute for a three-dimensional array of variables.

Arguments:

`attr`: The attribute being queried.

`vars`: A three-dimensional array of variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.

```c
int[] get (GRB.IntAttr attr,
 GRBConstr[] constrs)
```

Query an int-valued constraint attribute for an array of constraints.

Arguments:

`attr`: The attribute being queried.

`constrs`: The constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input constraint.

```c
int[] get (GRB.IntAttr attr,
 GRBConstr[] constrs,
 int start,
 int len)
```
Query an int-valued constraint attribute for a sub-array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: A one-dimensional array of constraints whose attribute values are being queried.
- `start`: The index of the first constraint of interest in the list.
- `len`: The number of constraints.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
int[] [] get (GRB.IntAttr attr,
 GRBConstr[][] constrs)
```
Query an int-valued constraint attribute for a two-dimensional array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: A two-dimensional array of constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
int[] [][] get (GRB.IntAttr attr,
 GRBConstr[][][] constrs)
```
Query an int-valued constraint attribute for a three-dimensional array of constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `constrs`: A three-dimensional array of constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input constraint.

```c
int[] get (GRB.IntAttr attr,
 GRBQConstr[] qconstrs)
```
Query an int-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being queried.
- `qconstrs`: The quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.
int[] get ( GRB.IntAttr attr,
    GRBQConstr[] qconstrs,
    int start,
    int len )

Query an int-valued quadratic constraint attribute for a sub-array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A one-dimensional array of quadratic constraints whose attribute values are being queried.
- **start**: The index of the first quadratic constraint of interest in the list.
- **len**: The number of quadratic constraints.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

int[][] get ( GRB.IntAttr attr,
    GRBQConstr[][] qconstrs )

Query an int-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A two-dimensional array of quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

int[][][] get ( GRB.IntAttr attr,
    GRBQConstr[][][] qconstrs )

Query an int-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **qconstrs**: A three-dimensional array of quadratic constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input quadratic constraint.

int[] get ( GRB.IntAttr attr,
    GRBGenConstr[] genconstrs )

Query an int-valued general constraint attribute for an array of general constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **genconstrs**: The general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.
int[] get ( GRB.IntAttr attr,  
          GRBGenConstr[] genconstrs,  
          int start,  
          int len )

Query an int-valued general constraint attribute for a sub-array of general constraints.

**Arguments:**
- attr: The attribute being queried.
- genconstrs: A one-dimensional array of general constraints whose attribute values are being queried.
- start: The index of the first general constraint of interest in the list.
- len: The number of general constraints.

**Return value:**
The current values of the requested attribute for each input general constraint.

int[][] get ( GRB.IntAttr attr,  
             GRBGenConstr[][] genconstrs )

Query an int-valued general constraint attribute for a two-dimensional array of general constraints.

**Arguments:**
- attr: The attribute being queried.
- genconstrs: A two-dimensional array of general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.

int[][][] get ( GRB.IntAttr attr,  
                GRBGenConstr[][][] genconstrs )

Query an int-valued general constraint attribute for a three-dimensional array of general constraints.

**Arguments:**
- attr: The attribute being queried.
- genconstrs: A three-dimensional array of general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.

String get ( GRB.StringAttr attr )

Query the value of a string-valued model attribute.

**Arguments:**
- attr: The attribute being queried.

**Return value:**
The current value of the requested attribute.
String[] get ( GRB.StringAttr attr,
          GRBVar[] vars )
Query a String-valued variable attribute for an array of variables.

Arguments:
attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get ( GRB.StringAttr attr,
          GRBVar[] vars,
          int start,
          int len )
Query a String-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

String[][] get ( GRB.StringAttr attr,
           GRBVar[][] vars )
Query a String-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[][][] get ( GRB.StringAttr attr,
          GRBVar[][][] vars )
Query a String-valued variable attribute for a three-dimensional array of variables.

Arguments:
attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get ( GRB.StringAttr attr,
          GRBConstr[] constrs )
Query a String-valued constraint attribute for an array of constraints.
Arguments:
  attr: The attribute being queried.
  constrs: The constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input constraint.

String[] get ( GRB.StringAttr attr,
               GRBConstr[] constrs,
               int start,
               int len )
Query a String-valued constraint attribute for a sub-array of constraints.
Arguments:
  attr: The attribute being queried.
  constrs: A one-dimensional array of constraints whose attribute values are being queried.
  start: The index of the first constraint of interest in the list.
  len: The number of constraints.
Return value:
The current values of the requested attribute for each input constraint.

String[][] get ( GRB.StringAttr attr,
                 GRBConstr[][] constrs )
Query a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
  attr: The attribute being queried.
  constrs: A two-dimensional array of constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input constraint.

String[][][] get ( GRB.StringAttr attr,
                   GRBConstr[][][] constrs )
Query a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:
  attr: The attribute being queried.
  constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input constraint.

String[] get ( GRB.StringAttr attr,
               GRBQConstr[] qconstrs )
Query a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
  attr: The attribute being queried.
  qconstrs: The quadratic constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (  GRB.StringAttr attr,
                 GRBQConstr[] qconstrs,
                 int start,
                 int len )
Query a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:
  attr: The attribute being queried.
  qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
  start: The index of the first quadratic constraint of interest in the list.
  len: The number of quadratic constraints.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][] get (  GRB.StringAttr attr,
                 GRBQConstr[][] qconstrs )
Query a String-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.
Arguments:
  attr: The attribute being queried.
  qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][][] get (  GRB.StringAttr attr,
                     GRBQConstr[][][] qconstrs )
Query a String-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.
Arguments:
  attr: The attribute being queried.
  qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (  GRB.StringAttr attr,
                 GRBGenConstr[] genconstrs )
Query a String-valued general constraint attribute for an array of general constraints.
Arguments:
attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.

```java
String[] get (GRB.StringAttr attr,
 GRBGenConstr[] genconstrs,
 int start,
 int len)
```
Query a String-valued general constraint attribute for a sub-array of constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **genconstrs**: A one-dimensional array of general constraints whose attribute values are being queried.
- **start**: The index of the first general constraint of interest in the list.
- **len**: The number of general constraints.

**Return value:**
The current values of the requested attribute for each input general constraint.

```java
String[][] get (GRB.StringAttr attr,
 GRBGenConstr[][] genconstrs)
```
Query a String-valued constraint attribute for a two-dimensional array of general constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **genconstrs**: A two-dimensional array of general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.

```java
String[][][] get (GRB.StringAttr attr,
 GRBGenConstr[][][] genconstrs)
```
Query a String-valued constraint attribute for a three-dimensional array of general constraints.

**Arguments:**
- **attr**: The attribute being queried.
- **genconstrs**: A three-dimensional array of general constraints whose attribute values are being queried.

**Return value:**
The current values of the requested attribute for each input general constraint.

**GRBModel.getCoeff()**

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).
double *getCoeff ( GRBConstr constr, GRBVar var )

**Arguments:**
- **constr**: The requested constraint.
- **var**: The requested variable.

**Return value:**
The current value of the requested coefficient.

**GRBModel.getCol()**

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned as a GRBColumn object.

```
GRBColumn getCol (GRBVar var)
```

**Arguments:**
- **var**: The variable of interest.

**Return value:**
A GRBColumn object that captures the set of constraints in which the variable participates.

**GRBModel.getConcurrentEnv()**

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent environments and setting appropriate parameters on these environments (e.g., the Method parameter), you can control exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments, and set Method to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with num=0. For example, if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent optimizer behavior.

```
GRBEnv getConcurrentEnv (int num)
```

**Arguments:**
- **num**: The concurrent environment number.

**Return value:**
The concurrent environment for the model.
GRBModel.getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this method chooses one arbitrarily. Returns null if no constraint has that name.

GRBConstr getConstrByName ( String name )

Arguments:
  name: The name of the desired linear constraint.

Return value:
  The requested linear constraint.

GRBModel.getConstrs()

Retrieve an array of all linear constraints in the model.

GRBConstr[] getConstrs ( )

Return value:
  All linear constraints in the model.

GRBModel.getEnv()

Query the environment associated with the model. Note that each model makes its own copy of the environment when it is created. To change parameters for a model, for example, you should use this method to obtain the appropriate environment object.

GRBEnv getEnv ( )

Return value:
  The environment for the model.

GRBModel.getGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel.getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.
void getGenConstrMax ( GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant )

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.

resvar: Store the resultant variable of the constraint at resvar[0].

vars: Array to store the operand variables of the constraint.

len: Store the number of operand variables of the constraint at len[0].

constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin ( GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant )

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.

resvar: Store the resultant variable of the constraint at resvar[0].

vars: Array to store the operand variables of the constraint.

len: Store the number of operand variables of the constraint at len[0].

constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs ( GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] argvar )
Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
argvar: Store the argument variable of the constraint at resvar[0].

GRBModel.getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

```java
void getGenConstrAnd (GRBGenConstr genc,
 GRBVar[] resvar,
 GRBVar[] vars,
 int[] len)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the vars argument. The routine returns the total number of operand variables in the specified general constraint in len. That allows you to make certain that the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

```java
void getGenConstrOr (GRBGenConstr genc,
 GRBVar[] resvar,
 GRBVar[] vars,
 int[] len)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.

- **resvar**: Store the resultant variable of the constraint at resvar[0].
- **vars**: Array to store the operand variables of the constraint.
- **len**: Store the number of operand variables of the constraint at len[0].

**GRBModel.getGenConstrIndicator**

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also **addGenConstrIndicator** for a description of the semantics of this general constraint type.

```java
void getGenConstrIndicator (GRBGenConstr genc,
 GRBVar[] binvar,
 int[] binval,
 GRBLinExpr[] expr,
 char[] sense,
 double[] rhs)
```

**Arguments:**

- **genc**: The general constraint object.

Any of the following arguments can be null.

- **binvar**: Store the binary indicator variable of the constraint at binvar[0].
- **binval**: Store the value that the indicator variable has to take in order to trigger the linear constraint at binval[0].
- **expr**: Create a GRBLinExpr object to store the left-hand side expression of the linear constraint that is triggered by the indicator at expr[0].
- **sense**: Store the sense for the linear constraint at sense[0]. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL.
- **rhs**: Store the right-hand side value for the linear constraint at rhs[0].

**GRBModel.getGenConstrPWL**

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the xpts and ypts arguments. The routine returns the length for the xpts and ypts arrays in npts. That allows you to make certain that the xpts and ypts arrays are of sufficient size to hold the result of the second call.

See also **addGenConstrPWL** for a description of the semantics of this general constraint type.
void getGenConstrPWL ( GRBGenConstr genc,
    GRBVar[] xvar,
    GRBVar[] yvar,
    int[] npts,
    double[] xpts,
    double[] ypts )

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
npts: Store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel.getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the p argument. The routine returns the length of the p array in
plen. That allows you to make certain that the p array is of sufficient size to hold the result of the
second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

void getGenConstrPoly ( GRBGenConstr genc,
    GRBVar[] xvar,
    GRBVar[] yvar,
    int[] plen,
    double[] p )

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
plen: Store the array length for p. If \( x^d \) is the highest power term, then \( d + 1 \) will be
returned.
p: The coefficients for polynomial function.

GRBModel.getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.
void getGenConstrExp ( GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar )

Arguments:
  genc: The general constraint object.
  xvar: Store the x variable.
  yvar: Store the y variable.

GRBModel.getGenConstrExpA
Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA ( GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a )

Arguments:
  genc: The general constraint object.
  xvar: Store the x variable.
  yvar: Store the y variable.
  a: Store the base of the function.

GRBModel.getGenConstrLog
Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog ( GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar )

Arguments:
  genc: The general constraint object.
  xvar: Store the x variable.
  yvar: Store the y variable.
GRBModel.getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

```java
void getGenConstrLogA (GRBGenConstr genc,
 GRBVar[] xvar,
 GRBVar[] yvar,
 double[] a)
```

Arguments:
- `genc`: The general constraint object.
- `xvar`: Store the $x$ variable.
- `yvar`: Store the $y$ variable.
- `a`: Store the base of the function.

GRBModel.getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

```java
void getGenConstrPow (GRBGenConstr genc,
 GRBVar[] xvar,
 GRBVar[] yvar,
 double[] a)
```

Arguments:
- `genc`: The general constraint object.
- `xvar`: Store the $x$ variable.
- `yvar`: Store the $y$ variable.
- `a`: Store the exponent of the function.

GRBModel.getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

```java
void getGenConstrSin (GRBGenConstr genc,
 GRBVar[] xvar,
 GRBVar[] yvar)
```
Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
  xvar: Store the \( x \) variable.
  yvar: Store the \( y \) variable.

GRBModel.getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

```java
void getGenConstrCos (GRBGenConstr genc,
 GRBVar[] xvar,
 GRBVar[] yvar)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
  xvar: Store the \( x \) variable.
  yvar: Store the \( y \) variable.

GRBModel.getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

```java
void getGenConstrTan (GRBGenConstr genc,
 GRBVar[] xvar,
 GRBVar[] yvar)
```

Arguments:

genc: The general constraint object.
Any of the following arguments can be null.
  xvar: Store the \( x \) variable.
  yvar: Store the \( y \) variable.

GRBModel.getGenConstrs()

Retrieve an array of all general constraints in the model.

```java
GRBGenConstr[] getGenConstrs ()
```

Return value:
All general constraints in the model.
GRBModel.getJSONSolution()

After a call to optimize, this method returns the resulting solution and related model attributes as a JSON string. Please refer to the JSON solution format section for details.

| String  getJSONSolution ( )
  Return value:
       A JSON string.

GRBModel.getMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Use discardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

| GRBEnv  getMultiobjEnv ( int index )
  Arguments:
       index: The objective index.
  Return value:
       The multi-objective environment for the model.

GRBModel.getObjective()

Retrieve the model objective(s).

| GRBExpr  getObjective ( )
  Retrieve the optimization objective.
  Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj attributes.
  Return value:
       The model objective.

| GRBLinExpr  getObjective ( int index )

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this routine to retrieve the primary objective (using index = 0), but you will get an exception if the primary objective contains quadratic terms.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

**Arguments:**

- **index**: The index for the requested alternative objective.

**Return value:**

The requested alternative objective.

**GRBModel.getPWLObj()**

Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define the function, and the $x$ and $y$ arguments give the coordinates of the points, respectively. The $x$ and $y$ arguments must be large enough to hold the result. Call this method with null values for $x$ and $y$ if you just want the number of points.

Refer to this discussion for additional information on what the values in $x$ and $y$ mean.

```java
int getPWLObj (GRBVar var, double[] x, double[] y)
```

**Arguments:**

- **var**: The variable whose objective function is being retrieved.
- **x**: The $x$ values for the points that define the piecewise-linear function. These will always be in non-decreasing order.
- **y**: The $y$ values for the points that define the piecewise-linear function.

**Return value:**

The number of points that define the piecewise-linear objective function.

**GRBModel.getQCRow()**

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

```java
GRBQuadExpr getQCRow (GRBQConstr qc)
```

**Arguments:**

- **qc**: The quadratic constraint of interest.

**Return value:**

A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

**GRBModel.getQConstrs()**

Retrieve an array of all quadratic constraints in the model.

```java
GRBQConstr[] getQConstrs ()
```

**Return value:**

All quadratic constraints in the model.
**GRBModel.getRow()**

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as a GRBLinExpr object.

```plaintext
GRBLinExpr getRow (GRBConstr constr)
```

**Arguments:**
- `constr`: The constraint of interest.

**Return value:**
A GRBLinExpr object that captures the set of variables that participate in the constraint.

**GRBModel.getSOS()**

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value is the length of this list. Note that the argument arrays must be long enough to accommodate the result. Call the method with null array arguments to determine the appropriate array lengths.

```plaintext
int getSOS (GRBSOS sos, GRBVar[] vars, double[] weights, int[] type)
```

**Arguments:**
- `sos`: The SOS set of interest.
- `vars`: A list of variables that participate in `sos`. Can be null.
- `weights`: The SOS weights for each participating variable. Can be null.
- `type`: The type of the SOS set (either `GRB.SOS_TYPE1` or `GRB.SOS_TYPE2`) is returned in `type[0]`.

**Return value:**
The number of entries placed in the output arrays. Note that you should consult the return value to determine the length of the result; the arrays sizes won’t necessarily match the result size.

**GRBModel.getSOSs()**

Retrieve an array of all SOS constraints in the model.

```plaintext
GRBSOS[] getSOSs ()
```

**Return value:**
All SOS constraints in the model.
**GRBModel.getTuneResult()**

Use this method to retrieve the results of a previous `tune` call. Calling this method with argument `n` causes tuned parameter set `n` to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter set 0 being the best. The number of available sets is stored in attribute `TuneResultCount`.

Once you have retrieved a tuning result, you can call `optimize` to use these parameter settings to optimize the model, or `write` to write the changed parameters to a `.prm` file.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning tool.

```java
void getTuneResult (int i)
```

- `i`: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored results is available in attribute `TuneResultCount`.

**GRBModel.getVarByName()**

Retrieve a variable from its name. If multiple variables have the same name, this method chooses one arbitrarily. Returns null if no variable has that name.

```java
GRBVar getVarByName (String name)
```

**Arguments:**
- `name`: The name of the desired variable.

**Return value:**
- The requested variable.

**GRBModel.getVars()**

Retrieve an array of all variables in the model.

```java
GRBVar[] getVars ()
```

**Return value:**
- All variables in the model.

**GRBModel.optimize()**

Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the solution related attributes of the model. See the Attributes section in the Reference Manual for more information on attributes.

Please consult this section in the Reference Manual for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.
Note that this method will process all pending model modifications.

```java
void optimize()
```

**GRBModel.optimizeasync()**

Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations while optimization proceeds in the background. To check the state of the asynchronous optimization, query the `Status` attribute for the model. A value of `IN_PROGRESS` indicates that the optimization has not yet completed. When you are done with your foreground tasks, you must call `sync` to sync your foreground program with the asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below). Any other calls on the running model, or on any other models that were built within the same Gurobi environment, will fail with error code `OPTIMIZATION_IN_PROGRESS`.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the `Status` attribute while an asynchronous optimization is in progress. The other attributes that can be queried are: `ObjVal`, `ObjBound`, `IterCount`, `NodeCount`, and `BarIterCount`. In each case, the returned value reflects progress in the optimization to that point. Any attempt to query the value of an attribute not on this list will return an `OPTIMIZATION_IN_PROGRESS` error.

```java
void optimizeasync()
```

**GRBModel.optimizeBatch()**

Submit a new batch request to the Cluster Manager. Returns the `BatchID` (a string), which uniquely identifies the job in the Cluster Manager and can be used to query the status of this request (from this program or from any other). Once the request has completed, the `BatchID` can also be used to retrieve the associated solution. To submit a batch request, you must tag at least one element of the model by setting one of the `VTag`, `CTag` or `QCTag` attributes. For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

```java
String optimizeBatch()
```

**Return value:**

A unique string identifier for the batch request.
GRBModel.presolve()

Perform presolve on a model.

GRBModel presolve ( )

Return value:
Presolved version of original model.

GRBModel.read()

This method is the general entry point for importing data from a file into a model. It can be used to read basis files for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by the file suffix. File formats are described in the File Formats section of the Reference Manual.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

void read ( String filename )

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel.remove()

Remove a variable, constraint, or SOS from a model.

void remove ( GRBConstr constr )

Remove a linear constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
constr: The linear constraint to remove.

void remove ( GRBGenConstr genconstr )

Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
genconstr: The general constraint to remove.

| void remove ( GRBQConstr qconstr ) |

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
  qconstr: The quadratic constraint to remove.

| void remove ( GRBSOS sos ) |

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
  sos: The SOS constraint to remove.

| void remove ( GRBVar var ) |

Remove a variable from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
  var: The variable to remove.

GRBModel.reset()

Reset the model to an unsolved state, discarding any previously computed solution information.

| void reset ( ) |

| void reset ( int clearall ) |

Arguments:
  clearall: Should additional information such as MIP starts, variable hints, branching priorities, lazy flags, and partition information be cleared?
**GRBModel.setCallback()**

Set the callback object for a model. The `callback()` method on this object will be called periodically from the Gurobi solver. You will have the opportunity to obtain more detailed information about the state of the optimization from this callback. See the documentation for `GRBCallback` for additional information.

Note that a model can only have a single callback method, so this call will replace an existing callback.

```java
void setCallback (GRBCallback cb)
```

**Arguments:**
- `cb`: New callback object. To disable a previously set callback, call this method with a `null` argument.

**GRBModel.set()**

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, or for arrays of constraint or variable attributes.

```java
void set (GRB.DoubleParam param, double newval)
```

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through `GRBEnv.set`) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- `param`: The parameter being modified.
- `newval`: The desired new value for the parameter.

```java
void set (GRB.IntParam param, int newval)
```

Set the value of an int-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through `GRBEnv.set`) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- `param`: The parameter being modified.
- `newval`: The desired new value for the parameter.

```java
void set (GRB.StringParam param, String newval)
```
Set the value of a string-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e., through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- `param`: The parameter being modified.
- `newval`: The desired new value for the parameter.

```java
void set (String param,
 String newval)
```

Set the value of any parameter using strings alone.

The difference between setting a parameter on a model and setting it on an environment (i.e., through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter modifies the parameter for every model that is subsequently built using that environment (and leaves the parameter unchanged for models that were previously built using that environment).

**Arguments:**
- `param`: The name of the parameter being modified.
- `newval`: The desired new value for the parameter.

```java
void set (GRB.CharAttr attr,
 GRBVar[] vars,
 char[] newvals)
```

Set a char-valued variable attribute for an array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: The variables whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input variable.

```java
void set (GRB.CharAttr attr,
 GRBVar[] vars,
 char[] newvals,
 int start,
 int len)
```

Set a char-valued variable attribute for a sub-array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: A one-dimensional array of variables whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input variable.
- `start`: The index of the first variable of interest in the list.
- `len`: The number of variables.

```java
void set (GRB.CharAttr attr,
 GRBVar[][] vars,
 char[][] newvals)
```
Set a char-valued variable attribute for a two-dimensional array of variables.

**Arguments:**
- **attr**: The attribute being modified.
- **vars**: A two-dimensional array of variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.

```java
void set (GRB.CharAttr attr,
 GRBVar[][] vars,
 char[][] newvals)
```

Set a char-valued variable attribute for a three-dimensional array of variables.

**Arguments:**
- **attr**: The attribute being modified.
- **vars**: A three-dimensional array of variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.

```java
void set (GRB.CharAttr attr,
 GRBConstr[] constrs,
 char[] newvals)
```

Set a char-valued constraint attribute for an array of constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **constrs**: The constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input constraint.

```java
void set (GRB.CharAttr attr,
 GRBConstr[] constrs,
 char[] newvals,
 int start,
 int len)
```

Set a char-valued constraint attribute for a sub-array of constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **constrs**: A one-dimensional array of constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input constraint.
- **start**: The index of the first constraint of interest in the list.
- **len**: The number of constraints.

```java
void set (GRB.CharAttr attr,
 GRBConstr[][] constrs,
 char[][] newvals)
```

Set a char-valued constraint attribute for a two-dimensional array of constraints.

**Arguments:**
- **attr**: The attribute being modified.
**void set ( GRB.CharAttr attr,**
**GRBConstr[][][] constrs,**
**char[][][] newvals )**

Set a char-valued constraint attribute for a three-dimensional array of constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **constrs**: A three-dimensional array of constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input constraint.

**void set ( GRB.CharAttr attr,**
**GRBQConstr[] qconstrs,**
**char[] newvals )**

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **qconstrs**: The quadratic constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input quadratic constraint.

**void set ( GRB.CharAttr attr,**
**GRBQConstr[] qconstrs,**
**char[] newvals,**
**int start,**
**int len )**

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **qconstrs**: A one-dimensional array of quadratic constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input quadratic constraint.
- **start**: The index of the first quadratic constraint of interest in the list.
- **len**: The number of quadratic constraints.

**void set ( GRB.CharAttr attr,**
**GRBQConstr[][] qconstrs,**
**char[][] newvals )**

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **qconstrs**: A two-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.CharAttr attr,
 GRBQConstr[][][] qconstrs,
 char[][][] newvals)
```

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

**Arguments:**
- **attr**: The attribute being modified.
- **qconstrs**: A three-dimensional array of quadratic constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.DoubleAttr attr,
 double newval)
```

Set the value of a double-valued model attribute.

**Arguments:**
- **attr**: The attribute being modified.
- **newval**: The desired new value for the attribute.

```c
void set (GRB.DoubleAttr attr,
 GRBVar[] vars,
 double[] newvals)
```

Set a double-valued variable attribute for an array of variables.

**Arguments:**
- **attr**: The attribute being modified.
- **vars**: The variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.

```c
void set (GRB.DoubleAttr attr,
 GRBVar[] vars,
 double[] newvals,
 int start,
 int len)
```

Set a double-valued variable attribute for a sub-array of variables.

**Arguments:**
- **attr**: The attribute being modified.
- **vars**: A one-dimensional array of variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.
- **start**: The index of the first variable of interest in the list.
- **len**: The number of variables.
void set ( GRB.DoubleAttr attr,
          GRBVar[][] vars,
          double[][] newvals )
Set a double-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set ( GRB.DoubleAttr attr,
          GRBVar[][][] vars,
          double[][][] newvals )
Set a double-valued variable attribute for a three-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set ( GRB.DoubleAttr attr,
          GRBConstr[] constrs,
          double[] newvals )
Set a double-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set ( GRB.DoubleAttr attr,
          GRBConstr[] constrs,
          double[] newvals,
          int start,
          int len )
Set a double-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void set ( GRB.DoubleAttr attr,
          GRBConstr[][][] constrs,
          double[][][] newvals )
Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

```java
void set (GRB.DoubleAttr attr,
 GRBConstr[][][] constrs,
 double[][][] newvals)
```
Set a double-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

```java
void set (GRB.DoubleAttr attr,
 GRBQConstr[] qconstrs,
 double[] newvals)
```
Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

```java
void set (GRB.DoubleAttr attr,
 GRBQConstr[] qconstrs,
 double[] newvals,
 int start,
 int len)
```
Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

```java
void set (GRB.DoubleAttr attr,
 GRBQConstr[][] qconstrs,
 double[][] newvals)
```
Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.DoubleAttr attr,
 GRBQConstr[][][] qconstrs,
 double[][][] newvals)
```

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

**Arguments:**
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.IntAttr attr,
 int newval)
```

Set the value of an int-valued model attribute.

**Arguments:**
attr: The attribute being modified.
newval: The desired new value for the attribute.

```c
void set (GRB.IntAttr attr,
 GRBVar[] vars,
 int[] newvals)
```

Set an int-valued variable attribute for an array of variables.

**Arguments:**
attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

```c
void set (GRB.IntAttr attr,
 GRBVar[] vars,
 int[] newvals,
 int start,
 int len)
```

Set an int-valued variable attribute for a sub-array of variables.

**Arguments:**
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

```c
void set (GRB.IntAttr attr,
 GRBVar[] [] vars,
 int[] [] newvals)
```
Set an int-valued variable attribute for a two-dimensional array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: A two-dimensional array of variables whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input variable.

```c
void set (GRB.IntAttr attr,
 GRBVar[] [] [] vars,
 int[] [] [] newvals)
```
Set an int-valued variable attribute for a three-dimensional array of variables.

**Arguments:**
- `attr`: The attribute being modified.
- `vars`: A three-dimensional array of variables whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input variable.

```c
void set (GRB.IntAttr attr,
 GRBConstr[] constrs,
 int[] newvals)
```
Set an int-valued constraint attribute for an array of constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: The constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input constraint.

```c
void set (GRB.IntAttr attr,
 GRBConstr[] constrs,
 int[] newvals,
 int start,
 int len)
```
Set an int-valued constraint attribute for a sub-array of constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `constrs`: A one-dimensional array of constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input constraint.
- `start`: The index of the first constraint of interest in the list.
- `len`: The number of constraints.
void set ( GRB.IntAttr attr,
             GRBConstr[][] constrs,
             int[] [] newvals )
Set an int-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
  attr: The attribute being modified.
  constrs: A two-dimensional array of constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input constraint.

void set ( GRB.IntAttr attr,
             GRBConstr[][][] constrs,
             int[][] [] newvals )
Set an int-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
  attr: The attribute being modified.
  constrs: A three-dimensional array of constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input constraint.

void set ( GRB.StringAttr attr,
            String newval )
Set the value of a String-valued model attribute.

Arguments:
  attr: The attribute being modified.
  newval: The desired new value for the attribute.

void set ( GRB.StringAttr attr,
            GRBVar[] vars,
            String[] newvals )
Set a String-valued variable attribute for an array of variables.

Arguments:
  attr: The attribute being modified.
  vars: The variables whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input variable.

void set ( GRB.StringAttr attr,
            GRBVar[] vars,
            String[] newvals,
            int start,
            int len )
Set a String-valued variable attribute for a sub-array of variables.

Arguments:
  attr: The attribute being modified.
  vars: A one-dimensional array of variables whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input variable.
The index of the first variable of interest in the list.

len: The number of variables.

```c
void set (GRB.StringAttr attr,
 GRBVar[][] vars,
 String[][] newvals)
```

Set a String-valued variable attribute for a two-dimensional array of variables.

**Arguments:**

- **attr**: The attribute being modified.
- **vars**: A two-dimensional array of variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.

```c
void set (GRB.StringAttr attr,
 GRBVar[][][] vars,
 String[][][] newvals)
```

Set a String-valued variable attribute for a three-dimensional array of variables.

**Arguments:**

- **attr**: The attribute being modified.
- **vars**: A three-dimensional array of variables whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input variable.

```c
void set (GRB.StringAttr attr,
 GRBConstr[] constrs,
 String[] newvals)
```

Set a String-valued constraint attribute for an array of constraints.

**Arguments:**

- **attr**: The attribute being modified.
- **constrs**: The constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input constraint.

```c
void set (GRB.StringAttr attr,
 GRBConstr[] constrs,
 String[] newvals,
 int start,
 int len)
```

Set a String-valued constraint attribute for a sub-array of constraints.

**Arguments:**

- **attr**: The attribute being modified.
- **constrs**: A one-dimensional array of constraints whose attribute values are being modified.
- **newvals**: The desired new values for the attribute for each input constraint.
- **start**: The index of the first constraint of interest in the list.
- **len**: The number of constraints.
void set ( GRB.StringAttr attr,
         GRBConstr[][] constrs,
         String[][] newvals )
Set a String-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
  attr: The attribute being modified.
  constrs: A two-dimensional array of constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input constraint.

void set ( GRB.StringAttr attr,
         GRBConstr[][][] constrs,
         String[][][] newvals )
Set a String-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
  attr: The attribute being modified.
  constrs: A three-dimensional array of constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input constraint.

void set ( GRB.StringAttr attr,
         GRBQConstr[] qconstrs,
         String[] newvals )
Set a String-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
  attr: The attribute being modified.
  qconstrs: The quadratic constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input quadratic constraint.

void set ( GRB.StringAttr attr,
         GRBQConstr[][] qconstrs,
         String[][] newvals,
         int start,
         int len )
Set a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
  attr: The attribute being modified.
  qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
  newvals: The desired new values for the attribute for each input quadratic constraint.
  start: The index of the first quadratic constraint of interest in the list.
  len: The number of quadratic constraints.
Set a String-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `qconstrs`: A two-dimensional array of quadratic constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.StringAttr attr,
 GRBQConstr[][] qconstrs,
 String[][] newvals)
```

Set a String-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `qconstrs`: A three-dimensional array of quadratic constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input quadratic constraint.

```c
void set (GRB.StringAttr attr,
 GRBGenConstr[] genconstrs,
 String[] newvals)
```

Set a String-valued general constraint attribute for an array of general constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `genconstrs`: The general constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input general constraint.

```c
void set (GRB.StringAttr attr,
 GRBGenConstr[] genconstrs,
 String[] newvals,
 int start,
 int len)
```

Set a String-valued general constraint attribute for a sub-array of general constraints.

**Arguments:**
- `attr`: The attribute being modified.
- `genconstrs`: A one-dimensional array of general constraints whose attribute values are being modified.
- `newvals`: The desired new values for the attribute for each input general constraint.
- `start`: The index of the first general constraint of interest in the list.
- `len`: The number of general constraints.

```c
void set (GRB.StringAttr attr,
 GRBGenConstr[][] genconstrs,
 String[][] newvals)
```
Set a String-valued general constraint attribute for a two-dimensional array of general constraints.

Arguments:
attr: The attribute being modified.
genconstrs: A two-dimensional array of general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

```java
void set (GRB.StringAttr attr,
 GRBGenConstr[][][] genconstrs,
 String[][][] newvals)
```

Set a String-valued general constraint attribute for a three-dimensional array of general constraints.

Arguments:
attr: The attribute being modified.
genconstrs: A three-dimensional array of general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

```java
void set (GRB.StringAttr attr,
 GRBGenConstr[][][][] genconstrs,
 String[][][][] newvals)
```

#### GRBModel.setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the `Obj` variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the `Obj` attribute can be used to modify individual linear terms.

```java
void setObjective (GRBExpr expr,
 int sense)
```

Set the model objective, and the objective sense (`GRB.MINIMIZE` for minimization, `GRB.MAXIMIZE` for maximization).

Arguments:
expr: New model objective.
sense: New optimization sense (`GRB.MINIMIZE` for minimization, `GRB.MAXIMIZE` for maximization).

```java
void setObjective (GRBExpr expr)
```

Set the model objective. The sense of the objective is determined by the value of the `ModelSense` attribute.

Arguments:
expr: New model objective.
GRBModel.setObjectiveN()

```java
void setObjectiveN (GRBLinExpr expr,
 int index,
 int priority,
 double weight,
 double abstol,
 double reltol,
 String name)
```

Set an alternative optimization objective equal to a linear expression.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN attribute can be used to modify individual terms.

**Arguments:**
- `expr`: New alternative objective.
- `index`: Index for new objective. If you use an index of 0, this routine will change the primary optimization objective.
- `priority`: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
- `weight`: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
- `abstol`: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this objective.
- `reltol`: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this objective.
- `name`: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBModel.setPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single variable. Specifically, the `x` and `y` arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

```java
void setPWLObj (GRBVar var,
 double[] x,
 double[] y)
```

Set the piecewise-linear objective function for a variable.

**Arguments:**
- `var`: The variable whose objective function is being set.
x: The $x$ values for the points that define the piecewise-linear function. Must be in non-decreasing order.

y: The $y$ values for the points that define the piecewise-linear function.

GRBModel.singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario model.

Return value:
Model for a single scenario.

GRBModel.sync()

Wait for a previous asynchronous optimization call to complete.

Calling optimizeasync returns control to the calling routine immediately. The caller can perform other computations while optimization proceeds, and can check on the progress of the optimization by querying various model attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You must call sync before the corresponding model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other words, exceptions thrown by this method are those that optimize itself would have thrown, had the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

void sync ()

GRBModel.terminate()

Generate a request to terminate the current optimization. This method can be called at any time during an optimization.

void terminate ()

GRBModel.tune()

Perform an automated search for parameter settings that improve performance. Upon completion, this method stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of the TuneResultCount attribute. The actual settings can be retrieved using getTuneResult.
Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning tool.

```java
void tune()
```

**GRBModel.update()**

Process any pending model modifications.

```java
void update()
```

**GRBModel.write()**

This method is the general entry point for writing optimization data to a file. It can be used to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. However, writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.

```java
void write(String filename)
```

**Arguments:**

- `filename`: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes are `.mps`, `.rew`, `.lp`, or `.rlp` for writing the model itself, `.ilp` for writing just the IIS associated with an infeasible model (see `GRBModel.computeIIS` for further information), `.sol` for writing the current solution, `.mst` for writing a start vector, `.hnt` for writing a hint file, `.bas` for writing an LP basis, `.prm` for writing modified parameter settings, `.attr` for writing model attributes, or `.json` for writing solution information in JSON format. If your system has compression utilities installed (e.g., `7z` or `zip` for Windows, and `gzip`, `bzip2`, or `unzip` for Linux or Mac OS), then the files can be compressed, so additional suffixes of `.gz`, `.bz2`, or `.7z` are accepted.
4.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a variable object by adding a variable to a model (using GRBModel.addVar), rather than by using a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information can be queried by calling get(GRB.DoubleAttr.X). Note, however, that it is generally more efficient to query attributes for a set of variables at once. This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBVar.get()

Query the value of a variable attribute.

char get ( GRB.CharAttr attr )

Query the value of a char-valued attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

double get ( GRB.DoubleAttr attr )

Query the value of a double-valued attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

int get ( GRB.IntAttr attr )

Query the value of an int-valued attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

String get ( GRB.StringAttr attr )

Query the value of a string-valued attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.
GRBVar.index()

| int   index ( ) |
|--------|----------------|
This method returns the current index, or order, of the variable in the underlying constraint matrix.

**Return value:**
- $= -2$: removed
- $= -1$: not in model
- $\geq 0$: index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.

GRBVar.sameAs()

| boolean sameAs ( GRBVar otherVar ) |

Check whether two variable objects refer to the same variable.

**Arguments:**
- `otherVar`: The other variable.

**Return value:**
Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.set()

Set the value of a variable attribute.

| void set ( GRB.CharAttr attr, char newval ) |
Set the value of a char-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newval`: The desired new value of the attribute.

| void set ( GRB.DoubleAttr attr, double newval ) |
Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newval`: The desired new value of the attribute.

| void set ( GRB.IntAttr attr, int newval ) |
Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

```java
void set (GRB.StringAttr attr,
 String newval)
```

Set the value of a string-valued attribute.

Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.
4.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object by adding a constraint to a model (using GRBModel.addConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-hand sides can be queried by calling \texttt{get(GRB.DoubleAttr.RHS)}. Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel.get).

\textbf{GRBConstr.get()}

Query the value of a constraint attribute.

\begin{verbatim}
char get ( GRB.CharAttr attr )

Query the value of a char-valued attribute.
\textbf{Arguments:}
\hspace{1em} attr: The attribute being queried.
\textbf{Return value:}
\hspace{1em} The current value of the requested attribute.
\end{verbatim}

\begin{verbatim}
double get ( GRB.DoubleAttr attr )

Query the value of a double-valued attribute.
\textbf{Arguments:}
\hspace{1em} attr: The attribute being queried.
\textbf{Return value:}
\hspace{1em} The current value of the requested attribute.
\end{verbatim}

\begin{verbatim}
int get ( GRB.IntAttr attr )

Query the value of an int-valued attribute.
\textbf{Arguments:}
\hspace{1em} attr: The attribute being queried.
\textbf{Return value:}
\hspace{1em} The current value of the requested attribute.
\end{verbatim}

\begin{verbatim}
String get ( GRB.StringAttr attr )

Query the value of a string-valued attribute.
\textbf{Arguments:}
\hspace{1em} attr: The attribute being queried.
\textbf{Return value:}
\hspace{1em} The current value of the requested attribute.
\end{verbatim}
GRBConstr.index()

```java
int index ()
This method returns the current index, or order, of the constraint in the underlying constraint matrix.
```

Return value:
- = -2: removed
- = -1: not in model
- ≥ 0: index of the constraint in the model
Note that the index of a constraint may change after subsequent model modifications.

GRBConstr.sameAs()

```java
boolean sameAs (GRBConstr otherConstr)
Check whether two constraint objects refer to the same constraint.
Arguments:
otherConstr: The other constraint.
Return value:
Boolean result indicates whether the two constraint objects refer to the same model constraint.
```

GRBConstr.set()

Set the value of a constraint attribute.

```java
void set (GRB.CharAttr attr,
 char newval)
Set the value of a char-valued attribute.
Arguments:
attr: The attribute being modified.
newval: The desired new value of the attribute.
```

```java
void set (GRB.DoubleAttr attr,
 double newval)
Set the value of a double-valued attribute.
Arguments:
attr: The attribute being modified.
newval: The desired new value of the attribute.
```

```java
void set (GRB.IntAttr attr,
 int newval)
```
Set the value of an int-valued attribute.

**Arguments:**
- **attr**: The attribute being modified.
- **newval**: The desired new value of the attribute.

```java
void set (GRB.StringAttr attr, String newval)
```

Set the value of a string-valued attribute.

**Arguments:**
- **attr**: The attribute being modified.
- **newval**: The desired new value of the attribute.
4.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create a quadratic constraint object by adding a quadratic constraint to a model (using GRBModel.addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set constraint attributes. For example, quadratic constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBQConstr.get()

Query the value of a quadratic constraint attribute.

```c

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.
```

```c

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.
```

```c

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.
```

```c

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.
```
**GRBQConstr.set()**

Set the value of a quadratic constraint attribute.

```c
void set (GRB.CharAttr attr,
 char newval)
```

Set the value of a char-valued attribute.

**Arguments:**
- *attr*: The attribute being modified.
- *newval*: The desired new value of the attribute.

```c
void set (GRB.DoubleAttr attr,
 double newval)
```

Set the value of a double-valued attribute.

**Arguments:**
- *attr*: The attribute being modified.
- *newval*: The desired new value of the attribute.

```c
void set (GRB.StringAttr attr,
 String newval)
```

Set the value of a string-valued attribute.

**Arguments:**
- *attr*: The attribute being modified.
- *newval*: The desired new value of the attribute.
4.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS object by adding an SOS constraint to a model (using GRBModel.addSOS), rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the GRBModel.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.get method.

GRBSOS.get()

Query the value of an SOS attribute.

```java
int get (GRB.IntAttr attr)
```

**Arguments:**

- `attr`: The attribute being queried.

**Return value:**

The current value of the requested attribute.
4.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular model. You create a general constraint object by adding a general constraint to a model (using one of the GRBModel.addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set constraint attributes. For example, general constraint types can be queried by calling get(GRB.IntAttr.GenConstrType). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBGenConstr.get()

Query the value of a general constraint attribute.

```
double get (GRB.DoubleAttr attr)
```

Query the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```
int get (GRB.IntAttr attr)
```

Query the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

```
String get (GRB.StringAttr attr)
```

Query the value of a string-valued attribute.

**Arguments:**
- `attr`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

GRBGenConstr.set()

Set the value of a general constraint attribute.

```
void set (GRB.DoubleAttr attr,
 String newval)
```
Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newval`: The desired new value of the attribute.

```java
void set (GRB.IntAttr attr,
 String newval)
```

Set the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newval`: The desired new value of the attribute.

```java
void set (GRB.StringAttr attr,
 String newval)
```

Set the value of a string-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newval`: The desired new value of the attribute.
4.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.getValue()

Compute the value of an expression for the current solution.

```java
<table>
<thead>
<tr>
<th>double getValue ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return value:</td>
</tr>
<tr>
<td>Value of the expression for the current solution.</td>
</tr>
</tbody>
</table>
```
4.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

You generally build linear expressions by starting with an empty expression (using the GRBLinExpr constructor), and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms, or multAdd. Terms can also be removed from an expression, using remove.

Individual terms in a linear expression can be queried using the getVar, getCoef, and getConstant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.

```
GRBLinExpr GRBLinExpr()
Create an empty linear expression.

Return value:
An empty expression object.
```

```
GRBLinExpr GRBLinExpr(GRBLinExpr le)
Copy an existing linear expression.

Arguments:
le: Existing expression to copy.

Return value:
A copy of the input expression object.
```

GRBLinExpr.add()

Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the sum of itself and the argument expression.

```
void add(GRBLinExpr le)

Arguments:
le: Linear expression to add.
```
GRBLinExpr.addConstant()
Add a constant into a linear expression.

```java
void addConstant(double c)
```

**Arguments:**
- `c`: Constant to add to expression.

GRBLinExpr.addTerm()
Add a single term into a linear expression.

```java
void addTerm(double coeff,
 GRBVar var)
```

**Arguments:**
- `coeff`: Coefficient for new term.
- `var`: Variable for new term.

GRBLinExpr.addTerms()
Add new terms into a linear expression.

```java
void addTerms(double[] coeffs,
 GRBVar[] vars)
```

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays must be equal.

**Arguments:**
- `coeffs`: Coefficients for new terms.
- `vars`: Variables for new terms.

```java
void addTerms(double[] coeffs,
 GRBVar[] vars,
 int start,
 int len)
```

Add new terms into a linear expression. This signature allows you to use arrays to hold the coefficients and variables that describe the terms in an array without being forced to add a term for each entry in the array. The `start` and `len` arguments allow you to specify which terms to add.

**Arguments:**
- `coeffs`: Coefficients for new terms.
- `vars`: Variables for new terms.
- `start`: The first term in the list to add.
- `len`: The number of terms to add.
GRBLinExpr.clear()
Set a linear expression to 0.

void clear()

GRBLinExpr.getConstant()
Retrieve the constant term from a linear expression.

double getConstant()
Return value:
Constant from expression.

GRBLinExpr.getCoeff()
Retrieve the coefficient from a single term of the expression.

double getCoeff(int i)
Arguments:
i: Index for coefficient of interest.
Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.getValue()
Compute the value of a linear expression for the current solution.

double getValue()
Return value:
Value of the expression for the current solution.

GRBLinExpr.getVar()
Retrieve the variable object from a single term of the expression.

GRBVar getVar(int i)
Arguments:
i: Index for term of interest.
Return value:
Variable for the term at index i in the expression.
**GRBLinExpr.multAdd()**

Add a constant multiple of one linear expression into another. Upon completion, the invoking linear expression is equal the sum of itself and the constant times the argument expression.

```java
void multAdd (double m,
 GRBLinExpr le)
```

**Arguments:**
- `m`: Constant multiplier for added expression.
- `le`: Linear expression to add.

**GRBLinExpr.remove()**

Remove a term from a linear expression.

```java
void remove (int i)
```

Remove the term stored at index `i` of the expression.

**Arguments:**
- `i`: The index of the term to be removed.

```java
boolean remove (GRBVar var)
```

Remove all terms associated with variable `var` from the expression.

**Arguments:**
- `var`: The variable whose term should be removed.

**Return value:**
Returns `true` if the variable appeared in the linear expression (and was removed).

**GRBLinExpr.size()**

Retrieve the number of terms in the linear expression (not including the constant).

```java
int size ()
```

**Return value:**
Number of terms in the expression.
4.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

You generally build quadratic expressions by starting with an empty expression (using the GRBQuadExpr constructor), and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms, or multAdd. Quadratic terms can be removed from a quadratic expression using remove.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoef methods. You can query the number of quadratic terms in the expression using the size method. To query the constant and linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression using getLinExpr, and then use the getConstant, getCoef, and getVar methods on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate terms are merged when creating the model objective from an expression, but they may be visible when inspecting individual quadratic terms in the expression (e.g., when using getVar1 and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create an empty quadratic expression, or copy an existing expression.

<table>
<thead>
<tr>
<th>GRBQuadExpr GRBQuadExpr ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an empty quadratic expression.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>An empty expression object.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBQuadExpr GRBQuadExpr ( GRBLinExpr le )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize a quadratic expression from an existing linear expression.</td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>le: Existing linear expression to copy.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>Quadratic expression object whose initial value is taken from the input linear expression.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBQuadExpr GRBQuadExpr ( GRBQuadExpr qe )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy an existing quadratic expression.</td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
</tr>
<tr>
<td>qe: Existing expression to copy.</td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
</tr>
<tr>
<td>A copy of the input expression object.</td>
</tr>
</tbody>
</table>
GRBQuadExpr.add()

Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression will be equal to the sum of itself and the argument expression.

```java
void add (GRBLinExpr le)
```

Add a linear expression.

**Arguments:**
- `le`: Linear expression to add.

```java
void add (GRBQuadExpr qe)
```

Add a quadratic expression.

**Arguments:**
- `qe`: Quadratic expression to add.

GRBQuadExpr.addConstant()

Add a constant into a quadratic expression.

```java
void addConstant (double c)
```

**Arguments:**
- `c`: Constant to add to expression.

GRBQuadExpr.addTerm()

Add a single term into a quadratic expression.

```java
void addTerm (double coeff,
 GRBVar var)
```

Add a single linear term \((\text{coeff} \times \text{var})\) into a quadratic expression.

**Arguments:**
- `coeff`: Coefficient for new term.
- `var`: Variable for new term.

```java
void addTerm (double coeff,
 GRBVar var1,
 GRBVar var2)
```

Add a single quadratic term \((\text{coeff} \times \text{var1} \times \text{var2})\) into a quadratic expression.

**Arguments:**
- `coeff`: Coefficient for new quadratic term.
- `var1`: First variable for new quadratic term.
- `var2`: Second variable for new quadratic term.
GRBQuadExpr.addTerms()

Add new terms into a quadratic expression.

```java
void addTerms (double[] coeffs,
 GRBVar[] vars)
```
Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument arrays must be equal.

**Arguments:**
- `coeffs`: Coefficients for new terms.
- `vars`: Variables for new terms.

```java
void addTerms (double[] coeffs,
 GRBVar[] vars,
 int start,
 int len)
```
Add new linear terms into a quadratic expression. This signature allows you to use arrays to hold the coefficients and variables that describe the linear terms in an array without being forced to add a term for each entry in the array. The `start` and `len` arguments allow you to specify which terms to add.

**Arguments:**
- `coeffs`: Coefficients for new terms.
- `vars`: Variables for new terms.
- `start`: The first term in the list to add.
- `len`: The number of terms to add.

```java
void addTerms (double[] coeffs,
 GRBVar[] vars1,
 GRBVar[] vars2)
```
Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three argument arrays must be equal.

**Arguments:**
- `coeffs`: Coefficients for new quadratic terms.
- `vars1`: First variables for new quadratic terms.
- `vars2`: Second variables for new quadratic terms.

```java
void addTerms (double[] coeffs,
 GRBVar[] vars1,
 GRBVar[] vars2,
 int start,
 int len)
```
Add new quadratic terms into a quadratic expression. This signature allows you to use arrays to hold the coefficients and variables that describe the terms in an array without being forced to
add a term for each entry in the array. The `start` and `len` arguments allow you to specify which terms to add.

**Arguments:**
- `coeffs`: Coefficients for new quadratic terms.
- `vars1`: First variables for new quadratic terms.
- `vars2`: Second variables for new quadratic terms.
- `start`: The first term in the list to add.
- `len`: The number of terms to add.

**GRBQuadExpr.clear()**
Set a quadratic expression to 0.

```java
void clear ()
```

**GRBQuadExpr.getCoeff()**
Retrieve the coefficient from a single quadratic term of the quadratic expression.

```java
double getCoeff (int i)
```

**Arguments:**
- `i`: Index for coefficient of interest.

**Return value:**
Coefficient for the quadratic term at index `i` in the expression.

**GRBQuadExpr.getLinExpr()**
A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the linear expression associated with the quadratic expression.

```java
GRBLinExpr getLinExpr ()
```

**Return value:**
Linear expression associated with the quadratic expression.

**GRBQuadExpr.getValue()**
Compute the value of a quadratic expression for the current solution.

```java
double getValue ()
```

**Return value:**
Value of the expression for the current solution.
**GRBQuadExpr.getVar1()**

Retrieve the first variable object associated with a single quadratic term from the expression.

```java
GRBVar getVar1(int i)
```

**Arguments:**
- `i`: Index for term of interest.

**Return value:**
- First variable for the quadratic term at index `i` in the quadratic expression.

**GRBQuadExpr.getVar2()**

Retrieve the second variable object associated with a single quadratic term from the expression.

```java
GRBVar getVar2(int i)
```

**Arguments:**
- `i`: Index for term of interest.

**Return value:**
- Second variable for the quadratic term at index `i` in the quadratic expression.

**GRBQuadExpr.multAdd()**

Add a constant multiple of one quadratic expression into another. Upon completion, the invoking quadratic expression is equal the sum of itself and the constant times the argument expression.

```java
void multAdd(double m,
 GRBLinExpr le)
```

**Arguments:**
- `m`: Constant multiplier for added expression.
- `le`: Linear expression to add.

```java
void multAdd(double m,
 GRBQuadExpr qe)
```

**Arguments:**
- `m`: Constant multiplier for added expression.
- `qe`: Quadratic expression to add.
GRBQuadExpr.remove()
Remove a term from a quadratic expression.

void remove ( int i )
Remove the quadratic term stored at index i of the expression.
Arguments:
i: The index of the quadratic term to be removed.

boolean remove ( GRBVar var )
Remove all quadratic terms associated with variable var from the expression.
Arguments:
var: The variable whose quadratic term should be removed.
Return value:
Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.size()
Retrieve the number of quadratic terms in the quadratic expression. Use GRBQuadExpr.getLinExpr to retrieve constant or linear terms from the quadratic expression.

int size ( )
Return value:
Number of quadratic terms in the expression.
4.11 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then adding terms. Terms can be added individually, using addTerm, or in groups, using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.

<table>
<thead>
<tr>
<th>GRBColumn</th>
<th>GRBColumn( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an empty column.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>An empty column object.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBColumn</th>
<th>GRBColumn( GRBColumn col )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy an existing column.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>col: Existing column object.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>A copy of the input column object.</td>
<td></td>
</tr>
</tbody>
</table>

GRBColumn.addTerm()

Add a single term into a column.

| void addTerm( double coeff, GRBConstr constr ) |
| **Arguments:** |
| coeff: Coefficient for new term. |
| constr: Constraint for new term. |

GRBColumn.addTerms()

Add new terms into a column.

| void addTerms( double[] coeffs, GRBConstr[] constrs ) |
Add a list of terms into a column. Note that the lengths of the two argument arrays must be equal.

**Arguments:**
- **coeffs**: Coefficients for added constraints.
- **constrs**: Constraints to add to column.

```java
void addTerms (double[] coeffs,
 GRBConstr[] constrs,
 int start,
 int len)
```

Add new terms into a column. This signature allows you to use arrays to hold the coefficients and constraints that describe the terms in an array without being forced to add an term for each member in the array. The `start` and `len` arguments allow you to specify which terms to add.

**Arguments:**
- **coeffs**: Coefficients for added constraints.
- **constrs**: Constraints to add to column.
- **start**: The first term in the list to add.
- **len**: The number of terms to add.

---

**GRBColumn.clear()**

Remove all terms from a column.

```java
void clear ()
```

---

**GRBColumn.getCoeff()**

Retrieve the coefficient from a single term in the column.

```java
double getCoeff (int i)
```

**Arguments:**
- **i**: Index for coefficient of interest.

**Return value:**
- Coefficient for the term at index `i` in the column.

---

**GRBColumn.getConstr()**

Retrieve the constraint object from a single term in the column.

```java
GRBConstr getConstr (int i)
```

**Arguments:**
- **i**: Index for term of interest.

**Return value:**
- Constraint for the term at index `i` in the column.
GRBColumn.remove()
Remove a single term from a column.

```java
void remove (int i)
```
Remove the term stored at index `i` of the column.

**Arguments:**
- `i`: The index of the term to be removed.

```java
boolean remove (GRBConstr constr)
```
Remove the term associated with constraint `constr` from the column.

**Arguments:**
- `constr`: The constraint whose term should be removed.

**Return value:**
- Returns `true` if the constraint appeared in the column (and was removed).

GRBColumn.size()
Retrieve the number of terms in the column.

```java
int size ()
```

**Return value:**
- Number of terms in the column.
4.12 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class and implement a **callback()** method. If you pass an object of this subclass to method `GRBModel.setCallback` before calling `GRBModel.optimize`, the **callback()** method of the class will be called periodically. Depending on where the callback is called from, you will be able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: **where**. You can query this variable from your **callback()** method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior of the Gurobi optimizer. A simple user callback function might call the `GRBCallback.getIntInfo` or `GRBCallback.getDoubleInfo` methods to produce a custom display, or perhaps to terminate optimization early (using `GRBCallback.abort`). More sophisticated MIP callbacks might use `GRBCallback.getNodeRel` or `GRBCallback.getSolution` to retrieve values from the solution to the current node, and then use `GRBCallback.addCut` or `GRBCallback.addLazy` to add a constraint to cut off that solution, or `GRBCallback.setSolution` to import a heuristic solution built from that solution. For multi-objective problems, you might use `GRBCallback.stopOneMultiObj` to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

You can look at the `Callback.java` example for details of how to use Gurobi callbacks.

---

**GRBCallback()**

Callback constructor.

```java
GRBCallback GRBCallback ()
```

**Return value:**

A callback object.

---

**GRBCallback.abort()**

Abort optimization. When the optimization stops, the **Status** attribute will be equal to `GRB.Status.INTERRUPTED`.

```java
void abort ()
```

---

**GRBCallback.addCut()**

Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked when the **where** member variable is equal to `GRB.CB_MIPNODE` (see the **Callback Codes** section in the Reference Manual for more information).
Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly, since they increase the size of the relaxation model that is solved at each node and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution at the current node, you should first call getNodeRel.

When adding your own cuts, you must set parameter PreCrush to value 1. This setting shuts off a few presolve reductions that sometimes prevent cuts on the original model from being applied to the presolved model.

Note that cutting planes added through this method must truly be cutting planes -- they can cut off continuous solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this restriction will lead to incorrect solutions.

```c
void addCut (GRBLinExpr lhsExpr,
 char sense,
 double rhs)
```

**Arguments:**
- `lhsExpr`: Left-hand side expression for new cutting plane.
- `sense`: Sense for new cutting plane (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhs`: Right-hand side value for new cutting plane.

**GRBCallback::addLazy()**

Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked when the `where` member variable is equal to `GRB.CB_MIPNODE` or `GRB.CB_MIPSOL` (see the Callback Codes section in the Reference Manual for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling `getSolution` from a `GRB.CB_MIPSOL` callback, or `getNodeRel` from a `GRB.CB_MIPNODE` callback), and then calling `addLazy()` to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

```c
void addLazy (GRBLinExpr lhsExpr,
 char sense,
 double rhs)
```

**Arguments:**
- `lhsExpr`: Left-hand side expression for new lazy constraint.
- `sense`: Sense for new lazy constraint (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhs`: Right-hand side value for new lazy constraint.
GRBCallback.getDoubleInfo()

Request double-valued callback information. The available information depends on the value of the where member. For information on possible values of where, and the double-valued information that can be queried for different values of where, please refer to the Callback Codes section of the Reference Manual.

```java
double getDoubleInfo (int what)
```

**Arguments:**

what: Information requested. Please refer to the list of Callback Codes in the Reference Manual for possible values.

**Return value:**

Value of requested callback information.

GRBCallback.getIntInfo()

Request int-valued callback information. The available information depends on the value of the where member. For information on possible values of where, and the int-valued information that can be queried for different values of where, please refer to the Callback Codes section in the Reference Manual.

```java
int getIntInfo (int what)
```

**Arguments:**

what: Information requested. Please refer to the list of Callback Codes in the Reference Manual for possible values.

**Return value:**

Value of requested callback information.

GRBCallback.getNodeRel()

Retrieve node relaxation solution values at the current node. Only available when the where member variable is equal to GRB.CB_MIPNODE, and GRB.CB_MIPNODE_STATUS is equal to GRB.Status.OPTIMAL.

```java
double getNodeRel (GRBVar v)
```

**Arguments:**

v: The variable whose value is desired.

**Return value:**

The value of the specified variable in the node relaxation for the current node.

```java
double[] getNodeRel (GRBVar[] xvars)
```
**Arguments:**
xvars: The list of variables whose values are desired.

**Return value:**
The values of the specified variables in the node relaxation for the current node.

double[][] getNodeRel ( GRBVar[][] xvars )

**Arguments:**
xvars: The array of variables whose values are desired.

**Return value:**
The values of the specified variables in the node relaxation for the current node.

**GRBCallback.getSolution()**
Retrieve values from the current solution vector. Only available when the where member variable is equal to GRB.CB_MIPSOL or GRB.CB_MULTIOBJ.

double getSolution ( GRBVar v )

**Arguments:**
v: The variable whose value is desired.

**Return value:**
The value of the specified variable in the current solution vector.

double[] getSolution ( GRBVar[] xvars )

**Arguments:**
xvars: The list of variables whose values are desired.

**Return value:**
The values of the specified variables in the current solution.

double[][] getSolution ( GRBVar[][] xvars )

**Arguments:**
xvars: The array of variables whose values are desired.

**Return value:**
The values of the specified variables in the current solution.
**GRBCallback.getStringInfo()**

Request string-valued callback information. The available information depends on the value of the `where` member. For information on possible values of `where`, and the string-valued information that can be queried for different values of `where`, please refer to the Callback Codes section of the Reference Manual.

```java
String getStringInfo (int what)
```

**Arguments:**

**Return value:**
Value of requested callback information.

**GRBCallback.setSolution()**

Import solution values for a heuristic solution. Only available when the `where` member variable is equal to `GRB.CB_MIPNODE`.

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use this method to specify variable values. You can make multiple calls to `setSolution` from one callback invocation to specify values for multiple sets of variables. After the callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for variables whose values were left undefined. You can also optionally call `useSolution` within your callback function to try to immediately compute a feasible solution from the specified values.

```java
void setSolution (GRBVar v, double val)
```

**Arguments:**
- `v`: The variable whose values is being set.
- `val`: The value of the variable in the new solution.

```java
void setSolution (GRBVar[] xvars, double[] sol)
```

**Arguments:**
- `xvars`: The variables whose values are being set.
- `sol`: The desired values of the specified variables in the new solution.

**GRBCallback.stopOneMultiObj()**

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process. Only available for multi-objective MIP models and when the `where` member variable is not equal to `GRB.CB_MULTIOBJ` (see the Callback Codes section for more information).
You would typically stop a multi-objective optimization step by querying the last finished number of multi-objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if any) as shown in the following example:

**Example usage:**

```java
import gurobi.*;

public class Callback extends GRBCallback {
 private int objcnt;
 private long starttime;

 protected void callback() {
 try {
 if (where == GRB.CB_MULTIOBJ) {
 /* get current objective number */
 objcnt = getIntInfo(GRB.CB_MULTIOBJ_OBJCNT);

 /* reset start time to current time */
 starttime = System.currentTimeMillis();
 }
 } else if (System.currentTimeMillis() - starttime > BIG || /* takes too long or good enough */) {
 /* stop only this optimization step */
 stopOneMultiObj(objcnt);
 }
 }
}
```

You should refer to the section on **Multiple Objectives** for information on how to specify multiple objective functions and control the trade-off between them.

---

**void stopOneMultiObj ( int objcnt )**

**Arguments:**

**objnum**: The number of the multi-objective optimization step to interrupt. For processes running locally, this argument can have the special value -1, meaning to stop the current step.

**GRBCallback.useSolution()**

Once you have imported solution values using `setSolution`, you can optionally call `useSolution` to immediately use these values to try to compute a heuristic solution.

**double useSolution ( )**
Return value:

The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved solution is found).
4.13 GRBException

Gurobi exception object. This is a sub-class of the Java Exception class. A number of useful methods, including getMessage() and printStackTrace(), are inherited from the parent class. For a list of parent class methods in Java 1.5, visit this site.

GRBException()

Exception constructor.

<table>
<thead>
<tr>
<th>GRBException</th>
<th>GRBException ( int errcode )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Gurobi exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>errcode: Error code for exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>An exception object.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBException</th>
<th>GRBException ( String errmsg )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Gurobi exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>errmsg: Error message for exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>An exception object.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRBException</th>
<th>GRBException ( String errmsg, int errcode )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Gurobi exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Arguments:</strong></td>
<td></td>
</tr>
<tr>
<td>errmsg: Error message for exception.</td>
<td></td>
</tr>
<tr>
<td>errcode: Error code for exception.</td>
<td></td>
</tr>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>An exception object.</td>
<td></td>
</tr>
</tbody>
</table>

GRBException.getErrorCode()

Retrieve the error code associated with a Gurobi exception.

<table>
<thead>
<tr>
<th>int</th>
<th>getErrorCode ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Return value:</strong></td>
<td></td>
</tr>
<tr>
<td>The error code associated with the exception.</td>
<td></td>
</tr>
</tbody>
</table>
4.14 GRBBatch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and later check on the status of the model and retrieve its solution. For more information, please refer to the Batch Optimization section.

Commonly used methods on the batch object include update (refresh attributes from the Cluster Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted or failed batch request), discard (remove the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

- **BatchID**: Unique ID for the batch request.
- **BatchStatus**: Current optimization status for the batch request. Status values are described in the Batch Status Code section.
- **BatchErrorCode**: Last error code.
- **BatchErrorMessage**: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are only updated when you create a client-side batch object or when you explicitly update this cache, which can be done by calling update.

While the Java garbage collector will eventually collect an unused GRBBatch object, the vast majority of the memory associated with a model is stored outside of the Java heap. As a result, the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We recommend that you call GRBBatch.dispose when you are done with the batch.

**GRBBatch()**

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and Server-Password have been set appropriately), this function returns a GRBBatch object. With it, you can query the current status of the associated batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization section for details and examples.

```java
GRBBatch GRBBatch (GRBenv env,
 String batchID)
```

**Arguments:**
- env: The environment in which the new batch object should be created.
- batchID: ID of the batch request for which you want to access status and other information.

**Return value:**
- New batch object.

**Example usage:**
// Create Batch object
GRBBatch batch = new GRBBatch(env, batchid);

GRBBatch.abort()

<table>
<thead>
<tr>
<th>void abort ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.</td>
</tr>
<tr>
<td>Example usage:</td>
</tr>
<tr>
<td>// Request to abort the batch</td>
</tr>
<tr>
<td>batch.abort();</td>
</tr>
</tbody>
</table>

GRBBatch.discard()

<table>
<thead>
<tr>
<th>void discard ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>This method instructs the Cluster Manager to remove all information related to the batch request in question, including the stored solution if available. Further queries for the associated batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later on.</td>
</tr>
<tr>
<td>Example usage:</td>
</tr>
<tr>
<td>try {</td>
</tr>
<tr>
<td>// Request to erase input and output data related to this batch</td>
</tr>
<tr>
<td>batch.discard();</td>
</tr>
</tbody>
</table>

GRBBatch.dispose()

<table>
<thead>
<tr>
<th>void dispose ( )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free all resources associated with this Batch object. After this method is called, this Batch object must no longer be used.</td>
</tr>
<tr>
<td>Example usage:</td>
</tr>
<tr>
<td>// Dispose resources</td>
</tr>
<tr>
<td>batch.dispose();</td>
</tr>
</tbody>
</table>
GRBBatch.getJSONSolution()

```java
void getJSONSolution ()

This function retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Example usage:

```java
// print JSON solution into string
System.out.println("JSON solution:" + batch.getJSONSolution());
```

GRBBatch.get()

Query the value of an attribute.

```java
int get ( GRB.IntAttr attr )

Query the value of an int-valued batch attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.
```

```java
String get ( GRB.StringAttr attr )

Query the value of a string-valued batch attribute.

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.
```

GRBBatch.retry()

```java
void retry ()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

Example usage:

```java
// Retry the batch job
batch.retry();
```
**GRBBatch.update()**

```java
void update()
```

All Batch attribute values are cached locally, so queries return the value received during the last communication with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the Cluster Manager (which involves network communication).

**Example usage:**

```java
// Update local attributes
batch.update();
```

**GRBBatch.writeJSONSolution()**

```java
void writeJSONSolution(String filename)
```

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is returned in a gzip-compressed JSON file. The file name you provide must end with a `.json.gz` extension. The JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

**Arguments:**
- `filename`: Name of file where the solution should be stored (in JSON format).

**Example usage:**

```java
// save solution into a file
batch.writeJSONSolution("batch-sol.json.gz");
```
4.15 GRB

Class for Java enums and constants. The enums are used to get or set Gurobi attributes or parameters.

Constants

The following list contains the set of constants needed by the Gurobi Java interface. You would refer to them using a GRB prefix (e.g., GRB.Status.OPTIMAL).

```java
// Model-status-codes

public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;

public class Status {
 public static final int LOADED = 1;
 public static final int OPTIMAL = 2;
 public static final int INFEASIBLE = 3;
 public static final int INF_OR_UNBD = 4;
 public static final int UNBOUNDED = 5;
 public static final int CUTTOFF = 6;
 public static final int ITERATION_LIMIT = 7;
 public static final int NODE_LIMIT = 8;
 public static final int TIME_LIMIT = 9;
 public static final int SOLUTION_LIMIT = 10;
 public static final int INTERRUPTED = 11;
 public static final int NUMERIC = 12;
 public static final int SUBOPTIMAL = 13;
 public static final int INPROGRESS = 14;
 public static final int USER_OBJ_LIMIT = 15;
}

// BatchStatus codes

public static final int CREATED = 1;
public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;

public class BatchStatus {
 public static final int CREATED = 1;
```
public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;
}

// Version numbers

public static final int VERSION_MAJOR = 9;
public static final int VERSION_MINOR = 0;
public static final int VERSION_TECHNICAL = 1;

// Basis status info

public static final int BASIC = 0;
public static final int NONBASIC_LOWER = -1;
public static final int NONBASIC_UPPER = -2;
public static final int SUPERBASIC = -3;

// Constraint senses

public static final char LESS_EQUAL = '<';
public static final char GREATER_EQUAL = '>';
public static final char EQUAL = '=';

// Variable types

public static final char CONTINUOUS = 'C';
public static final char BINARY = 'B';
public static final char INTEGER = 'I';
public static final char SEMICONT = 'S';
public static final char SEMIINT = 'N';

// Objective sense

public static final int MINIMIZE = 1;
public static final int MAXIMIZE = -1;

// SOS types

public static final int SOS_TYPE1 = 1;
public static final int SOS_TYPE2 = 2;

// General constraint types

public static final int GENCONSTR_MAX = 0;
public static final int GENCONSTR_MIN = 1;
public static final int GENCONSTR_ABS = 2;
public static final int GENCONSTR_AND = 3;
public static final int GENCONSTR_OR = 4;
public static final int GENCONSTR_INDICATOR = 5;
public static final int GENCONSTR_PWLS = 6;
public static final int GENCONSTR_POLY = 7;
public static final int GENCONSTR_EXP = 8;
public static final int GENCONSTR_EXPAS = 9;
public static final int GENCONSTR_LOG = 10;
public static final int GENCONSTR_LOGAS = 11;
public static final int GENCONSTR_POW = 12;
public static final int GENCONSTR_SIN = 13;
public static final int GENCONSTR_COS = 14;
public static final int GENCONSTR_TAN = 15;

// Numeric constants
public static final double INFINITY = 1e100;
public static final double UNDEFINED = 1e101;

// Other constants
public static final int DEFAULT_CS_PORT = 61000;

// Callback constants
public static final int CB_POLLING = 0;
public static final int CB_PRESOLVE = 1;
public static final int CB_SIMPLEX = 2;
public static final int CB_MIP = 3;
public static final int CB_MIPSOL = 4;
public static final int CB_MIPNODE = 5;
public static final int CB_MESSAGE = 6;
public static final int CB_BARRIER = 7;
public static final int CB_MULTIOBJ = 8;
public static final int CB_PRE_COLDEL = 1000;
public static final int CB_PRE_ROWDEL = 1001;
public static final int CB_PRE_SENCHG = 1002;
public static final int CB_PRE_BNDCHG = 1003;
public static final int CB_PRE_COECHG = 1004;
public static final int CB_SPX_ITRCNT = 2000;
public static final int CB_SPX_OBJVAL = 2001;
public static final int CB_SPX_PRIMINF = 2002;
public static final int CB_SPX_DUALINF = 2003;
public static final int CB_SPX_ISPERT = 2004;
public static final int CB_MIP_OBJBST = 3000;
public static final int CB_MIP_OBJBND = 3001;
public static final int CB_MIP_NODCNT = 3002;
public static final int CB_MIP_SOLCNT = 3003;
public static final int CB_MIP_CUTCNT = 3004;
public static final int CB_MIP_NODLFT = 3005;
public static final int CB_MIP_ITRCNT = 3006;
public static final int CB_MIPSOL_SOL = 4001;
public static final int CB_MIPSOL_OBJ = 4002;
public static final int CB_MIPSOL_OBJBST = 4003;
public static final int CB_MIPSOL_OBJBND = 4004;
public static final int CB_MIPSOL_NODCNT = 4005;
public static final int CB_MIPSOL_SOLCNT = 4006;
public static final int CB_MIPNODE_STATUS = 5001;
public static final int CB_MIPNODE_REL = 5002;
public static final int CB_MIPNODE_OBJBST = 5003;
public static final int CB_MIPNODE_OBJBND = 5004;
public static final int CB_MIPNODE_NODCNT = 5005;
public static final int CB_MIPNODE_SOLCNT = 5006;
public static final int CB_MIPNODE_BRVAR = 5007;
public static final int CB_MSG_STRING = 6001;
public class Callback {
    public static final int POLLING = 0;
    public static final int PRESOLVE = 1;
    public static final int SIMPLEX = 2;
    public static final int MIP = 3;
    public static final int MIPSOL = 4;
    public static final int MIPNODE = 5;
    public static final int MESSAGE = 6;
    public static final int BARRIER = 7;
    public static final int MULTIOBJ = 8;
    public static final int PRE_COECHG = 1004;
    public static final int SPX_ITRCNT = 2000;
    public static final int SPX_OBJVAL = 2001;
    public static final int SPX_PRIMINF = 2002;
    public static final int SPX_DUALINF = 2003;
    public static final int SPX_ISPERT = 2004;
    public static final int MIP_OBJBST = 3000;
    public static final int MIP_OBJBND = 3001;
    public static final int MIP_NODCNT = 3002;
    public static final int MIP_SOLCNT = 3003;
    public static final int MIP_CUTCNT = 3004;
    public static final int MIP_NODLFT = 3005;
    public static final int MIP_ITRCNT = 3006;
    public static final int MIPSOL_SOL = 4001;
    public static final int MIPSOL_OBJ = 4002;
    public static final int MIPSOL_OBJBST = 4003;
    public static final int MIPSOL_OBJBND = 4004;
    public static final int MIPSOL_NODCNT = 4005;
    public static final int MIPSOL_SOLCNT = 4006;
    public static final int MIPNODE_STATUS = 5001;
    public static final int MIPNODE_REL = 5002;
    public static final int MIPNODE_OBJBST = 5003;
    public static final int MIPNODE_OBJBND = 5004;
    public static final int MIPNODE_NODCNT = 5005;
    public static final int MIPNODE_SOLCNT = 5006;
    public static final int MIPNODE_BRVAR = 5007;
    public static final int MSG_STRING = 6001;
    public static final int RUNTIME = 6002;
    public static final int BARRIER_ITRCNT = 7001;
    public static final int BARRIER_PRIMOBJ = 7002;
    public static final int BARRIER_DUALOBJ = 7003;
}
public static final int BARRIER_PRIMINF = 7004;
public static final int BARRIER_DUALINF = 7005;
public static final int BARRIER_COMPL = 7006;
public static final int MULTIOBJ_OBJCNT = 8001;
public static final int MULTIOBJ_SOLCNT = 8002;
public static final int MULTIOBJ_SOL = 8003;
}

// Errors

public static final int ERROR_OUT_OF_MEMORY = 10001;
public static final int ERROR_NULL_ARGUMENT = 10002;
public static final int ERROR_INVALID_ARGUMENT = 10003;
public static final int ERROR_UNKNOWN_ATTRIBUTE = 10004;
public static final int ERROR_DATA_NOT_AVAILABLE = 10005;
public static final int ERROR_INDEX_OUT_OF_RANGE = 10006;
public static final int ERROR_UNKNOWN_PARAMETER = 10007;
public static final int ERROR_VALUE_OUT_OF_RANGE = 10008;
public static final int ERROR_NO_LICENSE = 10009;
public static final int ERROR_SIZE_LIMIT_EXCEEDED = 10010;
public static final int ERROR_CALLBACK = 10011;
public static final int ERROR_FILE_READ = 10012;
public static final int ERROR_FILE_WRITE = 10013;
public static final int ERROR_NUMERIC = 10014;
public static final int ERROR_IIS_NOT_INFEASIBLE = 10015;
public static final int ERROR_NOT_FOR_MIP = 10016;
public static final int ERROR_OPTIMIZATION_IN_PROGRESS = 10017;
public static final int ERROR_DUPLICATES = 10018;
public static final int ERROR_NODEFILE = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int ERROR_QCP_EQUALITY_CONSTRAINT = 10021;
public static final int ERROR_NETWORK = 10022;
public static final int ERROR_JOB_REJECTED = 10023;
public static final int ERROR_NOT_SUPPORTED = 10024;
public static final int ERROR_EXCEED_2B_NONZEROS = 10025;
public static final int ERROR_INVALID_PIECEWISE_OBJ = 10026;
public static final int ERROR_UPDATEMODE_CHANGE = 10027;
public static final int ERROR_CLOUD = 10028;
public static final int ERROR_MODEL_MODIFICATION = 10029;
public static final int ERROR_CSWORKER = 10030;
public static final int ERROR_TUNE_MODEL_TYPES = 10031;
public static final int ERROR_SECURITY = 10032;
public static final int ERROR_NOT_IN_MODEL = 20001;
public static final int ERROR_FAILED_TO_CREATE_MODEL = 20002;
public static final int ERROR_INTERNAL = 20003;

public class Error {
    public static final int OUT_OF_MEMORY = 10001;
    public static final int NULL_ARGUMENT = 10002;
    public static final int INVALID_ARGUMENT = 10003;
    public static final int UNKNOWN_ATTRIBUTE = 10004;
    public static final int DATA_NOT_AVAILABLE = 10005;
    public static final int INDEX_OUT_OF_RANGE = 10006;
    public static final int UNKNOWN_PARAMETER = 10007;
    public static final int VALUE_OUT_OF_RANGE = 10008;
    public static final int NO_LICENSE = 10009;


```java
public static final int SIZE_LIMIT_EXCEEDED = 10010;
public static final int CALLBACK = 10011;
public static final int FILE_READ = 10012;
public static final int FILE_WRITE = 10013;
public static final int NUMERIC = 10014;
public static final int IIS_NOT_INFEASIBLE = 10015;
public static final int NOT_FOR_MIP = 10016;
public static final int OPTIMIZATION_IN_PROGRESS = 10017;
public static final int Duplicates = 10018;
public static final int NOFILENAME = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int QCP_EQUALITY_CONSTRAINT = 10021;
public static final int NETWORK = 10022;
public static final int JOB_REJECTED = 10023;
public static final int NOT_SUPPORTED = 10024;
public static final int EXCEED_2B_NONZEROS = 10025;
public static final int INVALID_PIECEWISE_OBJ = 10026;
public static final int UPDATEMODE_CHANGE = 10027;
public static final int CLOUD = 10028;
public static final int MODEL_MODIFICATION = 10029;
public static final int CSWORKER = 10030;
public static final int TUNE_MODEL_TYPES = 10031;
public static final int ERROR_SECURITY = 10032;
public static final int NOT_IN_MODEL = 20001;
public static final int FAILED_TO_CREATE_MODEL = 20002;
public static final int INTERNAL = 20003;
}

class GRB_CharAttr
{
 public static final int CUTS_AUTO = -1;
 public static final int CUTS_OFF = 0;
 public static final int CUTS_CONSERVATIVE = 1;
 public static final int CUTS_AGGRESSIVE = 2;
 public static final int CUTS_VERYAGGRESSIVE = 3;

 public static final int METHOD_AUTO = -1;
 public static final int METHOD_PRIMAL = 0;
 public static final int METHOD_DUAL = 1;
 public static final int METHOD_BARRIER = 2;
 public static final int METHOD_CONCURRENT = 3;
 public static final int METHOD_DETERMINISTIC_CONCURRENT = 4;

 public static final int BARORDER_AUTOMATIC = 0;
 public static final int BARORDER_AMD = 1;
 public static final int BARORDER_NESTED_DISSECTION = 2;

 public static final int FEASRELAX_LINEAR = 0;
}

This enum is used to get or set char-valued attributes (through GRBModel.get or GRBModel.set). Please refer to the Attributes section of the Reference Manual to see a list of all char attributes and their functions.

372
GRB.DoubleAttr

This enum is used to get or set double-valued attributes (through `GRBModel.get` or `GRBModel.set`). Please refer to the Attributes section of the Reference Manual to see a list of all double attributes and their functions.

GRB.DoubleParam

This enum is used to get or set double-valued parameters (through `GRBModel.get`, `GRBModel.set`, `GRBEnv.get`, or `GRBEnv.set`). Please refer to the Parameters section of the Reference Manual to see a list of all double parameters and their functions.

GRB.IntAttr

This enum is used to get or set int-valued attributes (through `GRBModel.get` or `GRBModel.set`). Please refer to the Attributes section of the Reference Manual to see a list of all int attributes and their functions.

GRB.IntParam

This enum is used to get or set int-valued parameters (through `GRBModel.get`, `GRBModel.set`, `GRBEnv.get`, or `GRBEnv.set`). Please refer to the Parameters section of the Reference Manual to see a list of all int parameters and their functions.

GRB.StringAttr

This enum is used to get or set string-valued attributes (through `GRBModel.get` or `GRBModel.set`). Please refer to the Attributes section of the Reference Manual to see a list of all string attributes and their functions.

GRB.StringParam

This enum is used to get or set string-valued parameters (through `GRBModel.get`, `GRBModel.set`, `GRBEnv.get`, or `GRBEnv.set`). Please refer to the Parameters section of the Reference Manual to see a list of all string parameters and their functions.
This section documents the Gurobi .NET interface. This manual begins with a quick overview of the classes exposed in the interface and the most important methods on those classes. It then continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the classes and methods described here.

Environments

The first step in using the Gurobi .NET interface is to create an environment object. Environments are represented using the GRBEnv class. An environment acts as the container for all data associated with a set of optimization runs. You will generally only need one environment object in your program.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then, programmatically, set all required options for your specific requirements. For further details see the Environment section.

Models

You can create one or more optimization models within an environment. Each model is represented as an object of class GRBModel. A model consists of a set of decision variables (objects of class GRBVar), a linear or quadratic objective function on those variables (specified using GRBModel.SetObjective), and a set of constraints on these variables (objects of class GRBConstr, GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr), and then specifying relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of class GRBModel and then subsequently calling GRBModel.AddVar or GRBModel.AddVars to add additional variables, and GRBModel.AddConstr, GRBModel.AddQConstr, GRBModel.AddSOS, or any of the GRBModel.AddGenConstrXxx methods to add additional constraints. Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call GRBModel.Optimize to compute a solution. By default, Optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models with convex objectives and QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr, GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.Optimize will only perform further optimization if relevant data has changed since the model was last optimized. If you would like to discard previously computed solution information and restart the optimization from scratch without changing the model, you can call GRBModel.Reset.

After a MIP model has been solved, you can call GRBModel.FixedModel to compute the associated fixed model. This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous variables that appear in these constraints may be fixed as well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

- **Solution Pool**: Allows you to find more solutions.
- **Multiple Scenarios**: Allows you to find solutions to multiple, related models.
- **Multiple Objectives**: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call GRBModel.ComputeIIS to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call GRBModel.FeasRelax to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated with the variables of the model, some with the constraints of the model, and some with the model itself. To give a simple example, solving an optimization model causes the \(X \) variable attribute to be populated. Attributes such as \(X \) that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the variable lower bound (the \(LB \) attribute) can.

Attributes can be accessed in two ways in the .NET interface. The easiest is through .NET properties. To query or modify the \(LB \) attribute on variable \(v \), you would use \(v.LB \) or \(v.LB = 0 \), respectively. Attributes can also be queried using \(GRBVar.Get \), \(GRBConstr.Get \), \(GRBQConstr.Get \), \(GRBSOS.Get \), \(GRBGenConstr.Get \), or \(GRBModel.Get \), and modified using \(GRBVar.Set \), \(GRBConstr.Set \), \(GRBQConstr.Set \), \(GRBGenConstr.Set \), or \(GRBModel.Set \). Attributes are grouped into a set of enums by type (\(GRB.CharAttr \), \(GRB.DoubleAttr \), \(GRB.IntAttr \), \(GRB.StringAttr \)). The \(Get() \) and \(Set() \) methods are overloaded, so the type of the attribute determines the type of the returned value. Thus, \(constr.Get(GRB.DoubleAttr.RHS) \) returns a double, while \(constr.Get(GRB.CharAttr.Sense) \) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more efficient to use the array methods on the associated \(GRBModel \) object. Method \(GRBModel.Get \) includes signatures that allow you to query or modify attribute values for one-, two-, and three-dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the \(ChgCoeff \) method on a \(GRBModel \) object to change individual matrix coefficients. This method can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you remove a variable or constraint from the model (through the \(GRBModel.Remove \) method). The non-zero values associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that captures the objective function (a \(GRBLinExpr \) or \(GRBQuadExpr \) object), and then pass that expression to method \(GRBModel.SetObjective \). If you wish to modify the objective, you can simply call \(setObjective \) again with a new \(GRBLinExpr \) or \(GRBQuadExpr \) object.

For linear objective functions, an alternative to \(SetObjective \) is to use the \(Obj \) variable attribute to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the \(GRBModel.SetPWLObj \) method. Call this method once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function, simply set the \(Obj \) attribute on the corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a *lazy* fashion, meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for information about the model before your modifications have been applied, the details of the lazy update approach may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by an explicit call to GRBModel.Update. The second is by a call to GRBModel.Optimize. The third is by a call to GRBModel.Write to write out the model. The first case gives you fine-grained control over when modifications are applied. The second and third make the assumption that you want all pending modifications to be applied before you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach makes it much easier to perform multiple modifications to a model, since the model remains unchanged between modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server environment, where modifications require communication between machines. Thus, it is useful to have visibility into exactly when these modifications are applied. In general, if your program needs to make multiple modifications to the model, you should aim to make them in phases, where you make a set of modifications, then update, then make more modifications, then update again, etc. Updating after each individual modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs are unaffected by this change, you can use the UpdateMode parameter to revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters can be of type `int`, `double`, or `string`.

The simplest way to set parameters is through the `Model.Parameters` class and its associated .NET properties. To set the MIPGap parameter to 0.0 for model `m`, for example, you would do `m.Parameters.MIPGap = 0`.

Parameters can also be set on the Gurobi environment object, using `GRBEnv.Set`. Note that each model gets its own copy of the environment when it is created, so parameter changes to the original environment have no effect on existing models.

You can read a set of parameter settings from a file using `GRBEnv.ReadParams`, or write the set of changed parameters using `GRBEnv.WriteParams`.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in order to find a set that improves performance. You can call `GRBModel.Tune` to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Users typically do not need to concern themselves with memory management in .NET, since it is handled automatically by the garbage collector. The Gurobi .NET interface utilizes the same garbage collection mechanism as other .NET programs, but there are a few specifics of our memory management that users should be aware of.

In general, Gurobi objects live in the same .NET heap as other .NET objects. When they are no longer referenced, they become candidates for garbage collection, and are returned to the pool of free space at the next invocation of the garbage collector. Two important exceptions are the GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated with it in the .NET heap, but the majority of the space associated with a model lives in the heap of the Gurobi native code DLL. The .NET heap manager is unaware of the memory associated with the model in the native code library, so it does not consider this memory usage when deciding whether to invoke the garbage collector. When the garbage collector eventually collects the .NET GRBModel object, the memory associated with the model in the Gurobi native code library will be freed, but this collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a .NET program that makes use of multiple Gurobi models or environments, we recommend that you call GRBModel.Dispose when you are done using the associated GRBModel object, and GRBEnv.Dispose when you are done using the associated GRBEnv object and after you have called GRBModel.Dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi .NET interface is a thin layer that sits on top of our native code DLL. Thus, an application that uses the Gurobi .NET library will load the Gurobi DLL at runtime. In order for this happen, you need to make sure that two things are true. First, you need to make sure that the native code library is available in the PATH environment library. This environment variable is set up as part of the installation of the Gurobi Optimizer, but it may not be configured appropriately on a machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that the selected .NET Platform Target (as selected in Visual Studio) is compatible with the Gurobi DLL that is available through your PATH. In particular, you need to use the 64-bit Gurobi native library when you’ve selected the x64 Platform Target. If you use the default Any CPU target, then your .NET application will look for the 64-bit Gurobi DLL on a 64-bit machine.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, specify the log file name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect the log to a different file after creating the environment object. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

More detailed progress monitoring can be done through the GRBCallback class. The GRBModel.SetCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own Callback() method on this class. You can call GRBCallback.GetDoubleInfo, GRBCallback.GetIntInfo, GRBCallback.GetStringInfo, or GRBCallback.GetSolution from within the callback to obtain additional information about the state of the optimization.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is GRBCallback.Abort, which asks the optimizer to terminate at the earliest convenient point. Method GRBCallback.SetSolution allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods GRBCallback.AddCut and GRBCallback.AddLazy allow you to add cutting planes and lazy constraints during a MIP optimization, respectively. Method GRBCallback.StopOneMultiObj allows you to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this. One important one, batch optimization, allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi .NET library can throw an exception of type GRBException. When an exception occurs, additional information on the error can be obtained by retrieving the error code (using property GRBException.ErrorCode), or by retrieving the exception message (using property GRBException.Message from the parent class). The list of possible error return codes can be found in the Error Codes section.
5.1 GRBEnv

Gurobi environment object. Gurobi models are always associated with an environment. You must create an environment before you can create and populate a model. You will generally only need a single environment object in your program.

Objects of this class have unmanaged resources associated with them. The class implements the IDisposable interface.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., Get, GetParamInfo, Set).

While the .NET garbage collector will eventually collect an unused GRBEnv object, an environment will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your program creates multiple GRBEnv objects, we recommend that you call GRBEnv.Dispose when you are done using one (or use the .NET using statement).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment, which solves Gurobi models on the local machine, a client environment for a Gurobi compute server, which will solve Gurobi models on a server machine, or an Instant Cloud environment, which will launch a Gurobi Cloud server and solve models on that server. Choose the appropriate signature for the type of environment you wish to launch.

GRBEnv GRBEnv()

Create a Gurobi environment (with logging disabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Return value:

An environment object (with no associated log file).

GRBEnv GRBEnv(string logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.
In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:
- `empty`: Indicates whether the environment should be empty. You should use `empty=True` if you want to set parameters before actually starting the environment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or a Cluster Manager. See the Environment Section for more details.

Return value:
An environment object.

Create a client Gurobi environment on a compute server. This method will also check the current working directory for a file named `gurobi.env`, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:
logFileName: The name of the log file for this environment. Pass an empty string for no log file.

computeServer: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You should refer to the router using either its name or its IP address. If no router is used (which is the typical case), pass an empty string.

password: The password for gaining access to the specified Compute Server cluster. Pass an empty string if no password is required.

group: The name of the Compute Server group.

CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. Depending on the configuration of the server, a job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash. This behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (string logFileName,
 string accessID,
 string secretKey,
 string pool,
 int priority)

Create a Gurobi environment on Gurobi Instant Cloud This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your secretKey, this allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your accessID, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restart the configuration information each time you launch a machine. May be NULL (or an empty string), in which case your job will be launched in the default pool associated with your cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs.

Return value:
An environment object.

GRBEnv.Dispose()

Release the resources associated with a GRBEnv object. While the .NET garbage collector will eventually reclaim these resources, we recommend that you call the Dispose method when you are done using an environment if your program creates more than one.

The Dispose method on a GRBEnv should be called only after you have called Dispose on all of the models that were created within that environment. You should not attempt to use a GRBEnv object after calling Dispose.

| void Dispose () |

GRBEnv.ErrorMsg

| string ErrorMsg |
(Property) The error message for the most recent exception associated with this environment.

GRBEnv.Get()

Query the value of a parameter.

| double Get (GRB.DoubleParam param) |

Query the value of a double-valued parameter.

Arguments:

param: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
Return value:
The current value of the requested parameter.

```c
int Get ( GRB.IntParam param )
```

Query the value of an int-valued parameter.

Arguments:
- `param`: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

```c
string Get ( GRB.StringParam param )
```

Query the value of a string-valued parameter.

Arguments:
- `param`: The parameter being queried. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Return value:
The current value of the requested parameter.

```c
GRBEnv.GetParamInfo()
```

Obtain information about a parameter.

```c
void GetParamInfo ( GRB.DoubleParam param, 
                   double[] info )
```

Obtain detailed information about a double parameter.

Arguments:
- `param`: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- `info`: The returned information. The result will contain four entries: the current value of the parameter, the minimum allowed value, the maximum allowed value, and the default value.

```c
void GetParamInfo ( GRB.IntParam param, 
                   int[] info )
```

Obtain detailed information about an integer parameter.

Arguments:
- `param`: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
info: The returned information. The result will contain four entries: the current value of the parameter, the minimum allowed value, the maximum allowed value, and the default value.

```c
void GetParamInfo ( GRB.StringParam param,
                   string[] info )
```

Obtain detailed information about a string parameter.

Arguments:
- **param**: The parameter of interest. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **info**: The returned information. The result will contain two entries: the current value of the parameter and the default value.

GRBEnv.Message()

Write a message to the console and the log file.

```c
void Message ( string message )
```

Arguments:
- **message**: Print a message to the console and to the log file. Note that this call has no effect unless the OutputFlag parameter is set.

GRBEnv.ReadParams()

Read new parameter settings from a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```c
void ReadParams ( string paramfile )
```

Arguments:
- **paramfile**: Name of the file containing parameter settings. Parameters should be listed one per line, with the parameter name first and the desired value second. For example:

```plaintext
# Gurobi parameter file
Threads 1
MIPGap 0
```

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.Release()

Release the license associated with this environment. You will no longer be able to call Optimize on models created with this environment after the license has been released.

```c
void Release ( )
```
GRBEnv.ResetParams()

Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```c
void ResetParams()
```

GRBEnv.Set()

Set the value of a parameter.

Important notes:

Note that a model gets its own copy of the environment when it is created. Changes to the original environment have no effect on the copy. Use GRBModel.Set to change a parameter on an existing model.

```c
void Set ( GRB.DoubleParam param, double newvalue )
Set the value of a double-valued parameter.

Arguments:

- **param**: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newvalue**: The desired new value of the parameter.

void Set ( GRB.IntParam param, int newvalue )
Set the value of an int-valued parameter.

Arguments:

- **param**: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newvalue**: The desired new value of the parameter.

void Set ( GRB.StringParam param, string newvalue )
Set the value of a string-valued parameter.

Arguments:

- **param**: The parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newvalue**: The desired new value of the parameter.

void Set ( string param, string newvalue )
Set the value of any parameter using strings alone.

**Arguments:**
- **param**: The name of the parameter being modified. Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.
- **newvalue**: The desired new value of the parameter.

**GRBEnv.Start()**

Start an empty environment. If the environment has already been started, this method will do nothing. If the call fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply all parameter changes specified by the user prior to this call. Note that this might overwrite parameters set in the license file, or in the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```csharp
void Start()
```

**GRBEnv.WriteParams()**

Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

```csharp
void WriteParams(string paramfile)
```

**Arguments:**
- **paramfile**: Name of the file to which non-default parameter settings should be written. The previous contents are overwritten.
5.2 GRBModel

Gurobi model object. Commonly used methods include AddVar (adds a new decision variable to the model), AddConstr (adds a new constraint to the model), Optimize (optimizes the current model), and Get (retrieves the value of an attribute).

Objects of this class have unmanaged resources associated with them. The class implements the IDisposable interface.

While the .NET garbage collector will eventually collect an unused GRBModel object, the vast majority of the memory associated with a model is stored outside of the .NET heap. As a result, the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account when deciding whether collection is necessary. We recommend that you call GRBModel.Dispose when you are done using a model (or use the .NET using statement).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call AddVar and AddConstr to populate the model with variables and constraints. The more complex constructors can read a model from a file, or make a copy of an existing model.

| GRBModel | GRBModel ( GRBEnv env ) |

Model constructor.

**Arguments:**
- env: Environment for new model.

**Return value:**
- New model object. Model initially contains no variables or constraints.

| GRBModel | GRBModel ( GRBEnv env, string filename ) |

Read a model from a file. Note that the type of the file is encoded in the file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

**Arguments:**
- env: Environment for new model.
- modelname: Name of the file containing the model.

**Return value:**
- New model object.

| GRBModel | GRBModel ( GRBModel model ) |

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you have to call Update before copying it.

**Arguments:**
- model: Model to copy.

**Return value:**
- New model object. Model is a clone of the input model.
**GRBModel.AddConstr()**

Add a single linear constraint to a model. Multiple signatures are available.

```c
GRBConstr AddConstr (GRBLinExpr lhsExpr,
 char sense,
 GRBLinExpr rhsExpr,
 string name)
```

Add a single linear constraint to a model.

**Arguments:**
- `lhsExpr`: Left-hand side expression for new linear constraint.
- `sense`: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- `rhsExpr`: Right-hand side expression for new linear constraint.
- `name`: Name for new constraint.

**Return value:**
- New constraint object.

```c
GRBConstr AddConstr (GRBTempConstr tempConstr,
 string name)
```

Add a single linear constraint to a model.

**Arguments:**
- `tempConstr`: Temporary constraint object, created by an overloaded comparison operator. See GRBTempConstr for more information.
- `name`: Name for new constraint.

**Return value:**
- New constraint object.

**GRBModel.AddConstrs()**

Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using AddConstr), since it introduces no significant overhead and we find that it produces simpler code. Feel free to use these methods if you disagree, though.

```c
GRBConstr[] AddConstrs (int count)
```

Add `count` new linear constraints to a model. The new constraints are all of the form 0 <= 0.

**Arguments:**
- `count`: Number of constraints to add.

**Return value:**
- Array of new constraint objects.

```c
GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
 char[] senses,
 double[] rhsVals,
 string[] names)
```
Add new linear constraints to a model. The number of added constraints is determined by the length of the input arrays (which must be consistent across all arguments).

**Arguments:**
- `lhsExprs`: Left-hand side expressions for the new linear constraints.
- `senses`: Senses for new linear constraints (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhsVals`: Right-hand side values for the new linear constraints.
- `names`: Names for new constraints.

**Return value:**
Array of new constraint objects.

Add new linear constraints to a model. This signature allows you to use arrays to hold the various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint for each entry in the array. The `start` and `len` arguments allow you to specify which constraints to add.

**Arguments:**
- `lhsExprs`: Left-hand side expressions for the new linear constraints.
- `senses`: Senses for new linear constraints (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhs`: Right-hand side expressions for the new linear constraints.
- `start`: The first constraint in the list to add.
- `len`: The number of variables to add.
- `names`: Names for new constraints.

**Return value:**
Array of new constraint objects.

**GRBModel.AddGenConstrXxx()**

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function) constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

- **AddGenConstrMax**: \( y = \max(x_1, x_2, \ldots, c) \)
- **AddGenConstrMin**: \( y = \min(x_1, x_2, \ldots, c) \)
- **AddGenConstrAbs**: \( y = |x| \)
- **AddGenConstrAnd**: \( y = x_1 \land x_2 \land x_3 \ldots \)
- **AddGenConstrOr**: \( y = x_1 \lor x_2 \lor x_3 \ldots \)
- **AddGenConstrIndicator**: \( y = 1 \rightarrow a'x \leq b \) (an indicator constraint)
- **AddGenConstrPWL**: \( y = \text{pwl}(x) \) (a piecewise-linear function, specified using breakpoints)
- **AddGenConstrPoly**: \( y = p_0x^d + p_1x^{d-1} + \ldots + p_{d-1}x + p_d \)
- **AddGenConstrExp**: \( y = e^x \)
- **AddGenConstrExpA**: \( y = a^x \)
- **AddGenConstrLog**: \( y = \log_e(x) \)
- **AddGenConstrLogA**: \( y = \log_a(x) \)
- **AddGenConstrPow**: \( y = x^a \)
- **AddGenConstrSin**: \( y = \sin(x) \)
- **AddGenConstrCos**: \( y = \cos(x) \)
- **AddGenConstrTan**: \( y = \tan(x) \)

Please refer to this section for additional details on general constraints.

**GRBModel.AddGenConstrMax()**

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.

A MAX constraint \( r = \max\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the maximum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

```c
GRBGenConstr AddGenConstrMax (GRBVar resvar,
 GRBVar[] vars,
 double constant,
 string name)
```

**Arguments:**

- **resvar**: The resultant variable of the new constraint.
- **vars**: Array of variables that are the operands of the new constraint.
- **constant**: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrMin()
Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint \( r = \min\{x_1, \ldots, x_n, c\} \) states that the resultant variable \( r \) should be equal to the minimum of the operand variables \( x_1, \ldots, x_n \) and the constant \( c \).

GRBGenConstr AddGenConstrMin ( GRBVar resvar,
GRBVar[] vars,
double constant,
string name )

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAbs()
Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint \( r = \text{abs}\{x\} \) states that the resultant variable \( r \) should be equal to the absolute value of the argument variable \( x \).

GRBGenConstr AddGenConstrAbs ( GRBVar resvar,
GRBVar argvar,
string name )

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAnd()
Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint \( r = \text{and}\{x_1, \ldots, x_n\} \) states that the binary resultant variable \( r \) should be 1 if and only if all of the operand variables \( x_1, \ldots, x_n \) are equal to 1. If any of the operand variables is 0, then the resultant should be 0 as well.
Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.
GRBGenConstr `AddGenConstrAnd` ( GRBVar resvar,
GRBVar[] vars,
string name )

**Arguments:**
- `resvar`: The resultant variable of the new constraint.
- `vars`: Array of variables that are the operands of the new constraint.
- `name`: Name for the new general constraint.

**Return value:**
New general constraint.

GRBModel.AddGenConstrOr()

Add a new general constraint of type `GRB.GENCONSTR_OR` to a model.

An OR constraint $r = \text{or} \{x_1, \ldots, x_n\}$ states that the binary resultant variable $r$ should be 1 if and only if any of the operand variables $x_1, \ldots, x_n$ is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

GRBGenConstr `AddGenConstrOr` ( GRBVar resvar,
GRBVar[] vars,
string name )

**Arguments:**
- `resvar`: The resultant variable of the new constraint.
- `vars`: Array of variables that are the operands of the new constraint.
- `name`: Name for the new general constraint.

**Return value:**
New general constraint.

GRBModel.AddGenConstrIndicator()

Add a new general constraint of type `GRB.GENCONSTR_INDICATOR` to a model.

An INDICATOR constraint $z = f \rightarrow a^T x \leq b$ states that if the binary indicator variable $z$ is equal to $f \in \{0, 1\}$, then the linear constraint $a^T x \leq b$ should hold. On the other hand, if $z = 1 - f$, the linear constraint may be violated. The sense of the linear constraint can also be specified to be $= \text{ or } \geq$.

Note that the indicator variable $z$ of a constraint will be forced to be binary, independent of how it was created.

Multiple signatures are available.

GRBGenConstr `AddGenConstrIndicator` ( GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
string name )
Arguments:

- **binvar**: The binary indicator variable.
- **binval**: The value for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- **expr**: Left-hand side expression for the linear constraint triggered by the indicator.
- **sense**: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL.
- **rhs**: Right-hand side value for the linear constraint.
- **name**: Name for the new general constraint.

Return value:
New general constraint.

```cpp
GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
 int binval,
 GRBTempConstr constr,
 string name)
```

Arguments:

- **binvar**: The binary indicator variable.
- **binval**: The value for the binary indicator variable that would force the linear constraint to be satisfied (0 or 1).
- **constr**: Temporary constraint object defining the linear constraint that is triggered by the indicator. The temporary constraint object is created using an overloaded comparison operator. See GRBTempConstr for more information.
- **name**: Name for the new general constraint.

Return value:
New general constraint.

```cpp
GRBModel.AddGenConstrPWL()```

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship $y = f(x)$ must hold between variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

```cpp
GRBGenConstr AddGenConstrPWL ( GRBVar xvar,
                               GRBVar yvar,
                               double[] xpts,
                               double[] ypts,
                               string name )
```

Arguments:

- **xvar**: The x variable.
- **yvar**: The y variable.
- **xpts**: The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.
ypts: The y values for the points that define the piecewise-linear function.

name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrPoly()

A polynomial function constraint states that the relationship $y = p_d x^d + p_{d-1} x^{d-1} + ... + p_1 x + p_0$ should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```csharp
GRBGenConstr AddGenConstrPoly ( GRBVar xvar, GRBVar yvar, double[] p, string name, string options )
```

Arguments:
- xvar: The x variable.
- yvar: The y variable.
- p: The coefficients for the polynomial function (starting with the coefficient for the highest power).
- name: Name for the new general constraint.
- options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel.AddGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.

A natural exponential function constraint states that the relationship $y = \exp(x)$ should hold for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```csharp
GRBGenConstr AddGenConstrExp ( GRBVar xvar, GRBVar yvar, string name, string options )
```
Arguments:
 xvar: The \(x \) variable.
 yvar: The \(y \) variable.
 name: Name for the new general constraint.
 options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. *FuncPieces=-1 FuncPieceError=0.001*).

Return value:
 New general constraint.

GRBModel.AddGenConstrExpA()

Add a new general constraint of type `GRB.GENCONSTR_EXPA` to a model.

An exponential function constraint states that the relationship \(y = a^x \) should hold for variables \(x \) and \(y \), where \(a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPiecesLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

```csharp
GRBGenConstr AddGenConstrExpA ( GRBVar xvar,
                               GRBVar yvar,
                               double a,
                               string name,
                               string options )
```

Arguments:
 xvar: The \(x \) variable.
 yvar: The \(y \) variable.
 a: The base of the function, \(a > 0 \).
 name: Name for the new general constraint.
 options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. *FuncPieces=-1 FuncPieceError=0.001*).

Return value:
 New general constraint.

GRBModel.AddGenConstrLog()

Add a new general constraint of type `GRB.GENCONSTR_LOG` to a model.

A natural logarithmic function constraint states that the relationship \(y = \log(x) \) should hold for variables \(x \) and \(y \).
A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrLog (GRBVar xvar,
 GRBVar yvar,
 string name,
 string options)

Arguments:
- xvar: The x variable.
- yvar: The y variable.
- name: Name for the new general constraint.
- options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel.AddGenConstrLogA()
Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.

A logarithmic function constraint states that the relationship \(y = \log_a(x) \) should hold for variables x and y, where \(a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

GRBGenConstr AddGenConstrLogA (GRBVar xvar,
 GRBVar yvar,
 double a,
 string name,
 string options)

Arguments:
- xvar: The x variable.
- yvar: The y variable.
- a: The base of the function, \(a > 0 \).
- name: Name for the new general constraint.
- options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').
Return value:

New general constraint.

GRBModel.AddGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.

A power function constraint states that the relationship $y = x^a$ should hold for variables x and y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```c
GRBGenConstr AddGenConstrPow ( GRBVar xvar,
                               GRBVar yvar,
                               double a,
                               string name,
                               string options )
```

Arguments:

- **xvar**: The x variable.
- **yvar**: The y variable.
- **a**: The power of the function, $a > 0$.
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceError=0.001").

Return value:

New general constraint.

GRBModel.AddGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.

A sine function constraint states that the relationship $y = \sin(x)$ should hold for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```c
GRBGenConstr AddGenConstrSin ( GRBVar xvar,
                               GRBVar yvar,
                               string name,
                               string options )
```
Arguments:
 xvar: The \(x\) variable.
 yvar: The \(y\) variable.
 name: Name for the new general constraint.
 options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
 New general constraint.

GRBModel.AddGenConstrCos()

Add a new general constraint of type \texttt{GRB.GENCONSTR_COS} to a model.

A cosine function constraint states that the relationship \(y = \cos(x)\) should hold for variables \(x\) and \(y\).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.

\begin{verbatim}
GRBGenConstr AddGenConstrCos(GRBVar xvar, GRBVar yvar, string name, string options)
\end{verbatim}

Arguments:
 xvar: The \(x\) variable.
 yvar: The \(y\) variable.
 name: Name for the new general constraint.
 options: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
 New general constraint.

GRBModel.AddGenConstrTan()

Add a new general constraint of type \texttt{GRB.GENCONSTR_TAN} to a model.

A tangent function constraint states that the relationship \(y = \tan(x)\) should hold for variables \(x\) and \(y\).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

```c
GRBGenConstr AddGenConstrTan (   GRBVar xvar,
                                 GRBVar yvar,
                                 string name,
                                 string options )
```

Arguments:
- **xvar**: The x variable.
- **yvar**: The y variable.
- **name**: Name for the new general constraint.
- **options**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

GRBModel.AddQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between them can be both important and subtle. Refer to this discussion for additional information.

```c
GRBQConstr AddQConstr (   GRBQuadExpr lhsExpr,
                           char sense,
                           GRBQuadExpr rhsExpr,
                           string name )
```

Add a quadratic constraint to a model.

Arguments:
- **lhsExpr**: Left-hand side expression for new quadratic constraint.
- **sense**: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
- **rhsExpr**: Right-hand side expression for new quadratic constraint.
- **name**: Name for new constraint.

Return value:
New quadratic constraint object.

```c
GRBQConstr AddQConstr (   GRBTempConstr tempConstr,
                           string name )
```

Add a quadratic constraint to a model.

Arguments:
- **tempConstr**: Temporary constraint object, created by an overloaded comparison operator. See GRBTempConstr for more information.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBModel.AddRange()

Add a single range constraint to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL.

GRBConstr AddRange (GRBLinExpr expr,
 double lower,
 double upper,
 string name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.AddRanges()

Add new range constraints to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] AddRanges (GRBLinExpr[] exprs,
 double[] lower,
 double[] upper,
 string[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects.
GRBModel.AddSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

```
GRBSOS  AddSOS (  GRBVar[]  vars,
                 double[]  weights,
                 int    type )
```

Arguments:
- `vars`: Array of variables that participate in the SOS constraint.
- `weights`: Weights for the variables in the SOS constraint.
- `type`: SOS type (can be `GRB.SOS_TYPE1` or `GRB.SOS_TYPE2`).

Return value:
- New SOS constraint.

GRBModel.AddVar()

Add a single decision variable to a model.

```
GRBVar  AddVar (  double  lb,
                 double  ub,
                 double  obj,
                 char    type,
                 string  name )
```

Add a variable to a model; non-zero entries will be added later.

Arguments:
- `lb`: Lower bound for new variable.
- `ub`: Upper bound for new variable.
- `obj`: Objective coefficient for new variable.
- `type`: Variable type for new variable (`GRB.CONTINUOUS`, `GRB.BINARY`, `GRB.INTEGER`, `GRB.SEMICONT`, or `GRB.SEMIINT`).
- `name`: Name for new variable.

Return value:
- New variable object.

```
GRBVar  AddVar (  double  lb,
                 double  ub,
                 double  obj,
                 char    type,
                 GRBConstr[]  constrs,
                 double[]  coeffs,
                 string  name )
```

Add a variable to a model, and the associated non-zero coefficients.

Arguments:
- `lb`: Lower bound for new variable.
- `ub`: Upper bound for new variable.
obj: Objective coefficient for new variable.

type: Variable type for new variable (**GRB.CONTINUOUS**, **GRB.BINARY**, **GRB.INTEGER**, **GRB.SEMICONT**, or **GRB.SEMIINT**).

constrs: Array of constraints in which the variable participates.

coeffs: Array of coefficients for each constraint in which the variable participates. The lengths of the **constrs** and **coeffs** arrays must be identical.

name: Name for new variable.

Return value: New variable object.

```c
GRBVar AddVar ( double lb,
               double ub,
               double obj,
               char type,
               GRBColumn col,
               string name )
```

Add a variable to a model. This signature allows you to specify the set of constraints to which the new variable belongs using a **GRBColumn** object.

Arguments:

- **lb**: Lower bound for new variable.
- **ub**: Upper bound for new variable.
- **obj**: Objective coefficient for new variable.
- **type**: Variable type for new variable (**GRB.CONTINUOUS**, **GRB.BINARY**, **GRB.INTEGER**, **GRB.SEMICONT**, or **GRB.SEMIINT**).
- **col**: **GRBColumn** object for specifying a set of constraints to which new variable belongs.
- **name**: Name for new variable.

Return value: New variable object.

GRBModel.AddVars()

Add new decision variables to a model.

```c
GRBVar[] AddVars ( int count,
                   char type )
```

Add **count** new decision variables to a model. All associated attributes take their default values, except the variable **type**, which is specified as an argument.

Arguments:

- **count**: Number of variables to add.
- **type**: Variable type for new variables (**GRB.CONTINUOUS**, **GRB.BINARY**, **GRB.INTEGER**, **GRB.SEMICONT**, or **GRB.SEMIINT**).

Return value: Array of new variable objects.
Add new decision variables to a model. The number of added variables is determined by the length of the input arrays (which must be consistent across all arguments).

Arguments:
- `lb`: Lower bounds for new variables. Can be `null`, in which case the variables get lower bounds of 0.0.
- `ub`: Upper bounds for new variables. Can be `null`, in which case the variables get infinite upper bounds.
- `obj`: Objective coefficients for new variables. Can be `null`, in which case the variables get objective coefficients of 0.0.
- `type`: Variable types for new variables (`GRB.CONTINUOUS`, `GRB.BINARY`, `GRB.INTEGER`, `GRB.SEMICONT`, or `GRB.SEMIINT`). Can be `null`, in which case the variables are assumed to be continuous.
- `names`: Names for new variables. Can be `null`, in which case all variables are given default names.

Return value:
Array of new variable objects.

Add new decision variables to a model. This signature allows you to use arrays to hold the various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable for each entry in the array. The `start` and `len` arguments allow you to specify which variables to add.

Arguments:
- `lb`: Lower bounds for new variables. Can be `null`, in which case the variables get lower bounds of 0.0.
- `ub`: Upper bounds for new variables. Can be `null`, in which case the variables get infinite upper bounds.
- `obj`: Objective coefficients for new variables. Can be `null`, in which case the variables get objective coefficients of 0.0.
- `type`: Variable types for new variables (`GRB.CONTINUOUS`, `GRB.BINARY`, `GRB.INTEGER`, `GRB.SEMICONT`, or `GRB.SEMIINT`). Can be `null`, in which case the variables are assumed to be continuous.
- `names`: Names for new variables. Can be `null`, in which case all variables are given default names.
\textbf{start}: The first variable in the list to add.
\textbf{len}: The number of variables to add.

\textbf{Return value:}
Array of new variable objects.

\begin{verbatim}
GRBVar[] AddVars (double[] lb,
 double[] ub,
 double[] obj,
 char[] type,
 string[] names,
 GRBColumn[] col)
\end{verbatim}

Add new decision variables to a model. This signature allows you to specify the list of constraints to which each new variable belongs using an array of \texttt{GRBColumn} objects.

\textbf{Arguments:}
\begin{itemize}
 \item \texttt{lb}: Lower bounds for new variables. Can be \texttt{null}, in which case the variables get lower bounds of 0.0.
 \item \texttt{ub}: Upper bounds for new variables. Can be \texttt{null}, in which case the variables get infinite upper bounds.
 \item \texttt{obj}: Objective coefficients for new variables. Can be \texttt{null}, in which case the variables get objective coefficients of 0.0.
 \item \texttt{type}: Variable types for new variables (\texttt{GRB.CONTINUOUS}, \texttt{GRB.BINARY}, \texttt{GRB.INTEGER}, \texttt{GRB.SEMICONT}, or \texttt{GRB.SEMIINT}). Can be \texttt{null}, in which case the variables are assumed to be continuous.
 \item \texttt{names}: Names for new variables. Can be \texttt{null}, in which case all variables are given default names.
 \item \texttt{cols}: \texttt{GRBColumn} objects for specifying a set of constraints to which each new column belongs.
\end{itemize}

\textbf{Return value:}
Array of new variable objects.

\textbf{GRBModel.ChgCoeff()}

Change one coefficient in the model. The desired change is captured using a \texttt{GRBVar} object, a \texttt{GRBConstr} object, and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using \texttt{GRBModel.Update}), optimize the model (using \texttt{GRBModel.Optimize}), or write the model to disk (using \texttt{GRBModel.Write}).

\begin{verbatim}
void ChgCoeff (GRBConstr constr,
 GRBVar var,
 double newvalue)
\end{verbatim}

\textbf{Arguments:}
\begin{itemize}
 \item \texttt{constr}: Constraint for coefficient to be changed.
 \item \texttt{var}: Variable for coefficient to be changed.
 \item \texttt{newvalue}: Desired new value for coefficient.
\end{itemize}
GRBModel.ChgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a `GRBVar` object, a `GRBConstr` object, and a desired coefficient for the specified variable in the specified constraint. The entries in the input arrays each correspond to a single desired coefficient change. The lengths of the input arrays must all be the same. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `GRBModel.Update`), optimize the model (using `GRBModel.Optimize`), or write the model to disk (using `GRBModel.Write`).

```java
void ChgCoeffs ( GRBConstr[] constrs,
                 GRBVar[] vars,
                 double[] vals )
```

Arguments:
- `constrs`: Constraints for coefficients to be changed.
- `vars`: Variables for coefficients to be changed.
- `vals`: Desired new values for coefficients.

GRBModel.ComputeIIS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

This method populates the `IISCONSTR`, `IISQCONSTR`, and `IISGENCONSTR` constraint attributes, the `IISSOS` SOS attribute, and the `IISLB` and `IISUB` variable attributes. You can also obtain information about the results of the IIS computation by writing a `.ilp` format file (see `GRBModel.Write`). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

```java
void ComputeIIS ( )
```

GRBModel.DiscardConcurrentEnvs()

Discard concurrent environments for a model.

The concurrent environments created by `GetConcurrentEnv` will be used by every subsequent call to the concurrent optimizer until the concurrent environments are discarded.

```java
void DiscardConcurrentEnvs ( )
```
GRBModel.DiscardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Use GetMultiobjEnv to create a multi-objective environment.

```csharp
void DiscardMultiobjEnvs();
```

GRBModel.Dispose()

Release the resources associated with a GRBModel object. While the .NET garbage collector will eventually reclaim these resources, we recommend that you call the Dispose method when you are done using a model.

You should not attempt to use a GRBModel object after calling Dispose on it.

```csharp
void Dispose();
```

GRBModel.FeasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call Optimize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This method provides a number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=false, optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=true, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that FeasRelax must solve an optimization problem to find the minimum possible relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables and constraints, as well as penalties associated with relaxing the corresponding lower bounds, upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of boolean arguments, \texttt{vrelax} and \texttt{crelax}, that indicate whether variable bounds and/or constraints can be violated. If \texttt{vrelax/crelax} is \texttt{true}, then every bound/constraint is allowed to be violated, respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify your original model, use the \texttt{GRBModel constructor} to create a copy before invoking this method.

```java
double FeasRelax ( int relaxobjtype,
                   boolean minrelax,
                   GRBVar[] vars,
                   double[] lbpen,
                   double[] ubpen,
                   GRBConstr[] constrs,
                   double[] rhspen )
```

Create a feasibility relaxation model.

Arguments:
- \texttt{relaxobjtype}: The cost function used when finding the minimum cost relaxation.
- \texttt{minrelax}: The type of feasibility relaxation to perform.
- \texttt{vars}: Variables whose bounds are allowed to be violated.
- \texttt{lbpen}: Penalty for violating a variable lower bound. One entry for each variable in argument \texttt{vars}.
- \texttt{ubpen}: Penalty for violating a variable upper bound. One entry for each variable in argument \texttt{vars}.
- \texttt{constrs}: Linear constraints that are allowed to be violated.
- \texttt{rhspen}: Penalty for violating a linear constraint. One entry for each constraint in argument \texttt{constrs}.

Arguments:

Return value:

Zero if \texttt{minrelax} is false. If \texttt{minrelax} is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

```java
double FeasRelax ( int relaxobjtype,
                   boolean minrelax,
                   boolean vrelax,
                   boolean crelax )
```

Simplified method for creating a feasibility relaxation model.

Arguments:
- \texttt{relaxobjtype}: The cost function used when finding the minimum cost relaxation.
- \texttt{minrelax}: The type of feasibility relaxation to perform.
- \texttt{vrelax}: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any violations.
- \texttt{crelax}: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any violations.
Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

GRBModel.FixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call to the Optimize method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using the MIP algorithm.

GRBModel.FixedModel()
Return value:
Fixed model associated with calling object.

GRBModel.Get()
Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model attributes, and for arrays of constraint or variable attributes.

double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

int Get (GRB.IntParam param)

Query the value of an int-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.

string Get (GRB.StringParam param)

Query the value of a string-valued parameter.

Arguments:
param: The parameter being queried.

Return value:
The current value of the requested parameter.
char[] Get (GRB.CharAttr attr,
 GRBVar[] vars)
Query a char-valued variable attribute for an array of variables.
Arguments:
attr: The attribute being queried.
vars: The variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

cchar[] Get (GRB.CharAttr attr,
 GRBVar[] vars, int start, int len)
Query a char-valued variable attribute for a sub-array of variables.
Arguments:
attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

cchar[,] Get (GRB.CharAttr attr,
 GRBVar[,] vars)
Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

cchar[,] Get (GRB.CharAttr attr,
 GRBVar[,] vars)
Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

cchar[] Get (GRB.CharAttr attr,
 GRBConstr[] constrs)
Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
 GRBConstr[] constrs,
 int start,
 int len)

Query a char-valued constraint attribute for a sub-array of constraints.

Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

char[,] Get (GRB.CharAttr attr,
 GRBConstr[,] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.

Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[,„] Get (GRB.CharAttr attr,
 GRBConstr[,„] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.

Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
 GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
char[] Get ( GRB.CharAttr attr,
            GRBQConstr[] qconstrs,
            int start,
            int len )
```
Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
- **attr**: The attribute being queried.
- **qconstrs**: A one-dimensional array of quadratic constraints whose attribute values are being queried.
- **start**: The index of the first quadratic constraint of interest in the list.
- **len**: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
char[,] Get ( GRB.CharAttr attr,
             GRBQConstr[,] qconstrs )
```
Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
- **attr**: The attribute being queried.
- **qconstrs**: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
char[,] Get ( GRB.CharAttr attr,
             GRBQConstr[,] qconstrs )
```
Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
- **attr**: The attribute being queried.
- **qconstrs**: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

```c
double Get ( GRB.DoubleAttr attr )
```
Query the value of a double-valued model attribute.

Arguments:
- **attr**: The attribute being queried.

Return value:
The current value of the requested attribute.

```java
double[] Get ( GRB.DoubleAttr attr,
               GRBVar[] vars )
```
Query a double-valued variable attribute for an array of variables.

Arguments:
- `attr`: The attribute being queried.
- `vars`: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

```java
double[] Get ( GRB.DoubleAttr attr,
               GRBVar[] vars,
               int start,
               int len )
```
Query a double-valued variable attribute for a sub-array of variables.

Arguments:
- `attr`: The attribute being queried.
- `vars`: A one-dimensional array of variables whose attribute values are being queried.
- `start`: The index of the first variable of interest in the list.
- `len`: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

```java
double[,] Get ( GRB.DoubleAttr attr,
               GRBVar[,] vars )
```
Query a double-valued variable attribute for a two-dimensional array of variables.

Arguments:
- `attr`: The attribute being queried.
- `vars`: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

```java
double[,] Get ( GRB.DoubleAttr attr,
               GRBVar[,] vars )
```
Query a double-valued variable attribute for a three-dimensional array of variables.

Arguments:
- `attr`: The attribute being queried.
- `vars`: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.
Query a double-valued constraint attribute for an array of constraints.

Arguments:

- `attr`: The attribute being queried.
- `constrs`: The constraints whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr, GRBConstr[] constrs, int start, int len)

Query a double-valued constraint attribute for a sub-array of constraints.

Arguments:

- `attr`: The attribute being queried.
- `constrs`: A one-dimensional array of constraints whose attribute values are being queried.
- `start`: The first constraint of interest in the list.
- `len`: The number of constraints.

Return value:

The current values of the requested attribute for each input constraint.

double[,] Get (GRB.DoubleAttr attr, GRBConstr[,] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.

Arguments:

- `attr`: The attribute being queried.
- `constrs`: A two-dimensional array of constraints whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input constraint.

double[,] Get (GRB.DoubleAttr attr, GRBConstr[,][,] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.

Arguments:

- `attr`: The attribute being queried.
- `constrs`: A three-dimensional array of constraints whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr, GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:

- `attr`: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] Get (GRB.DoubleAttr attr,
 GRBQConstr[] qconstrs,
 int start,
 int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[,] Get (GRB.DoubleAttr attr,
 GRBQConstr[,] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[,] Get (GRB.DoubleAttr attr,
 GRBQConstr[,] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int Get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.

Arguments:
attr: The attribute being queried.
Return value:
The current value of the requested attribute.

int[] Get (GRB.IntAttr attr,
 GRBVar[] vars)
Query an int-valued variable attribute for an array of variables.
Arguments:
 attr: The attribute being queried.
 vars: The variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
 GRBVar[] vars,
 int start,
 int len)
Query an int-valued variable attribute for a sub-array of variables.
Arguments:
 attr: The attribute being queried.
 vars: A one-dimensional array of variables whose attribute values are being queried.
 start: The index of the first variable of interest in the list.
 len: The number of variables.
Return value:
The current values of the requested attribute for each input variable.

int[,] Get (GRB.IntAttr attr,
 GRBVar[,] vars)
Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:
 attr: The attribute being queried.
 vars: A two-dimensional array of variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.

int[,] Get (GRB.IntAttr attr,
 GRBVar[,] vars)
Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:
 attr: The attribute being queried.
 vars: A three-dimensional array of variables whose attribute values are being queried.
Return value:
The current values of the requested attribute for each input variable.
int[] Get (GRB.IntAttr attr,
 GRBConstr[] constrs)
Query an int-valued constraint attribute for an array of constraints.

Arguments:
 attr: The attribute being queried.
 constrs: The constraints whose attribute values are being queried.

Return value:
 The current values of the requested attribute for each input constraint.

int[] Get (GRB.IntAttr attr,
 GRBConstr[] constrs,
 int start,
 int len)
Query an int-valued constraint attribute for a sub-array of constraints.

Arguments:
 attr: The attribute being queried.
 constrs: A one-dimensional array of constraints whose attribute values are being queried.
 start: The index of the first constraint of interest in the list.
 len: The number of constraints.

Return value:
 The current values of the requested attribute for each input constraint.

int[,] Get (GRB.IntAttr attr,
 GRBConstr[,] constrs)
Query an int-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
 attr: The attribute being queried.
 constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
 The current values of the requested attribute for each input constraint.

int[,] Get (GRB.IntAttr attr,
 GRBConstr[,] constrs)
Query an int-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
 attr: The attribute being queried.
 constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
 The current values of the requested attribute for each input constraint.

string Get (GRB.StringAttr attr)
Query the value of a string-valued model attribute.

Arguments:
 attr: The attribute being queried.
Return value:

The current value of the requested attribute.

```c
string[] Get ( GRB.StringAttr attr,
               GRBVar[] vars )
```

Query a string-valued variable attribute for an array of variables.

Arguments:

- `attr`: The attribute being queried.
- `vars`: The variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.

```c
string[] Get ( GRB.StringAttr attr,
               GRBVar[] vars,
               int start,
               int len )
```

Query a string-valued variable attribute for a sub-array of variables.

Arguments:

- `attr`: The attribute being queried.
- `vars`: A one-dimensional array of variables whose attribute values are being queried.
- `start`: The index of the first variable of interest in the list.
- `len`: The number of variables.

Return value:

The current values of the requested attribute for each input variable.

```c
string[,] Get ( GRB.StringAttr attr,
                GRBVar[,] vars )
```

Query a string-valued variable attribute for a two-dimensional array of variables.

Arguments:

- `attr`: The attribute being queried.
- `vars`: A two-dimensional array of variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.

```c
string[,] Get ( GRB.StringAttr attr,
                GRBVar[,] vars )
```

Query a string-valued variable attribute for a three-dimensional array of variables.

Arguments:

- `attr`: The attribute being queried.
- `vars`: A three-dimensional array of variables whose attribute values are being queried.

Return value:

The current values of the requested attribute for each input variable.
string[] Get (GRB.StringAttr attr,
 GRBConstr[] constrs)
Query a string-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
 GRBConstr[] constrs,
 int start,
 int len)
Query a string-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

string[,] Get (GRB.StringAttr attr,
 GRBConstr[,] constrs)
Query a string-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[,] Get (GRB.StringAttr attr,
 GRBConstr[,] constrs)
Query a string-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
 GRBQConstr[] qconstrs)
Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:
 attr: The attribute being queried.
 qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[] Get (GRB.StringAttr attr,
 GRBQConstr[] qconstrs,
 int start,
 int len)

Query a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
 attr: The attribute being queried.
 qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being queried.
 start: The index of the first quadratic constraint of interest in the list.
 len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[,] Get (GRB.StringAttr attr,
 GRBQConstr[,] qconstrs)

Query a string-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
 attr: The attribute being queried.
 qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[,] Get (GRB.StringAttr attr,
 GRBQConstr[,] qconstrs)

Query a string-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
 attr: The attribute being queried.
 qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.
GRBModel.GetCoeff()

Query the coefficient of variable \(\text{var} \) in linear constraint \(\text{constr} \) (note that the result can be zero).

\[
\text{double GetCoeff (GRBConstr constr, GRBVar var)}
\]

Arguments:
- \(\text{constr} \): The requested constraint.
- \(\text{var} \): The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel.GetCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned as a \text{GRBColumn} object.

\[
\text{GRBColumn GetCol (GRBVar var)}
\]

Arguments:
- \(\text{var} \): The variable of interest.

Return value:
A \text{GRBColumn} object that captures the set of constraints in which the variable participates.

GRBModel.GetConcurrentEnv()

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your own concurrent environments and setting appropriate parameters on these environments (e.g., the \text{Method} parameter), you can control exactly which strategies the concurrent optimizer employs. For example, if you create two concurrent environments, and set \text{Method} to primal simplex for one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with \text{num}=0. For example, if you want three concurrent environments, they must be numbered 0, 1, and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent optimization on that model. Use \text{DiscardConcurrentEnvs} to revert back to default concurrent optimizer behavior.

\[
\text{GRBEnv GetConcurrentEnv (int num)}
\]

Arguments:
- \(\text{num} \): The concurrent environment number.

Return value:
The concurrent environment for the model.
GRBModel.GetConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

\[\text{GRBConstr GetConstrByName (string name)} \]

Arguments:
- **name**: The name of the desired linear constraint.

Return value:
- The requested linear constraint.

GRBModel.GetConstrs()

Retrieve an array of all linear constraints in the model.

\[\text{GRBConstr[]} \text{ GetConstrs ()} \]

Return value:
- All linear constraints in the model.

GRBModel.GetEnv()

Query the environment associated with the model. Note that each model makes its own copy of
the environment when it is created. To change parameters for a model, for example, you should
use this method to obtain the appropriate environment object.

\[\text{GRBEnv GetEnv ()} \]

Return value:
- The environment for the model.

GRBModel.GetGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel.GetGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrMax for a description of the semantics of this general constraint type.

\[\text{void GetGenConstrMax (GRBGenConstr genc,} \]
\[\text{out GRBVar resvar,} \]
\[\text{out GRBVar[]} \text{ vars,} \]
\[\text{out double constant)} \]

Arguments:
- **genc**: The general constraint object.
- **resvar**: Stores the resultant variable of the constraint.
- **vars**: Stores the array of operand variables of the constraint.
- **constant**: Stores the additional constant operand of the constraint.
GRBModel.GetGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrMin for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrMin ( GRBGenConstr genc,
                        out GRBVar resvar,
                        out GRBVar[] vars,
                        out double constant )
```

Arguments:
- **genc:** The general constraint object.
- **resvar:** Stores the resultant variable of the constraint.
- **vars:** Stores the array of operand variables of the constraint.
- **constant:** Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrAbs for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrAbs ( GRBGenConstr genc,
                        out GRBVar resvar,
                        out GRBVar argvar )
```

Arguments:
- **genc:** The general constraint object.
- **resvar:** Stores the resultant variable of the constraint.
- **argvar:** Stores the argument variable of the constraint.

GRBModel.GetGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrAnd for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrAnd ( GRBGenConstr genc,
                        out GRBVar resvar,
                        out GRBVar[] vars )
```

Arguments:
- **genc:** The general constraint object.
- **resvar:** Stores the resultant variable of the constraint.
- **vars:** Stores the array of operand variables of the constraint.
GRBModel.GetGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrOr for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrOr ( GRBGenConstr genc,
                     out GRBVar resvar,
                     out GRBVar[] vars )
```

Arguments:

genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrIndicator for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrIndicator ( GRBGenConstr genc,
                            out GRBVar binvar,
                            out int binval,
                            out GRBLinExpr expr,
                            out char sense,
                            out double rhs )
```

Arguments:

genc: The general constraint object.
binvar: Stores the binary indicator variable of the constraint.
binval: Stores the value that the indicator variable has to take in order to trigger the linear constraint.
expr: Stores the left-hand side expression of the linear constraint that is triggered by the indicator.
sense: Stores the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL.
rhs: Stores the right-hand side value for the linear constraint.

GRBModel.GetGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a null value for the \texttt{xpts} and \texttt{ypts} arguments. The routine returns the length for the \texttt{xpts} and \texttt{ypts} arrays in \texttt{npts}. That allows you to make certain that the \texttt{xpts} and \texttt{ypts} arrays are of sufficient size to hold the result of the second call.

See also \texttt{AddGenConstrPWL} for a description of the semantics of this general constraint type.

\begin{verbatim}
void GetGenConstrPWL (GRBGenConstr genc,
 out GRBVar xvar,
 out GRBVar yvar,
 out int npts,
 double[] xpts,
 double[] ypts)
\end{verbatim}

\textbf{Arguments:}
- \texttt{genc}: The general constraint object.

Any of the following arguments can be \texttt{null}.
- \texttt{xvar}: Store the \texttt{x} variable.
- \texttt{yvar}: Store the \texttt{y} variable.
- \texttt{npts}: Store the number of points that define the piecewise-linear function.
- \texttt{xpts}: The \texttt{x} values for the points that define the piecewise-linear function.
- \texttt{ypts}: The \texttt{y} values for the points that define the piecewise-linear function.

\texttt{GRBModel.GetGenConstrPoly}

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint of a different type leads to an exception. You can query the \texttt{GenConstrType} attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general constraint, with a \texttt{null} value for the \texttt{p} argument. The routine returns the length of the \texttt{p} array in \texttt{plen}. That allows you to make certain that the \texttt{p} array is of sufficient size to hold the result of the second call.

See also \texttt{AddGenConstrPoly} for a description of the semantics of this general constraint type.

\begin{verbatim}
void GetGenConstrPoly (GRBGenConstr genc,
 out GRBVar xvar,
 out GRBVar yvar,
 out int plen,
 double[] p)
\end{verbatim}

\textbf{Arguments:}
- \texttt{genc}: The general constraint object.

Any of the following arguments can be \texttt{null}.
- \texttt{xvar}: Store the \texttt{x} variable.
- \texttt{yvar}: Store the \texttt{y} variable.
- \texttt{plen}: Store the array length for \texttt{p}. If x^d is the highest power term, then $d + 1$ will be returned.
- \texttt{p}: The coefficients for polynomial function.
GRBModel.GetGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrExp for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrExp ( GRBGenConstr genc,
                       out GRBVar xvar,
                       out GRBVar yvar )
```

Arguments:
- `genc`: The general constraint object.
- `xvar`: Store the x variable.
- `yvar`: Store the y variable.

GRBModel.GetGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrExpA for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrExpA ( GRBGenConstr genc,
                         out GRBVar xvar,
                         out GRBVar yvar,
                         out double a )
```

Arguments:
- `genc`: The general constraint object.
- `xvar`: Store the x variable.
- `yvar`: Store the y variable.
- `a`: Store the base of the function.

GRBModel.GetGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrLog for a description of the semantics of this general constraint type.

```csharp
void GetGenConstrLog ( GRBGenConstr genc,
                       out GRBVar xvar,
                       out GRBVar yvar )
```

Arguments:
The general constraint object.
Any of the following arguments can be null.

\texttt{xvar}: Store the \texttt{x} variable.
\texttt{yvar}: Store the \texttt{y} variable.

GRBModel.GetGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint of a different type leads to an exception. You can query the \texttt{GenConstrType} attribute to determine the type of the general constraint.

See also \texttt{AddGenConstrLogA} for a description of the semantics of this general constraint type.

```c
void GetGenConstrLogA ( GRBGenConstr genc,
                        out GRBVar xvar,
                        out GRBVar yvar,
                        out double a )
```

Arguments:

\texttt{genc}: The general constraint object.
Any of the following arguments can be \texttt{null}.

\texttt{xvar}: Store the \texttt{x} variable.
\texttt{yvar}: Store the \texttt{y} variable.
\texttt{a}: Store the base of the function.

GRBModel.GetGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint of a different type leads to an exception. You can query the \texttt{GenConstrType} attribute to determine the type of the general constraint.

See also \texttt{AddGenConstrPow} for a description of the semantics of this general constraint type.

```c
void GetGenConstrPow ( GRBGenConstr genc,
                       out GRBVar xvar,
                       out GRBVar yvar,
                       out double a )
```

Arguments:

\texttt{genc}: The general constraint object.
Any of the following arguments can be \texttt{null}.

\texttt{xvar}: Store the \texttt{x} variable.
\texttt{yvar}: Store the \texttt{y} variable.
\texttt{a}: Store the power of the function.
GRBModel.GetGenConstrSin
Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrSin for a description of the semantics of this general constraint type.

```c
void GetGenConstrSin ( GRBGenConstr genc,
                      out GRBVar xvar,
                      out GRBVar yvar )
```

Arguments:
- **genc**: The general constraint object. Any of the following arguments can be null.
- **xvar**: Store the x variable.
- **yvar**: Store the y variable.

GRBModel.GetGenConstrCos
Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrCos for a description of the semantics of this general constraint type.

```c
void GetGenConstrCos ( GRBGenConstr genc,
                        out GRBVar xvar,
                        out GRBVar yvar )
```

Arguments:
- **genc**: The general constraint object. Any of the following arguments can be null.
- **xvar**: Store the x variable.
- **yvar**: Store the y variable.

GRBModel.GetGenConstrTan
Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also AddGenConstrTan for a description of the semantics of this general constraint type.

```c
void GetGenConstrTan ( GRBGenConstr genc,
                       out GRBVar xvar,
                       out GRBVar yvar )
```

Arguments:
- **genc**: The general constraint object. Any of the following arguments can be null.
- **xvar**: Store the x variable.
- **yvar**: Store the y variable.
GRBModel.GetGenConstrs()

Retrieve an array of all general constraints in the model.

```cpp
GRBGenConstr[] GetGenConstrs()
```

Return value:
All general constraints in the model.

GRBModel.GetJSONSolution()

After a call to Optimze, this method returns the resulting solution and related model attributes as a JSON string. Please refer to the JSON solution format section for details.

```cpp
string GetJSONSolution()
```

Return value:
A JSON string.

GRBModel.GetMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This environment enables fine-grained control over the multi-objective optimization process. Specifically, by changing parameters on this environment, you modify the behavior of the optimization that occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Use DiscardMultiobjEnvs to discard multi-objective environments and return to standard behavior.

```cpp
GRBEnv GetMultiobjEnv(int index)
```

Arguments:
- `index`: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel.GetObjective()

Retrieve the model objective(s).

```cpp
GRBLinExpr GetObjective()
```

Return the optimization objective.

Note that the constant and linear portions of the objective can also be retrieved using the ObjCon and Obj attributes.

Return value:
The model objective.

```cpp
GRBLinExpr GetObjective(int index)
```

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You can also use this routine to retrieve the primary objective (using `index = 0`), but you will get an exception if the primary objective contains quadratic terms.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.

Arguments:
- index: The index for the requested alternative objective.

Return value:
The requested alternative objective.

GRBModel.GetPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number of points that define the function, and the \(x \) and \(y \) arguments give the coordinates of the points, respectively. The \(x \) and \(y \) arguments must be large enough to hold the result. Call this method with null values for \(x \) and \(y \) if you just want the number of points.

Refer to this discussion for additional information on what the values in \(x \) and \(y \) mean.

```java
int GetPWLObj ( GRBVar var,
                double[] x,
                double[] y )
```

Arguments:
- var: The variable whose objective function is being retrieved.
- x: The \(x \) values for the points that define the piecewise-linear function. These will always be in non-decreasing order.
- y: The \(y \) values for the points that define the piecewise-linear function.

Return value:
The number of points that define the piecewise-linear objective function.

GRBModel.GetQConstr()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a GRBQuadExpr object.

```java
GRBQuadExpr GetQConstr ( GRBQConstr qconstr )
```

Arguments:
- qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetQConstrs()

Retrieve an array of all quadratic constraints in the model.

```java
GRBQConstr[] GetQConstrs ( )
```

Return value:
All quadratic constraints in the model.
GRBModel.GetQCRow()

Retrieve the left-hand side expression for a quadratic constraint. The result is returned as a GRBQuadExpr object.

```c
GRBQuadExpr GetQCRow ( GRBConstr qc )
```

Arguments:
- `qc`: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The result is returned as a GRBLinExpr object.

```c
GRBLinExpr GetRow ( GRBConstr constr )
```

Arguments:
- `constr`: The constraint of interest.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.GetSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients. The return value is the length of this list. Note that the argument arrays must be long enough to accommodate the result. Call the method with null array arguments to determine the appropriate array lengths.

```c
int GetSOS ( GRBSOS sos,
             GRBVar[] vars,
             double[] weights,
             int[] type )
```

Arguments:
- `sos`: The SOS set of interest.
- `vars`: A list of variables that participate in `sos`. Can be null.
- `weights`: The SOS weights for each participating variable. Can be null.
- `type`: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in `type[0]`.

Return value:
The number of entries placed in the output arrays. Note that you should consult the return value to determine the length of the result; the arrays sizes won’t necessarily match the result size.
GRBModel.GetSOSs()

Retrieve an array of all SOS constraints in the model.

<table>
<thead>
<tr>
<th>GRBVar[] GetSOSs()</th>
</tr>
</thead>
</table>

Return value:
All SOS constraints in the model.

GRBModel.GetTuneResult()

Use this method to retrieve the results of a previous Tune call. Calling this method with argument \(n \) causes tuned parameter set \(n \) to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

<table>
<thead>
<tr>
<th>void GetTuneResult (int n)</th>
</tr>
</thead>
</table>

\(n \): The index of the tuning result to retrieve. The best result is available as index 0. The number of stored results is available in attribute TuneResultCount.

GRBModel.GetVarByName()

Retrieve a variable from its name. If multiple variable have the same name, this method chooses one arbitrarily.

<table>
<thead>
<tr>
<th>GRBVar GetVarByName (string name)</th>
</tr>
</thead>
</table>

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.GetVars()

Retrieve an array of all variables in the model.

<table>
<thead>
<tr>
<th>GRBVar[] GetVars()</th>
</tr>
</thead>
</table>

Return value:
All variables in the model.

GRBModel.Optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion, this method will populate the solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.
Note that this method will process all pending model modifications.

```java
void Optimize()
```

GRBModel.OptimizeAsync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform other computations while optimization proceeds in the background. To check the state of the asynchronous optimization, query the `Status` attribute for the model. A value of `IN_PROGRESS` indicates that the optimization has not yet completed. When you are done with your foreground tasks, you must call `Sync` to sync your foreground program with the asynchronous optimization task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in the background is severely limited. Specifically, you can only perform attribute queries, and only for a few attributes (listed below). Any other calls on the running model, or on any other models that were built within the same Gurobi environment, will fail with error code `OPTIMIZATION_IN_PROGRESS`.

Note that there are no such restrictions on models built in other environments. Thus, for example, you could create multiple environments, and then have a single foreground program launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the `Status` attribute while an asynchronous optimization is in progress. The other attributes that can be queried are: `ObjVal`, `ObjBound`, `IterCount`, `NodeCount`, and `BarIterCount`. In each case, the returned value reflects progress in the optimization to that point. Any attempt to query the value of an attribute not on this list will return an `OPTIMIZATION_IN_PROGRESS` error.

```java
void OptimizeAsync()
```

GRBModel.OptimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the `BatchID` (a string), which uniquely identifies the job in the Cluster Manager and can be used to query the status of this request (from this program or from any other). Once the request has completed, the `BatchID` can also be used to retrieve the associated solution. To submit a batch request, you must tag at least one element of the model by setting one of the `VTag`, `CTag` or `QCTag` attributes. For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

```java
string OptimizeBatch()
```

Example usage:

```java
// Submit batch request
batchID = model.OptimizeBatch();
```

GRBModel.Presolve()

Perform presolve on a model.

```java
GRBModel Presolve()
```

Return value:

Presolved version of original model.
GRBModel.Read()

This method is the general entry point for importing data from a file into a model. It can be used to read basis files for continuous models, start vectors for MIP models, or parameter settings. The type of data read is determined by the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the GRBModel constructor. One variant of the constructor takes the name of the file that contains the new model as its argument.

```csharp
void Read ( string filename )
```

Arguments:
- `filename`: Name of the file to read. The suffix on the file must be either .bas (for an LP basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order), or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2, or .7z.

GRBModel.Remove()

Remove a variable, constraint, or SOS from a model.

```csharp
void Remove ( GRBConstr constr )
```

Remove a constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
- `constr`: The constraint to remove.

```csharp
void Remove ( GRBGenConstr genconstr )
```

Remove a general constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
- `genconstr`: The general constraint to remove.

```csharp
void Remove ( GRBQConstr qconstr )
```

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
- `qconstr`: The constraint to remove.

```csharp
void Remove ( GRBSOS sos )
```

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).
Arguments:

sos: The SOS constraint to remove.

```c
void Remove ( GRBVar var )
```

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the
model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:

var: The variable to remove.

GRBModel.Reset()

Reset the model to an unsolved state, discarding any previously computed solution information.

```c
void Reset ( )
void Reset ( int clearall )
```

Arguments:

clearall: Should additional information such as MIP starts, variable hints, branching
priorities, lazy flags, and partition information be cleared?

GRBModel.SetCallback()

Set the callback object for a model. The Callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a null argument.

```c
void SetCallback ( GRBCallback cb )
```

GRBModel.Set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

```c
void Set ( GRB.DoubleParam param,
          double newvalue )
```

Set the value of a double-valued parameter.

The difference between setting a parameter on a model and setting it on an environment (i.e.,
through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:

param: The parameter being modified.

newvalue: The desired new value for the parameter.
void Set (GRB.IntParam param, int newvalue)
 Set the value of an int-valued parameter.
 The difference between setting a parameter on a model and setting it on an environment (i.e.,
 through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
 latter modifies the parameter for every model that is subsequently built using that environment
 (and leaves the parameter unchanged for models that were previously built using that environment).
 Arguments:
 param: The parameter being modified.
 newvalue: The desired new value for the parameter.

void Set (GRB.StringParam param, string newvalue)
 Set the value of a string-valued parameter.
 The difference between setting a parameter on a model and setting it on an environment (i.e.,
 through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
 latter modifies the parameter for every model that is subsequently built using that environment
 (and leaves the parameter unchanged for models that were previously built using that environment).
 Arguments:
 param: The parameter being modified.
 newvalue: The desired new value for the parameter.

void Set (GRB.CharAttr attr, GRBVar[] vars, char[] newvalues)
 Set a char-valued variable attribute for an array of variables.
 Arguments:
 attr: The attribute being modified.
 vars: The variables whose attribute values are being modified.
 newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr, GRBVar[] vars, char[] newvalues, int start, int len)
 Set a char-valued variable attribute for a sub-array of variables.
 Arguments:
 attr: The attribute being modified.
 vars: A one-dimensional array of variables whose attribute values are being modified.
 newvalues: The desired new values for the attribute for each input variable.
 start: The index of the first variable of interest in the list.
 len: The number of variables.
void Set (GRB.CharAttr attr,
 GRBVar[,] vars,
 char[,] newvalues)
Set a char-valued variable attribute for a two-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
 GRBVar[,] vars,
 char[,] newvalues)
Set a char-valued variable attribute for a three-dimensional array of variables.

Arguments:
attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
 GRBConstr[] constrs,
 char[] newvalues)
Set a char-valued constraint attribute for an array of constraints.

Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
 GRBConstr[] constrs,
 char[] newvalues,
 int start,
 int len)
Set a char-valued constraint attribute for a sub-array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.CharAttr attr,
 GRBConstr[,] constrs,
 char[,] newvalues)
Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.CharAttr attr,
          GRBConstr["] constrs,
          char["] newvalues )
```

Set a char-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.CharAttr attr,
          GRBQConstr[] qconstrs,
          char[] newvalues )
```

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.CharAttr attr,
          GRBQConstr[] qconstrs,
          char[] newvalues,
          int start,
          int len )
```

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The desired new values for the attribute for each input quadratic constraint.
len: The number of quadratic constraints.

```c
void Set ( GRB.CharAttr attr,
          GRBQConstr[,,] qconstrs,
          char[,,] newvalues )
```

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
attr: The attribute being modified.

qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.CharAttr attr,
          GRBQConstr[n] qconstrs,
          char[n] newvalues )
```

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
- **attr**: The attribute being modified.
- **qconstrs**: A three-dimensional array of quadratic constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.DoubleAttr attr,
          double newvalue )
```

Set the value of a double-valued model attribute.

Arguments:
- **attr**: The attribute being modified.
- **newvalue**: The desired new value for the attribute.

```c
void Set ( GRB.DoubleAttr attr,
          GRBVar[] vars,
          double[] newvalues )
```

Set a double-valued variable attribute for an array of variables.

Arguments:
- **attr**: The attribute being modified.
- **vars**: The variables whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input variable.

```c
void Set ( GRB.DoubleAttr attr,
          GRBVar[] vars,
          double[] newvalues,
          int start,
          int len )
```

Set a double-valued variable attribute for a sub-array of variables.

Arguments:
- **attr**: The attribute being modified.
- **vars**: A one-dimensional array of variables whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input variable.
- **start**: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.DoubleAttr attr,
 GRBVar[,] vars,
 double[,] newvalues)
Set a double-valued variable attribute for a two-dimensional array of variables.
Arguments:
attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
 GRBVar[,] vars,
 double[,] newvalues)
Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:
attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
 GRBConstr[] constrs,
 double[] newvalues)
Set a double-valued constraint attribute for an array of constraints.
Arguments:
attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
 GRBConstr[] constrs,
 double[] newvalues,
 int start,
 int len)
Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:
attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
ewvalues: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.
void Set (GRB.DoubleAttr attr,
 GRBConstr[,,] constrs,
 double[,] newvalues)

Set a double-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
 GRBConstr[,,] constrs,
 double[,] newvalues)

Set a double-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
 GRBQConstr[] qconstrs,
 double[] newvalues)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
 GRBQConstr[] qconstrs,
 double[] newvalues,
 int start,
 int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.
Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
- `attr`: The attribute being modified.
- `qconstrs`: A two-dimensional array of quadratic constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.DoubleAttr attr,
          GRBQConstr[...], qconstrs,
          double[...], newvalues )
```

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
- `attr`: The attribute being modified.
- `qconstrs`: A three-dimensional array of quadratic constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.IntAttr attr,
           int newvalue )
```

Set the value of an int-valued model attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value for the attribute.

```c
void Set ( GRB.IntAttr attr,
           GRBVar[], vars,
           int[], newvalues )
```

Set an int-valued variable attribute for an array of variables.

Arguments:
- `attr`: The attribute being modified.
- `vars`: The variables whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input variable.

```c
void Set ( GRB.IntAttr attr,
           GRBVar[], vars,
           int[], newvalues,
           int start,
           int len )
```

Set an int-valued variable attribute for a sub-array of variables.

Arguments:
- `attr`: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

```c
void Set ( GRB.IntAttr attr,
           GRBVar[,] vars,
           int[,] newvalues )
```
Set an int-valued variable attribute for a two-dimensional array of variables.

Arguments:
- **attr**: The attribute being modified.
- **vars**: A two-dimensional array of variables whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input variable.

```c
void Set ( GRB.IntAttr attr,
           GRBVar[,] vars,
           int[,] newvalues )
```
Set an int-valued variable attribute for a three-dimensional array of variables.

Arguments:
- **attr**: The attribute being modified.
- **vars**: A three-dimensional array of variables whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input variable.

```c
void Set ( GRB.IntAttr attr,
           GRBConstr[] constrs,
           int[] newvalues )
```
Set an int-valued constraint attribute for an array of constraints.

Arguments:
- **attr**: The attribute being modified.
- **constrs**: The constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.IntAttr attr,
           GRBConstr[] constrs,
           int[] newvalues,
           int start,
           int len )
```
Set an int-valued constraint attribute for a sub-array of constraints.

Arguments:
- **attr**: The attribute being modified.
- **constrs**: A one-dimensional array of constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input constraint.
- **start**: The index of the first constraint of interest in the list.
len: The number of constraints.

```c
void Set ( GRB.IntAttr attr,
          GRBConstr[,] constrs,
          int[,] newvalues )
```
Set an int-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
- `attr`: The attribute being modified.
- `constrs`: A two-dimensional array of constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.IntAttr attr,
          GRBConstr["] constrs,
          int["] newvalues )
```
Set an int-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
- `attr`: The attribute being modified.
- `constrs`: A three-dimensional array of constraints whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.StringAttr attr,
          string newvalue )
```
Set the value of a string-valued model attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value for the attribute.

```c
void Set ( GRB.StringAttr attr,
          GRBVar[] vars,
          string[] newvalues )
```
Set a string-valued variable attribute for an array of variables.

Arguments:
- `attr`: The attribute being modified.
- `vars`: The variables whose attribute values are being modified.
- `newvalues`: The desired new values for the attribute for each input variable.

```c
void Set ( GRB.StringAttr attr,
          GRBVar[] vars,
          string[] newvalues,
          int start,
          int len )
```
Set a string-valued variable attribute for a sub-array of variables.

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

```c
void Set ( GRB.StringAttr attr,
          GRBVar[,,] vars,
          string[,,] newvalues )
```
Set a string-valued variable attribute for a two-dimensional array of variables.

Arguments:
- **attr:** The attribute being modified.
- **vars:** A two-dimensional array of variables whose attribute values are being modified.
- **newvalues:** The desired new values for the attribute for each input variable.

```c
void Set ( GRB.StringAttr attr,
          GRBVar[,,] vars,
          string[,] newvalues )
```
Set a string-valued variable attribute for a three-dimensional array of variables.

Arguments:
- **attr:** The attribute being modified.
- **vars:** A three-dimensional array of variables whose attribute values are being modified.
- **newvalues:** The desired new values for the attribute for each input variable.

```c
void Set ( GRB.StringAttr attr,
          GRBConstr[] constrs,
          string[] newvalues )
```
Set a string-valued constraint attribute for an array of constraints.

Arguments:
- **attr:** The attribute being modified.
- **constrs:** The constraints whose attribute values are being modified.
- **newvalues:** The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.StringAttr attr,
          GRBConstr[] constrs,
          string[] newvalues,
          int start,
          int len )
```
Set a string-valued constraint attribute for a sub-array of constraints.

Arguments:
- **attr:** The attribute being modified.
- **constrs:** A one-dimensional array of constraints whose attribute values are being modified.
- **newvalues:** The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.

len: The number of constraints.

```c
void Set ( GRB.StringAttr attr,
          GRBConstr[,] constrs,
          string[,] newvalues )
```

Set a string-valued constraint attribute for a two-dimensional array of constraints.

Arguments:
- **attr**: The attribute being modified.
- **constrs**: A two-dimensional array of constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.StringAttr attr,
          GRBConstr[,] constrs,
          string[,] newvalues )
```

Set a string-valued constraint attribute for a three-dimensional array of constraints.

Arguments:
- **attr**: The attribute being modified.
- **constrs**: A three-dimensional array of constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input constraint.

```c
void Set ( GRB.StringAttr attr,
          GRBQConstr[] qconstrs,
          string[] newvalues )
```

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.

Arguments:
- **attr**: The attribute being modified.
- **qconstrs**: The quadratic constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input quadratic constraint.

```c
void Set ( GRB.StringAttr attr,
          GRBQConstr[] qconstrs,
          string[] newvalues,
          int start,
          int len )
```

Set a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.

Arguments:
- **attr**: The attribute being modified.
- **qconstrs**: A one-dimensional array of quadratic constraints whose attribute values are being modified.
- **newvalues**: The desired new values for the attribute for each input quadratic constraint.
- **start**: The index of the first quadratic constraint of interest in the list.
- **len**: The number of quadratic constraints.
void Set (GRB.StringAttr attr,
 GRBQConstr[,] qconstrs,
 string[,] newvalues)

Set a string-valued quadratic constraint attribute for a two-dimensional array of quadratic constraints.

Arguments:
- attr: The attribute being modified.
- qconstrs: A two-dimensional array of quadratic constraints whose attribute values are being modified.
- newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
 GRBQConstr[,,] qconstrs,
 string[,,] newvalues)

Set a string-valued quadratic constraint attribute for a three-dimensional array of quadratic constraints.

Arguments:
- attr: The attribute being modified.
- qconstrs: A three-dimensional array of quadratic constraints whose attribute values are being modified.
- newvalues: The desired new values for the attribute for each input quadratic constraint.

GRBModel.SetObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see SetObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void SetObjective (GRBExpr expr,
 int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).

Arguments:
- expr: New model objective.
- sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization).

void SetObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense attribute.

Arguments:
- expr: New model objective.
GRBModel.SetObjectiveN()

```c
void SetObjectiveN ( GRBLinExpr expr,
                  int      index,
                  int      priority,
                  double   weight,
                  double   abstol,
                  double   reltol,
                  string   name )
```

Set an alternative optimization objective equal to a linear expression.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:

- `expr`: New alternative objective.
- `index`: Index for new objective. If you use an index of 0, this routine will change the primary optimization objective.
- `priority`: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
- `weight`: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
- `abstol`: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this objective.
- `reltol`: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this objective.
- `name`: Name of the alternative objective. This initializes the ObjNName attribute for this objective.

GRBModel.SetPWLObj()

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single variable. Specifically, the `x` and `y` arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

```c
void SetPWLObj ( GRBvar var,
                double[] x,
                double[] y )
```

Set the piecewise-linear objective function for a variable.

Arguments:

- `var`: The variable whose objective function is being set.
The x values for the points that define the piecewise-linear function. Must be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel.SingleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario model.

Return value:
Model for a single scenario.

GRBModel.Sync()

Wait for a previous asynchronous optimization call to complete.

Calling OptimizeAsync returns control to the calling routine immediately. The caller can perform other computations while optimization proceeds, and can check on the progress of the optimization by querying various model attributes. The sync call forces the calling program to wait until the asynchronous optimization call completes. You must call sync before the corresponding model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other words, exceptions thrown by this method are those that optimize itself would have thrown, had the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has already completed.

void Sync ()

GRBModel.Terminate()

Generate a request to terminate the current optimization. This method can be called at any time during an optimization.

void Terminate ()

GRBModel.Tune()

Perform an automated search for parameter settings that improve performance. Upon completion, this method stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of the TuneResultCount attribute. The actual settings can be retrieved using GetTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

void Tune ()
GRBModel.Update()

Process any pending model modifications.

```c
void Update()
```

GRBModel.Write()

This method is the general entry point for writing optimization data to a file. It can be used to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. However, writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.

```c
void Write( string filename )
```

Arguments:

- `filename`: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes are `.mps`, `.rew`, `.lp`, or `.rlp` for writing the model itself, `.ilp` for writing just the IIS associated with an infeasible model (see GRBModel.ComputeIIS for further information), `.sol` for writing the current solution, `.mst` for writing a start vector, `.hnt` for writing a hint file, `.bas` for writing an LP basis, `.prm` for writing modified parameter settings, `.attr` for writing model attributes, or `.json` for writing solution information in JSON format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so additional suffixes of `.gz`, `.bz2`, or `.7z` are accepted.
5.3 GRBVar

Gurobi variable object. Variables are always associated with a particular model. You create a variable object by adding a variable to a model (using `GRBModel.AddVar`), rather than by using a `GRBVar` constructor.

The methods on variable objects are used to get and set variable attributes. For example, solution information can be queried by calling `Get(GRB.DoubleAttr.X)`. Note, however, that it is generally more efficient to query attributes for a set of variables at once. This is done using the attribute query method on the `GRBModel` object (`GRBModel.Get`).

GRBVar.Get()

Query the value of a variable attribute.

```plaintext
char Get ( GRB.CharAttr attr )
```

Query the value of a char-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

```plaintext
double Get ( GRB.DoubleAttr attr )
```

Query the value of a double-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

```plaintext
int Get ( GRB.IntAttr attr )
```

Query the value of an int-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

```plaintext
string Get ( GRB.StringAttr attr )
```

Query the value of a string-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

GRBVar.Index

```plaintext
int Index
```
This property returns the current index, or order, of the variable in the underlying constraint matrix.

Return value:
- \(-2\): removed
- \(-1\): not in model
- \(\geq 0\): index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.

`GRBVar.SameAs()`
```c
bool SameAs ( GRBVar var2 )
```

Check whether two variable objects refer to the same variable.

Arguments:
- `var2`: The other variable.

Return value:
Boolean result indicates whether the two variable objects refer to the same model variable.

`GRBVar.Set()`

Set the value of a variable attribute.

```c
void Set ( GRB.CharAttr attr, char newvalue )
Set the value of a char-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.
```

```c
void Set ( GRB.DoubleAttr attr, double newvalue )
Set the value of a double-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.
```

```c
void Set ( GRB.IntAttr attr, int newvalue )
Set the value of an int-valued attribute.

**Arguments:**
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.
```

```c
void Set ( GRB.StringAttr attr, string newvalue )
```
Set the value of a string-valued attribute.

Arguments:
- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.
5.4 GRBConstr

Gurobi constraint object. Constraints are always associated with a particular model. You create a constraint object by adding a constraint to a model (using GRBModel.AddConstr), rather than by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example, constraint right-hand sides can be queried by calling Get(GRB.DoubleAttr.RHS). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel.Get).

GRBConstr.Get()

Query the value of a constraint attribute.

<table>
<thead>
<tr>
<th>char</th>
<th>Get (GRB.CharAttr attr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Query the value of a char-valued attribute.</td>
</tr>
<tr>
<td></td>
<td>Arguments:</td>
</tr>
<tr>
<td></td>
<td>attr: The attribute being queried.</td>
</tr>
<tr>
<td></td>
<td>Return value:</td>
</tr>
<tr>
<td></td>
<td>The current value of the requested attribute.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>double</th>
<th>Get (GRB.DoubleAttr attr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Query the value of a double-valued attribute.</td>
</tr>
<tr>
<td></td>
<td>Arguments:</td>
</tr>
<tr>
<td></td>
<td>attr: The attribute being queried.</td>
</tr>
<tr>
<td></td>
<td>Return value:</td>
</tr>
<tr>
<td></td>
<td>The current value of the requested attribute.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>int</th>
<th>Get (GRB.IntAttr attr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Query the value of an int-valued attribute.</td>
</tr>
<tr>
<td></td>
<td>Arguments:</td>
</tr>
<tr>
<td></td>
<td>attr: The attribute being queried.</td>
</tr>
<tr>
<td></td>
<td>Return value:</td>
</tr>
<tr>
<td></td>
<td>The current value of the requested attribute.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>string</th>
<th>Get (GRB.StringAttr attr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Query the value of a string-valued attribute.</td>
</tr>
<tr>
<td></td>
<td>Arguments:</td>
</tr>
<tr>
<td></td>
<td>attr: The attribute being queried.</td>
</tr>
<tr>
<td></td>
<td>Return value:</td>
</tr>
<tr>
<td></td>
<td>The current value of the requested attribute.</td>
</tr>
</tbody>
</table>

GRBConstr.Index

<table>
<thead>
<tr>
<th>int</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This property returns the current index, or order, of the constraint in the underlying constraint matrix.

Return value:
- -2: removed
- -1: not in model
- ≥ 0: index of the constraint in the model

Note that the index of a constraint may change after subsequent model modifications.

GRBConstr.SameAs()

```c
bool SameAs ( GRBConstr constr2 )
```

Check whether two constraint objects refer to the same constraint.

Arguments:
- `constr2`: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model constraint.

GRBConstr.Set()

Set the value of a constraint attribute.

```c
void Set ( GRB.CharAttr attr, char newvalue )
```

Set the value of a char-valued attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void Set ( GRB.DoubleAttr attr, double newvalue )
```

Set the value of a double-valued attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void Set ( GRB.IntAttr attr, int newvalue )
```

Set the value of an int-valued attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```c
void Set ( GRB.StringAttr attr, string newvalue )
```
Set the value of a string-valued attribute.

Arguments:
- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.
5.5 GRBQConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create a quadratic constraint object by adding a quadratic constraint to a model (using GRBModel.AddQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint attributes. For example, quadratic constraint right-hand sides can be queried by calling Get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally more efficient to query attributes for a set of constraints at once. This is done using the attribute query method on the GRBModel object (GRBModel.Get).

GRBQConstr.Get()

Query the value of a quadratic constraint attribute.

| char Get (GRB.CharAttr attr) |
| Query the value of a char-valued attribute. |
| **Arguments:** |
| attr: The attribute being queried. |
| **Return value:** |
| The current value of the requested attribute. |

| double Get (GRB.DoubleAttr attr) |
| Query the value of a double-valued attribute. |
| **Arguments:** |
| attr: The attribute being queried. |
| **Return value:** |
| The current value of the requested attribute. |

| int Get (GRB.IntAttr attr) |
| Query the value of an int-valued attribute. |
| **Arguments:** |
| attr: The attribute being queried. |
| **Return value:** |
| The current value of the requested attribute. |

| string Get (GRB.StringAttr attr) |
| Query the value of a string-valued attribute. |
| **Arguments:** |
| attr: The attribute being queried. |
| **Return value:** |
| The current value of the requested attribute. |

GRBQConstr.Set()

Set the value of a quadratic constraint attribute.
void Set (GRB.CharAttr attr,
 char newvalue)
Set the value of a char-valued attribute.
 Arguments:
 attr: The attribute being modified.
 newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
 double newvalue)
Set the value of a double-valued attribute.
 Arguments:
 attr: The attribute being modified.
 newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
 string newvalue)
Set the value of a string-valued attribute.
 Arguments:
 attr: The attribute being modified.
 newvalue: The desired new value of the attribute.
5.6 GRBSOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS object by adding an SOS constraint to a model (using GRBModel.AddSOS), rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the GRBModel.Remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.Get method.

GRBSOS.Get()

Query the value of an SOS attribute.

```c
int Get( GRB.IntAttr attr )
```

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.
5.7 GRBGenConstr

Gurobi general constraint object. General constraints are always associated with a particular model. You create a general constraint object by adding a general constraint to a model (using one of the GRBModel.AddGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

General constraint objects have a number of attributes, which can be queried with the GRBGenConstr.Get method. The full list can be found in the Attributes section of this document.

GRBGenConstr.Get()

Query the value of a general constraint attribute.

```java
double Get ( GRB.DoubleAttr attr )
```

Query the value of a double-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

```java
int Get ( GRB.IntAttr attr )
```

Query the value of an int-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

```java
string Get ( GRB.StringAttr attr )
```

Query the value of a string-valued attribute.

Arguments:
- `attr`: The attribute being queried.

Return value:
- The current value of the requested attribute.

GRBGenConstr.Set()

Set the value of a general constraint attribute.

```java
void Set ( GRB.DoubleAttr attr, string newvalue )
```

Set the value of a double-valued attribute.

Arguments:
- `attr`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

```java
void Set ( GRB.IntAttr attr, string newvalue )
```

Set the value of an int-valued attribute.
Set the value of an int-valued attribute.

Arguments:

- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.

```java
void Set ( GRB.StringAttr attr,
          string newvalue )
```

Set the value of a string-valued attribute.

Arguments:

- **attr**: The attribute being modified.
- **newvalue**: The desired new value of the attribute.
5.8 GRBExpr

Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.Value

(Property) The value of an expression for the current solution.

double Value
5.9 GRBLinExpr

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable pairs that capture the linear terms. Linear expressions are used to build constraints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.

In .NET languages that support operator overloading, you generally build linear expressions using overloaded operators. For example, if x is a GRBVar object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBLinExpr constructor), and then add terms. Terms can be added individually (using AddTerm) or in groups (using AddTerms or MultAdd). Terms can also be removed from an expression, using Remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- You should avoid using expr = expr + x or expr += x in a loop. It will lead to runtimes that are quadratic in the number of terms in the expression.
- Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.
- The most efficient way to build a large expression is to make a single call to AddTerms.

Individual terms in a linear expression can be queried using the GetVar and GetCoeff methods. The constant can be queried using the Constant property. You can query the number of terms in the expression using the Size property.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using GetVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.

<table>
<thead>
<tr>
<th>GRBLinExpr</th>
<th>GRBLinExpr ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an empty linear expression.</td>
<td></td>
</tr>
</tbody>
</table>

Return value:
An empty expression object.

<table>
<thead>
<tr>
<th>GRBLinExpr</th>
<th>GRBLinExpr (double a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a constant linear expression.</td>
<td></td>
</tr>
</tbody>
</table>

Return value:
A linear expression object.

<table>
<thead>
<tr>
<th>GRBLinExpr</th>
<th>GRBLinExpr (GRBLinExpr orig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy an existing linear expression.</td>
<td></td>
</tr>
</tbody>
</table>
Arguments:
 orig: Existing expression to copy.

Return value:
 A copy of the input expression object.

GRBLinExpr.Add()

Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the sum of itself and the argument expression.

```c
void Add ( GRBLinExpr le )
```

Arguments:
 le: Linear expression to add.

GRBLinExpr.AddConstant()

Add a constant into a linear expression.

```c
void AddConstant ( double c )
```

Arguments:
 c: Constant to add to expression.

GRBLinExpr.AddTerm()

Add a single term into a linear expression.

```c
void AddTerm ( double coeff,
               GRBVar var )
```

Arguments:
 coeff: Coefficient for new term.
 var: Variable for new term.

GRBLinExpr.AddTerms()

Add new terms into a linear expression.

```c
void AddTerms ( double[] coeffs,
                GRBVar[] vars )
```

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays must be equal.

Arguments:
 coeffs: Coefficients for new terms.
 vars: Variables for new terms.
void AddTerms (double[] coeffs,
 GRBVar[] vars,
 int start,
 int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the coefficients and variables that describe the terms in an array without being forced to add a term for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
 coeffs: Coefficients for new terms.
 vars: Variables for new terms.
 start: The first term in the list to add.
 len: The number of terms to add.

GRBLinExpr.Clear()

Set a linear expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for consistency with our interfaces to non-overloaded languages.

void Clear ()

GRBLinExpr.Constant

(Property) The constant term from the linear expression.

double Constant

GRBLinExpr.GetCoeff()

Retrieve the coefficient from a single term of the expression.

double GetCoeff (int i)

 Return value:
 Coefficient for the term at index i in the expression.

GRBLinExpr.GetVar()

Retrieve the variable object from a single term of the expression.

GRBVar GetVar (int i)

 Return value:
 Variable for the term at index i in the expression.

GRBLinExpr.MultAdd()

Add a constant multiple of one linear expression into another. Upon completion, the invoking linear expression is equal the sum of itself and the constant times the argument expression.
void MultAdd (double m, GRBLinExpr le)

Arguments:
- m: Constant multiplier for added expression.
- le: Linear expression to add.

`GRBLinExpr.Remove()`
Remove a term from a linear expression.

```c
void Remove ( int i )
```

Remove the term stored at index i of the expression.

Arguments:
- i: The index of the term to be removed.

```c
boolean Remove ( GRBVar var )
```

Remove all terms associated with variable var from the expression.

Arguments:
- var: The variable whose term should be removed.

Return value:
Returns true if the variable appeared in the linear expression (and was removed).

`GRBLinExpr.Size`
(Property) The number of terms in the linear expression (not including the constant).

```c
int Size
```

`GRBLinExpr.Value`
(Property) The value of an expression for the current solution.

```c
double Value
```
5.10 GRBQuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective functions and quadratic constraints. They are temporary objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.

In .NET languages that support operator overloading, you generally build quadratic expressions using overloaded operators. For example, if x is a GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x * x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRBQuadExpr constructor), and then add terms. Terms can be added individually (using AddTerm) or in groups (using AddTerms or MultAdd). Terms can also be removed from an expression (using Remove).

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- You should avoid using expr = expr + x*x or expr += x*x in a loop. It will lead to runtimes that are quadratic in the number of terms in the expression.
- Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.
- The most efficient way to build a large expression is to make a single call to AddTerms.

Individual quadratic terms in a quadratic expression can be queried using the GetVar1 GetVar2, and GetCoeff methods. You can query the number of quadratic terms in the expression using the Size property. To query the constant and linear terms associated with a quadratic expression, first obtain the linear portion of the quadratic expression using LinExpr, and then use the Constant, GetCoeff, or GetVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate terms are merged when creating the model objective from an expression, but they may be visible when inspecting individual quadratic terms in the expression (e.g., when using GetVar1 and GetVar2).

GRBQuadExpr()

Quadratic expression constructor. Create an empty quadratic expression, or copy an existing expression.

<table>
<thead>
<tr>
<th>GRBQuadExpr</th>
<th>GRBQuadExpr ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an empty quadratic expression.</td>
<td></td>
</tr>
</tbody>
</table>

Return value:

An empty expression object.

<table>
<thead>
<tr>
<th>GRBQuadExpr</th>
<th>GRBQuadExpr (double a)</th>
</tr>
</thead>
</table>
Create a constant quadratic expression.

Return value:
A quadratic expression object.

GRBQuadExpr GRBQuadExpr (GRBLinExpr orig)

Initialize a quadratic expression from an existing linear expression.

Arguments:
orig: Existing linear expression to copy.

Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr GRBQuadExpr (GRBQuadExpr orig)

Copy an existing quadratic expression.

Arguments:
orig: Existing expression to copy.

Return value:
A copy of the input expression object.

GRBQuadExpr.Add()

Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.

void Add (GRBLinExpr le)

Add a linear expression.

Arguments:
le: Linear expression to add.

void Add (GRBQuadExpr qe)

Add a quadratic expression.

Arguments:
qe: Quadratic expression to add.

GRBQuadExpr.AddConstant()

Add a constant into a quadratic expression.

void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.AddTerm()

Add a single term into a quadratic expression.
void AddTerm (double coeff,
 GRBVar var)
Add a single linear term (coeff*var) into a quadratic expression.
Arguments:
 coeff: Coefficient for new term.
 var: Variable for new term.

void AddTerm (double coeff,
 GRBVar var1,
 GRBVar var2)
Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:
 coeff: Coefficient for new quadratic term.
 var1: First variable for new quadratic term.
 var2: Second variable for new quadratic term.

GRBQuadExpr.AddTerms()
Add new terms into a quadratic expression.

void AddTerms (double[] coeffs,
 GRBVar[] vars)
Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.
Arguments:
 coeffs: Coefficients for new terms.
 vars: Variables for new terms.

void AddTerms (double[] coeffs,
 GRBVar[] vars,
 int start,
 int len)
Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced
to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.
Arguments:
 coeffs: Coefficients for new terms.
 vars: Variables for new terms.
 start: The first term in the list to add.
 len: The number of terms to add.

void AddTerms (double[] coeffs,
 GRBVar[] vars1,
 GRBVar[] vars2)
Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three argument arrays must be equal.

Arguments:
- **coeffs**: Coefficients for new quadratic terms.
- **vars1**: First variables for new quadratic terms.
- **vars2**: Second variables for new quadratic terms.

```c
void AddTerms ( double[] coeffs,
                GRBVar[] vars1,
                GRBVar[] vars2,
                int start,
                int len )
```

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays to hold the coefficients and variables that describe the terms in an array without being forced to add a term for each entry in the array. The `start` and `len` arguments allow you to specify which terms to add.

Arguments:
- **coeffs**: Coefficients for new quadratic terms.
- **vars1**: First variables for new quadratic terms.
- **vars2**: Second variables for new quadratic terms.
- **start**: The first term in the list to add.
- **len**: The number of terms to add.

GRBQuadExpr.Clear()

Set a quadratic expression to 0.

You should use the overloaded `expr = 0` instead. The `clear` method is mainly included for consistency with our interfaces to non-overloaded languages.

```c
void Clear ( )
```

GRBQuadExpr.GetCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

```c
double GetCoeff ( int i )
```

Return value:
Coefficient for the quadratic term at index `i` in the expression.

GRBQuadExpr.GetVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

```c
GRBVar GetVar1 ( int i )
```

Return value:
First variable for the quadratic term at index `i` in the quadratic expression.
GRBQuadExpr.GetVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVari GetVar2 (int i)

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.LinExpr()

(Property) A quadratic expression is represented as a linear expression, plus a list of quadratic
terms. This method retrieves the linear expression associated with the quadratic expression.
GRBLinExpr getLinExpr

GRBQuadExpr.MultAdd()

Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
 GRBLinExpr le)
Add a linear expression into a quadratic expression.
Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

void MultAdd (double m,
 GRBQuadExpr qe)
Add a quadratic expression into a quadratic expression.
Arguments:
m: Constant multiplier for added expression.
qe: Quadratic expression to add.

GRBQuadExpr.Remove()

Remove a quadratic term from a quadratic expression.

void Remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:
i: The index of the quadratic term to be removed.

boolean Remove (GRBVari var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:
var: The variable whose quadratic term should be removed.
Return value:

Returns `true` if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.Size

(Property) The number of quadratic terms in the quadratic expression. Use `GRBQuadExpr.LinExpr` to retrieve constant or linear terms from the quadratic expression.

```c
int size
```

GRBQuadExpr.Value

(Property) The value of an expression for the current solution.

```c
double Value
```
5.11 GRBTempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints using overloaded operators. There are no public methods on this class. Instead, GRBTempConstr objects are created by operators ==, <=, or >=. You will generally never store objects of this class in your own variables.

Consider the following examples:

```csharp
model.AddConstr(x + y <= 1);
model.AddQConstr(x*x + y*y <= 1);
```

The overloaded <= operator creates an object of type GRBTempConstr, which is then immediately passed to GRBModel.AddConstr or GRBModel.AddQConstr.
5.12 GRBColumn

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn constructor), and then adding terms. Terms can be added individually, using AddTerm, or in groups, using AddTerms. Terms can also be removed from a column, using Remove.

Individual terms in a column can be queried using the GetConstr, and GetCoeff methods. You can query the number of terms in the column using the Size property.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.

<table>
<thead>
<tr>
<th>GRBColumn</th>
<th>GRBColumn ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an empty column.</td>
<td></td>
</tr>
</tbody>
</table>

Return value:
An empty column object.

<table>
<thead>
<tr>
<th>GRBColumn</th>
<th>GRBColumn (GRBColumn orig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy an existing column.</td>
<td></td>
</tr>
</tbody>
</table>

Return value:
A copy of the input column object.

GRBColumn.AddTerm()

Add a single term into a column.

<table>
<thead>
<tr>
<th>void</th>
<th>AddTerm (double coeff, GRBConstr constr)</th>
</tr>
</thead>
</table>

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.AddTerms()

Add new terms into a column.

<table>
<thead>
<tr>
<th>void</th>
<th>AddTerms (double[] coeffs, GRBConstr[] constrs)</th>
</tr>
</thead>
</table>

Add a list of terms into a column. Note that the lengths of the two argument arrays must be equal.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
void AddTerms (double[] coeffs,
 GRBConstr[] constrs,
 int start,
 int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.Clear()

Remove all terms from a column.
void Clear ()

GRBColumn.GetCoeff()

Retrieve the coefficient from a single term in the column.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn.GetConstr()

Retrieve the constraint object from a single term in the column.
GRBConstr GetConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn.Remove()

Remove a single term from a column.
GRBConstr Remove (int i)

Remove the term stored at index i of the column.
Arguments:
i: The index of the term to be removed.
Return value:
The constraint whose term was removed from the column. Returns null if the specified
index is out of range.
boolean Remove (GRBConstr constr)
Remove the term associated with constraint \texttt{constr} from the column.

\textbf{Arguments:}
- \texttt{constr}: The constraint whose term should be removed.

\textbf{Return value:}
- Returns \texttt{true} if the constraint appeared in the column (and was removed).

\textbf{GRBColumn.Size}

(Property) The number of terms in the column.

\begin{verbatim}
| int Size |
\end{verbatim}
5.13 Overloaded Operators

The Gurobi .NET interface overloads several arithmetic and comparison operators. Overloaded arithmetic operators (+, -, *, /) are used to create linear and quadratic expressions. Overloaded comparison operators (<=, >=, and ==) are used to build linear and quadratic constraints.

Note that the results of overloaded comparison operators are generally never stored in user variables. They are immediately passed to `GRBModel.AddConstr` or `GRBModel.AddQConstr`.

operator <=
Create an inequality constraint.

```csharp
GRBTempConstr operator <= ( GRBQuadExpr lhsExpr,
                              GRBQuadExpr rhsExpr )
```

Arguments:
- `lhsExpr`: Left-hand side of inequality constraint.
- `rhsExpr`: Right-hand side of inequality constraint.

Return value:
A constraint of type `GRBTempConstr`. The result is typically immediately passed to method `GRBModel.AddConstr`.

operator >=
Create an inequality constraint.

```csharp
GRBTempConstr operator >= ( GRBQuadExpr lhsExpr,
                              GRBQuadExpr rhsExpr )
```

Arguments:
- `lhsExpr`: Left-hand side of inequality constraint.
- `rhsExpr`: Right-hand side of inequality constraint.

Return value:
A constraint of type `GRBTempConstr`. The result is typically immediately passed to method `GRBModel.AddConstr`.

operator ==
Create an equality constraint.

```csharp
GRBTempConstr operator == ( GRBLinExpr lhsExpr,
                             GRBLinExpr rhsExpr )
```

Arguments:
- `lhsExpr`: Left-hand side of equality constraint.
- `rhsExpr`: Right-hand side of equality constraint.

Return value:
A constraint of type `GRBTempConstr`. The result is typically immediately passed to method `GRBModel.AddConstr`.
Create a new expression by adding a pair of Gurobi objects.

\[
\text{GRBLinExpr } \text{operator +} (\text{GRBLinExpr } \text{expr1}, \\
\text{GRBLinExpr } \text{expr2})
\]

Arguments:
- \text{expr1}: First linear expression argument.
- \text{expr2}: Second linear expression argument.

Return value:
A linear expression that is equal to the sum of the two argument expressions.

\[
\text{GRBLinExpr } \text{operator +} (\text{GRBLinExpr } \text{expr}, \\
\text{GRBVar } \text{var})
\]

Arguments:
- \text{expr}: Linear expression argument.
- \text{var}: Variable argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the argument variable.

\[
\text{GRBLinExpr } \text{operator +} (\text{GRBVar } \text{var}, \\
\text{GRBLinExpr } \text{expr})
\]

Arguments:
- \text{var}: Variable argument.
- \text{expr}: Linear expression argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the argument variable.

\[
\text{GRBLinExpr } \text{operator +} (\text{GRBVar } \text{var1}, \\
\text{GRBVar } \text{var2})
\]

Arguments:
- \text{var1}: First variable argument.
- \text{var2}: Second variable argument.

Return value:
A linear expression that is equal to the sum of the two argument variables.

\[
\text{GRBLinExpr } \text{operator +} (\text{double } \text{a}, \\
\text{GRBVar } \text{var})
\]

Arguments:
- \text{a}: Constant.
- \text{var}: Variable.
Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

```c
GRBLinExpr operator + ( GRBVar var,
                        double a )
```

Arguments:
- `var`: Variable.
- `a`: Constant.

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBQuadExpr operator + (GRBQuadExpr expr1,
 GRBQuadExpr expr2)

Arguments:
- `expr1`: First quadratic expression argument.
- `expr2`: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the two argument quadratic expressions.

GRBQuadExpr operator + (GRBQuadExpr expr,
 GRBVar var)

Arguments:
- `expr`: Quadratic expression argument.
- `var`: Variable argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and the argument variable.

GRBQuadExpr operator + (GRBVar var,
 GRBQuadExpr expr)

Arguments:
- `var`: Variable argument.
- `expr`: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and the argument variable.

operator -
Create a new expression by subtracting one Gurobi object from another.

```c
GRBLinExpr operator - ( GRBLinExpr expr1,
                        GRBLinExpr expr2 )
```
Arguments:
 \texttt{expr1}: First linear expression argument.
 \texttt{expr2}: Second linear expression argument.

Return value:
A linear expression that is equal to the first expression minus the second.

\begin{verbatim}
GRBQuadExpr \texttt{operator - (GRBQuadExpr expr1,
 GRBQuadExpr expr2)}
\end{verbatim}

Arguments:
 \texttt{expr1}: First quadratic expression argument.
 \texttt{expr2}: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the first expression minus the second.

\texttt{operator *}

Create a new expression by multiplying a pair of Gurobi objects.

\begin{verbatim}
GRBLinExpr \texttt{operator * (double multiplier,
 GRBLinExpr expr)}
\end{verbatim}

Arguments:
 \texttt{multiplier}: Multiplier for expression argument.
 \texttt{expr}: Expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

\begin{verbatim}
GRBLinExpr \texttt{operator * (GRBLinExpr expr,
 double multiplier)}
\end{verbatim}

Arguments:
 \texttt{expr}: Linear expression argument.
 \texttt{multiplier}: Multiplier for expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

\begin{verbatim}
GRBLinExpr \texttt{operator * (double multiplier,
 GRBVar var)}
\end{verbatim}

Arguments:
 \texttt{multiplier}: Multiplier for variable argument.
 \texttt{var}: Variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

\begin{verbatim}
GRBLinExpr \texttt{operator * (GRBVar var,
 double multiplier)}
\end{verbatim}
Arguments:
var: Variable argument.
multiplier: Multiplier for variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

```c
GRBQuadExpr operator * ( double multiplier,
                        GRBQuadExpr expr )
```

Arguments:
multiplier: Multiplier for expression argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

```c
GRBQuadExpr operator * ( GRBQuadExpr expr,
                        double multiplier )
```

Arguments:
expr: Quadratic expression argument.
multiplier: Multiplier for expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

```c
GRBQuadExpr operator * ( GRBVar var1,
                        GRBVar var2 )
```

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A quadratic expression that is equal to the product of the two input variables.

```c
GRBQuadExpr operator * ( GRBVar var,
                        GRBLinExpr expr )
```

Arguments:
var: Input variable.
expr: Input linear expression.

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

```c
GRBQuadExpr operator * ( GRBLinExpr expr,
                        GRBVar var )
```

Arguments:
expr: Input linear expression.
var: Input variable.
Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

\[
\text{GRBQuadExpr operator } \ast (\text{GRBLinExpr expr1,} \\
\text{GRBLinExpr expr2 })
\]

Arguments:
- \text{expr1}: First linear expression argument.
- \text{expr2}: Second linear expression argument.

Return value:
A quadratic expression that is equal to the product of the two input linear expressions.

\[\text{operator } /\]

Create a new expression by dividing a Gurobi variable by a constant.

\[
\text{GRBLinExpr operator } / (\text{GRBVar var,} \\
\text{double divisor })
\]

Arguments:
- \text{var}: Variable argument.
- \text{divisor}: Divisor for variable argument.

Return value:
A linear expression that is equal to the input variable divided by the input divisor.

\[\text{implicit cast}\]

Create an expression from an implicit cast (e.g., \text{expr} = 0.0 or \text{expr} = x).

\[
\text{GRBLinExpr GRBLinExpr (double value)}
\]

Arguments:
- \text{value}: Desired value for linear expression.

Return value:
A linear expression that is equal to specified constant.

\[
\text{GRBQuadExpr GRBQuadExpr (double value)}
\]

Arguments:
- \text{value}: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified constant.

\[
\text{GRBLinExpr GRBLinExpr (GRBVar var)}
\]

Arguments:
- \text{value}: Desired value for linear expression.

Return value:
A linear expression that is equal to specified variable.
| GRBQuadExpr | GRBQuadExpr (GRBVar var) |

Arguments:
- **value**: Desired value for quadratic expression.

Return value:
- A quadratic expression that is equal to specified variable.

| GRBQuadExpr | GRBQuadExpr (GRBLinExpr expr) |

Arguments:
- **expr**: Desired value for quadratic expression.

Return value:
- A quadratic expression that is equal to specified linear expression.
5.14 GRBCallback

Gurobi callback class. This is an abstract class. To implement a callback, you should create a subclass of this class and implement a callback() method. If you pass an object of this subclass to method GRBModel.SetCallback before calling GRBModel.Optimize, the callback() method of the class will be called periodically. Depending on where the callback is called from, you will be able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCallback.GetIntInfo or GRBCallback.GetDoubleInfo methods to produce a custom display, or perhaps to terminate optimization early (using GRBCallback.Abort). More sophisticated MIP callbacks might use GRBCallback.GetNodeRel or GRBCallback.GetSolution to retrieve values from the solution to the current node, and then use GRBCallback.AddCut or GRBCallback.AddLazy to add a constraint to cut off that solution, or GRBCallback.SetSolution to import a heuristic solution built from that solution. For multi-objective problems, you might use GRBCallback.StopOneMultiObj to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

You can look at the callback_cs.cs example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

 GRBCallback GRBCallback() ()

 Return value:
 A callback object.

GRBCallback.Abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to GRB.Status INTERRUPTED.

 void Abort() ()

GRBCallback.AddCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can only be invoked when the where member variable is equal to GRB.Callback.MIPNODE (see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly, since they increase the size of the relaxation model that is solved at each node and can significantly degrade node processing speed.
Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution at the current node, you should first call `GetNodeRel`.

When adding your own cuts, you must set parameter `PreCrush` to value 1. This setting shuts off a few presolve reductions that sometimes prevent cuts on the original model from being applied to the presolved model.

Note that cutting planes added through this method must truly be cutting planes — they can cut off continuous solutions, but they may not cut off integer solutions that respect the original constraints of the model. Ignoring this restriction will lead to incorrect solutions.

```c
void AddCut (  GRBLinExpr lhsExpr,  
char sense,  
double rhsVal )
```

Arguments:

- `lhsExpr`: Left-hand side expression for new cutting plane.
- `sense`: Sense for new cutting plane (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhsVal`: Right-hand side value for new cutting plane.

```c
void AddConstr (  GRBTempConstr tempConstr )
```

Arguments:

- `tempConstr`: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.AddLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can only be invoked when the `where` member variable is `GRB.Callback.MIPNODE` or `GRB.Callback.MIPSOL` (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling `GetSolution` from a `GRB.Callback.MIPSOL` callback, or `GetNodeRel` from a `GRB.Callback.MIPNODE` callback), and then calling `AddLazy()` to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the `LazyConstraints` parameter if you want to use lazy constraints.

```c
void AddLazy (  GRBLinExpr lhsExpr,  
char sense,  
double rhsVal )
```

Arguments:

- `lhsExpr`: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).

rhsVal: Right-hand side value for new lazy constraint.

```c
void AddConstr ( GRBTempConstr tempConstr )
```

Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.GetDoubleInfo()

Request double-valued callback information. The available information depends on the value of the `where` member. For information on possible values of `where`, and the double-valued information that can be queried for different values of `where`, please refer to the Callback section.

```c
double GetDoubleInfo ( int what )
```

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:

Value of requested callback information.

GRBCallback.GetIntInfo()

Request int-valued callback information. The available information depends on the value of the `where` member. For information on possible values of `where`, and the int-valued information that can be queried for different values of `where`, please refer to the Callback section.

```c
int GetIntInfo ( int what )
```

Arguments:

what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:

Value of requested callback information.

GRBCallback.GetNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the `where` member variable is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS is equal to GRB.Status.OPTIMAL.

```c
double GetNodeRel ( GRBVar v )
```

Arguments:

v: The variable whose value is desired.

Return value:

The value of the specified variable in the node relaxation for the current node.

```c
double[] GetNodeRel ( GRBVar[] xvars )
```

Arguments:

xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

```c
double[][] GetNodeRel ( GRBVar[] [] xvars )
```

Arguments:

- **xvars**: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.GetSolution()

Retrieve values from the current solution vector. Only available when the `where` member variable is equal to `GRB.Callback.MIPSOL` or `GRB.Callback.MULTIOBJ`.

```c
double GetSolution ( GRBVar v )
```

Arguments:

- **v**: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

```c
double[] GetSolution ( GRBVar[] xvars )
```

Arguments:

- **xvars**: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

```c
double[][] GetSolution ( GRBVar[] [] xvars )
```

Arguments:

- **xvars**: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

GRBCallback.GetStringInfo()

Request string-valued callback information. The available information depends on the value of the `where` member. For information on possible values of `where`, and the string-valued information that can be queried for different values of `where`, please refer to the Callback section.

```c
string GetStringInfo ( int what )
```

Arguments:

- **what**: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.
GRBCallback.SetSolution()

Import solution values for a heuristic solution. Only available when the where member variable is equal to GRB.Callback.MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use this method to specify variable values. You can make multiple calls to SetSolution from one callback invocation to specify values for multiple sets of variables. After the callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for variables whose values were left undefined. You can also optionally call UseSolution within your callback function to try to immediately compute a feasible solution from the specified values.

```csharp
void SetSolution ( GRBVar v, 
                 double  val )

Arguments:
  v: The variable whose values is being set.
  val: The value of the variable in the new solution.

void SetSolution ( GRBVar[] xvars, 
                 double[]  sol )

Arguments:
  xvars: The variables whose values are being set.
  sol: The desired values of the specified variables in the new solution.
```

GRBCallback.StopOneMultiObj()

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process. Only available for multi-objective MIP models and when the where member variable is not equal to GRB.Callback.MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if any) as shown in the following example:

Example usage:

```csharp
using Gurobi;

class callback : GRBCallback 
{

    private int objcnt;
    private long starttime;

    protected override void Callback() {
        try {
            if (where == GRB.Callback.MULTIOBJ) {
```
/* get current objective number */
objcnt = GetIntInfo(GRB.Callback.MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = DateTime.Now.Ticks;

} else if (DateTime.Now.Ticks - starttime > BIG ||
 /* takes too long or good enough */) {
 /* stop only this optimization step */
 StopOneMultiObj(objcnt);
}
}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

void StopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes running locally, this argument can have the special value -1, meaning to stop the current step.

GRBCallback.UseSolution()

Once you have imported solution values using SetSolution, you can optionally call UseSolution to immediately use these values to try to compute a heuristic solution.

double UseSolution ()

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved solution is found).
5.15 GRBException

Gurobi exception object. This is a sub-class of the .NET Exception class. A number of useful properties, including `Message()` and `StackTrace()`, are inherited from the parent class. For a list of parent class methods, visit this site.

GRBException()

Exception constructor.

```
GRBException GRBException ( int errcode )
```

Create a Gurobi exception.

Arguments:
- `errcode`: Error code for exception.

Return value:
An exception object.

```
GRBException GRBException ( string errmsg )
```

Create a Gurobi exception.

Arguments:
- `errmsg`: Error message for exception.

Return value:
An exception object.

```
GRBException GRBException ( string errmsg, int errcode )
```

Create a Gurobi exception.

Arguments:
- `errmsg`: Error message for exception.
- `errcode`: Error code for exception.

Return value:
An exception object.

GRBException.ErrorCode

(Property) The error code associated with a Gurobi exception.

```
int ErrorCode
```
5.16 GRBBatch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and later check on the status of the model and retrieve its solution. For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include Update (refresh attributes from the Cluster Manager), Abort (abort execution of a batch request), Retry (retry optimization for an interrupted or failed batch), Discard (remove the batch request and all related information from the Cluster Manager), and GetJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

- **BatchID**: Unique ID for the batch request.
- **BatchStatus**: Last batch status.
- **BatchErrorCode**: Last error code.
- **BatchErrorMessage**: Last error message.

You can access their values, `batch.BatchStatus` or `batch.BatchID`, or by using `Get`. Note that all Batch attributes are locally cached, and are only updated when you create a client-side batch object or when you explicitly update this cache, which can be done by calling `Update`.

GRBBatch()

Constructor for GRBBatch.

Given a BatchID, as returned by `optimizeBatch`, and a Gurobi environment that can connect to the appropriate Cluster Manager (i.e., one where parameters `CSManager`, `UserName`, and `ServerPassword` have been set appropriately), this function returns a GRBBatch object. With it, you can query the current status of the associated batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization section for details and examples.

```cpp
GRBBatch GRBBatch ( GRBEnv& env, 
                     string& batchID )
```

Arguments:
- `env`: The environment in which the new batch object should be created.
- `batchID`: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:

```cpp
GRBBatch batch = GRBBatch(env, batchID);
```
GRBBatch.Abort()

This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

```csharp
void Abort() {
    // Abort this batch if it is taking too long
    TimeSpan interval = DateTime.Now - start;
    if (interval.TotalSeconds > maxwaittime) {
        batch.Abort();
        break;
    }
}
```

GRBBatch.Discard()

This method instructs the Cluster Manager to remove all information related to the batch request in question, including the stored solution if available. Further queries for the associated batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later on.

```csharp
void Discard() {
    // Remove batch request from manager
    batch.Discard();
}
```

GRBBatch.GetJSONSolution()

This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

```csharp
void GetJSONSolution() {
    // Get JSON solution as string
    Console.WriteLine("JSON solution:");
    batch.GetJSONSolution();
}
```

GRBBatch.Get()

Query the value of an attribute.

```csharp
int Get(GRB_IntAttr attr) {
    // Query the value of an int-valued batch attribute.
    Arguments:
    attr: The attribute being queried.
    Return value:
    The current value of the requested attribute.
    string Get(GRB_StringAttr attr) {
        // Query the value of a string-valued batch attribute.
    }
}
```
Arguments:
 attr: The attribute being queried.

Return value:
 The current value of the requested attribute.

GRBBatch.Retry()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

Example usage:

```csharp
// If the batch failed, we retry it
if (batch.BatchStatus == GRB.BatchStatus.FAILED) {
    batch.Retry();
    System.Threading.Thread.Sleep(2000);
    batch.Update();
}
```

GRBBatch.Update()

All Batch attribute values are cached locally, so queries return the value received during the last communication with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the Cluster Manager (which involves network communication).

Example usage:

```csharp
// Update the resident attribute cache of the Batch object
// with the latest values from the cluster manager.
batch.Update();
```

GRBBatch.WriteJSONSolution()

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON format is described in the JSON solution format section. Note that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Arguments:
 filename: Name of file where the solution should be stored (in JSON format).

Example usage:

```csharp
// Write the full JSON solution string to a file
batch.WriteJSONSolution("batch-sol.json.gz");
```
5.17 GRB

Class for .NET enums and constants. The enums are used to get or set Gurobi attributes or parameters.

Constants

The following list contains the set of constants needed by the Gurobi .NET interface. You would refer to them using a GRB prefix (e.g., GRB.Status.OPTIMAL).

```csharp
// Model status codes (after call to optimize())

public class Status
{
    public const int LOADED = 1;
    public const int OPTIMAL = 2;
    public const int INFEASIBLE = 3;
    public const int INF_OR_UNBD = 4;
    public const int UNBOUNDED = 5;
    public const int CUTOFF = 6;
    public const int ITERATION_LIMIT = 7;
    public const int NODE_LIMIT = 8;
    public const int TIME_LIMIT = 9;
    public const int SOLUTION_LIMIT = 10;
    public const int INTERRUPTED = 11;
    public const int NUMERIC = 12;
    public const int SUBOPTIMAL = 13;
    public const int INPROGRESS = 14;
    public const int USER_OBJ_LIMIT = 15;
}

// Batch status codes

public class BatchStatus
{
    public const int CREATED = 1;
    public const int SUBMITTED = 2;
    public const int ABORTED = 3;
    public const int FAILED = 4;
    public const int COMPLETED = 5;
}

// Basis status info

public const int BASIC = 0;
public const int NONBASIC_LOWER = -1;
public const int NONBASIC_UPPER = -2;
public const int SUPERBASIC = -3;

// Constraint senses

public const char LESS_EQUAL = '<';
public const char GREATER_EQUAL = '>='
public const char EQUAL = '=;

// Variable types
```
public const char CONTINUOUS = 'C';
public const char BINARY = 'B';
public const char INTEGER = 'I';
public const char SEMICONT = 'S';
public const char SEMIINT = 'N';

// Objective sense
public const int MINIMIZE = 1;
public const int MAXIMIZE = -1;

// SOS types
public const int SOS_TYPE1 = 1;
public const int SOS_TYPE2 = 2;

// General constraint types
public const int GENCONSTR_MAX = 0;
public const int GENCONSTR_MIN = 1;
public const int GENCONSTR_ABS = 2;
public const int GENCONSTR_AND = 3;
public const int GENCONSTR_OR = 4;
public const int GENCONSTR_INDICATOR = 5;

// Numeric constants
public const double INFINITY = 1e100;
public const double UNDEFINED = 1e101;

// Limits
public const int MAX_STRLEN = 512;

// Callback constants
public class Callback
{
 public const int POLLING = 0;
 public const int PRESOLVE = 1;
 public const int SIMPLEX = 2;
 public const int MIP = 3;
 public const int MIPSOL = 4;
 public const int MIPNODE = 5;
 public const int MESSAGE = 6;
 public const int BARRIER = 7;
 public const int MULTIOBJ = 8;

 public const int PRE_COLDEL = 1000;
 public const int PRE_ROWDEL = 1001;
 public const int PRE_SENCHG = 1002;
 public const int PRE_BNDCHG = 1003;
 public const int PRE_COECHG = 1004;
 public const int SPX_ITRCNT = 2000;
 public const int SPX_OBJVAL = 2001;
```java
// Errors
public class Error {
    public const int OUT_OF_MEMORY = 10001;
    public const int NULL_ARGUMENT = 10002;
    public const int INVALID_ARGUMENT = 10003;
    public const int UNKNOWN_ATTRIBUTE = 10004;
    public const int DATA_NOT_AVAILABLE = 10005;
    public const int INDEX_OUT_OF_RANGE = 10006;
    public const int UNKNOWN_PARAMETER = 10007;
    public const int VALUE_OUT_OF_RANGE = 10008;
    public const int NO_LICENSE = 10009;
    public const int SIZE_LIMIT_EXCEEDED = 10010;
    public const int CALLBACK = 10011;
    public const int FILE_READ = 10012;
    public const int FILE_WRITE = 10013;
    public const int NUMERIC = 10014;
    public const int IIS_NOT_INFEASIBLE = 10015;
    public const int NOT_FOR_MIP = 10016;
    public const int OPTIMIZATION_IN_PROGRESS = 10017;
}
```
public const int DUPLICATES = 10018;
public const int NODEFILE = 10019;
public const int Q_NOT_PSD = 10020;
public const int QCP_EQUALITY_CONSTRAINT = 10021;
public const int NETWORK = 10022;
public const int JOB_REJECTED = 10023;
public const int NOT_SUPPORTED = 10024;
public const int EXCEED_2B_NONZEROS = 10025;
public const int INVALID_PIECEWISE_OBJ = 10026;
public const int UPDATEMODE_CHANGE = 10027;
public const int CLOUD = 10028;
public const int MODEL_MODIFICATION = 10029;
public const int CSWORKER = 10030;
public const int TUNE_MODEL_TYPES = 10031;
public const int NOT_IN_MODEL = 20001;
public const int FAILED_TO_CREATE_MODEL = 20002;
public const int INTERNAL = 20003;
}

public const int METHOD_AUTO = -1;
public const int METHOD_PRIMAL = 0;
public const int METHOD_DUAL = 1;
public const int METHOD_BARRIER = 2;
public const int METHOD_CONCURRENT = 3;
public const int METHOD_DETERMINISTIC_CONCURRENT = 4;

public const int FEASRELAX_LINEAR = 0;
public const int FEASRELAX_QUADRATIC = 1;
public const int FEASRELAX_CARDINALITY = 2;

GRB.CharAttr

This enum is used to get or set char-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to the Attributes section to see a list of all char attributes and their functions.

GRB.DoubleAttr

This enum is used to get or set double-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to the Attributes section to see a list of all double attributes and their functions.

GRB.DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel.Get, GRBModel.Set, GRBEEnv.Get, or GRBEEnv.Set). Please refer to the Parameters section to see a list of all double parameters and their functions.

GRB.IntAttr

This enum is used to get or set int-valued attributes (through GRBModel.Get or GRBModel.Set). Please refer to the Attributes section to see a list of all int attributes and their functions.
GRB.IntParam

This enum is used to get or set int-valued parameters (through `GRBModel.Get`, `GRBModel.Set`, `GRBEnv.Get`, or `GRBEnv.Set`). Please refer to the Parameters section to see a list of all int parameters and their functions.

GRB.StringAttr

This enum is used to get or set string-valued attributes (through `GRBModel.Get` or `GRBModel.Set`). Please refer to the Attributes section to see a list of all string attributes and their functions.

GRB.StringParam

This enum is used to get or set string-valued parameters (through `GRBModel.Get`, `GRBModel.Set`, `GRBEnv.Get`, or `GRBEnv.Set`). Please refer to the Parameters section to see a list of all string parameters and their functions.
This section documents the Gurobi Python interface. It begins with an overview of the global functions, which can be called without referencing any Python objects. It then discusses the different types of objects that are available in the interface, and the most important methods on those objects. Finally, it gives a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the classes and methods described here.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not include the Python interface.

Global Functions

The Gurobi shell contains a set of **Global Functions** that can be called without referring to any Gurobi objects. The most important of these functions is probably the `read` function, which allows you to read a model from a file. Other useful global functions are `system`, which allows you to issue shell commands from within the Gurobi shell, `models`, which gives you a list of the currently loaded models, and `disposeDefaultEnv`, which disposes of the default environment. Other global functions allow you to read, modify, or write Gurobi parameters (`readParams`, `setParam`, and `writeParams`).

Models

Most actions in the Gurobi Python interface are performed by calling methods on Gurobi objects. The most commonly used object is the **Model**. A model consists of a set of decision variables (objects of class `Var` or `MVar`), a linear or quadratic objective function on these variables (specified using `Model.setObjective`), and a set of constraints on these variables (objects of class `Constr`, `QConstr`, `SOS`, or `GenConstr`). Each variable has an associated lower bound, upper bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this section for more information on variables, constraints, and objectives.

An optimization model may be specified all at once, by loading the model from a file (using the previously mentioned `read` function), or it may be built incrementally, by first constructing an empty object of class `Model` and then subsequently calling `Model.addVar`, `Model.addVars`, or `Model.addMVar` to add additional variables, and `Model.addConstr`, `Model.addConstrs`, `Model.addLConstr`, `Model.addQConstr`, `Model.addSOS`, or any of the `Model.addGenConstrXxx` methods to add additional constraints.

Linear constraints are specified by building linear expressions (objects of class `LinExpr` or `MLinExpr`), and then specifying relationships between these expressions (for example, requiring that one expression be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic expressions (objects of class `QuadExpr` or `MQuadExpr`) instead. General constraints are built using a set of dedicated methods, or a set of general constraint helper functions plus overloaded operators.
Models are dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Environments

Environments play a much smaller role in the Gurobi Python interface than they do in our other language APIs, mainly because the Python interface has a default environment. Unless you explicitly pass your own environment to routines that require an environment, the default environment will be used.

The main situation where you may want to create your own environment is when you want precise control over when the resources associated with an environment (specifically, a licensing token or a Compute Server) are released. If you use your own environment to create models (using read or the Model constructor), then the resources associated with the environment will be released as soon your program no longer references your environment or any models created with that environment.

Note that you can manually remove the reference to the default environment, thus making it available for garbage collection, by calling disposeDefaultEnv. After calling this, and after all models built within the default environment are garbage collected, the default environment will be garbage collected as well. A new default environment will be created automatically if you call a routine that needs one.

For more advanced use cases, you can use an empty environment to create an uninitialized environment and then, programmatically, set all required options for your specific requirements. For further details see the Environment section.

Solving a Model

Once you have built a model, you can call Model.optimize to compute a solution. By default, optimize will use the concurrent optimizer to solve LP models, to solve LP models, the barrier algorithm to solve QP models with convex objectives and QCP models with convex constraints, and the branch-and-cut algorithm otherwise. The solution is stored in a set of attributes of the model, which can be subsequently queried (we will return to this topic shortly).

The Gurobi algorithms keep careful track of the state of the model, so calls to Model.optimize will only perform further optimization if relevant data has changed since the model was last optimized. If you would like to discard previously computed solution information and restart the optimization from scratch without changing the model, you can call Model.reset.

After a MIP model has been solved, you can call Model.fixed to compute the associated fixed model. This model is identical to the original, except that the integer variables are fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous variables that
appear in these constraints may be fixed as well. In some applications, it can be useful to compute information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a single model with a single objective function. Gurobi provides the following features that allow you to relax these assumptions:

- **Solution Pool**: Allows you to find more solutions.
- **Multiple Scenarios**: Allows you to find solutions to multiple, related models.
- **Multiple Objectives**: Allows you to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call `Model.computeIIS` to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. This method populates a set of IIS attributes.

To attempt to repair an infeasibility, call `Model.feasRelaxS` or `Model.feasRelax` to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some attributes are associated with the variables of the model, some with the constraints of the model, and some with the model itself. To give a simple example, solving an optimization model causes the \(x \) variable attribute to be populated. Attributes such as \(x \) that are computed by the Gurobi optimizer cannot be modified directly by the user, while others, such as the variable lower bound (the \(lb \) attribute) can.

Attributes can be accessed in two ways in the Python interface. The first is to use the `getAttr()` and `setAttr()` methods, which are available on variables (Var.getAttr/Var.setAttr), linear constraints (Constr.getAttr/Constr.setAttr), quadratic constraints (QConstr.getAttr/QConstr.setAttr), SOSs (SOS.getAttr), general constraints (GenConstr.getAttr/GenConstr.setAttr), and models (Model.getAttr/Model.setAttr). These are called with the attribute name as the first argument (e.g., `var.getAttr("x")` or `constr.setAttr("rhs", 0.0)`). The full list of available attributes can be found in the Attributes section of this manual.

Attributes can also be accessed more directly: you can follow an object name by a period, followed by the name of an attribute of that object. Note that upper/lower case is ignored when referring to attributes. Thus, `b = constr.rhs` is equivalent to `b = constr.getAttr("rhs")`, and `constr.rhs = 0.0` is equivalent to `constr.setAttr("rhs", 0.0)`.

501
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the `Model.chgCoeff` method. This method can be used to modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you remove a variable or constraint from the model (through the `Model.remove` method). The non-zero values associated with the deleted constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an expression that captures the objective function (a `LinExpr`, `MLinExpr`, `QuadExpr`, or `MQuadExpr` object), and then pass that expression to method `Model.setObjective`. If you wish to modify the objective, you can simply call `setObjective` again with a new `LinExpr` or `QuadExpr` object.

For linear objective functions, an alternative to `setObjective` is to use the `Obj` variable attribute to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the `Model.setPWLObj` method. Call this method once for each relevant variable. The Gurobi simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous models you should see a substantial performance benefit from using this feature. To clear a previously specified piecewise-linear objective function, simply set the `Obj` attribute on the corresponding variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they are queued and applied later. If your program simply creates a model and solves it, you will probably never notice this behavior. However, if you ask for information about the model before your modifications have been applied, the details of the lazy update approach may be relevant to you.

As we just noted, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications can be applied to the model in three different ways. The first is by an explicit call to `Model.update`. The second is by a call to `Model.optimize`. The third is by a call to `Model.write` to write out the model. The first case gives you fine-grained control over when modifications are applied. The second and third make the assumption that you want all pending modifications to be applied before you optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is that this approach makes it much easier to perform multiple modifications to a model, since the model remains unchanged between modifications. The second is that processing model modifications can be expensive, particularly in a Compute Server environment, where modifications require communication between machines. Thus, it is useful to have visibility into exactly when these modifications are applied. In general, if your program needs to make multiple modifications to the model, you should aim to make them in phases, where you make a set of modifications, then update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value of the requested data from the point of the last update. If the object you tried to query didn’t exist then, you’ll get a \texttt{NOT_IN_MODEL} exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast majority of programs are unaffected by this change, you can use the \texttt{UpdateMode} parameter to revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization. Parameters are set using method \texttt{Model.setParam}. Current values may also be retrieved with \texttt{Model.getParamInfo}. You can also access parameters more directly through the \texttt{Model.Params} class. To set the \texttt{MIPGap} parameter to 0.0 for model \texttt{m}, for example, you can do either \texttt{m.setParam(‘MIPGap’, 0)} or \texttt{m.Params.MIPGap = 0}.

You can read a set of parameter settings from a file using \texttt{Model.read}, or write the set of changed parameters using \texttt{Model.write}.

We also include an automated parameter tuning tool that explores many different sets of parameter changes in order to find a set that improves performance. You can call \texttt{Model.tune} to invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that changing a parameter for one model has no effect on the parameter value for other models. Use the global \texttt{setParameter} method to set a parameter for all loaded models.

The full list of Gurobi parameters can be found in the Parameters section.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. You can set the \texttt{LogFile} parameter if you wish to also direct the Gurobi log to a file. The frequency of logging output can be controlled with the \texttt{DisplayInterval} parameter, and logging can be turned off entirely with the \texttt{OutputFlag} parameter.

Log output is also sent to a Python logger named \texttt{gurobipy}, at level \texttt{INFO}. You can use the Python \texttt{logging} module to connect to this log.

More detailed progress monitoring can be done through a callback function. If you pass a function taking two arguments, \texttt{model} and \texttt{where}, to \texttt{Model.optimize}, your function will be called periodically from within the optimization. Your callback can then call \texttt{Model.cbGet} to retrieve additional information on the state of the optimization. You can refer to the \texttt{Callback} class for additional information.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control callback is \texttt{Model.terminate}, which asks the optimizer to terminate at the earliest convenient point. Method \texttt{Model.cbSetSolution} allows you to inject a feasible solution (or partial solution) during the solution of a MIP model. Methods \texttt{Model.cbCut} and \texttt{Model.cbLazy} allow you to add cutting planes and lazy constraints during a MIP optimization, respectively. Method \texttt{Model.cbStopOneMultiObj}
allows you to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this. One important one, *batch optimization*, allows you to build an optimization model with your client program, submit it to a Compute Server cluster (through the Cluster Manager), and later check on the status of the model and retrieve its solution. You can use a Batch object to make it easier to work with batches. For details on batches, please refer to the Batch Optimization section.

Error Handling

All of the methods in the Gurobi Python library can throw an exception of type GurobiError. When an exception occurs, additional information on the error can be obtained by retrieving the errno or message members of the GurobiError object. A list of possible values for the errno field can be found in the Error Code section.
6.1 Global Functions

Gurobi global functions. These functions can be accessed from the main Gurobi shell prompt. In contrast to all other methods in the Gurobi Python interface, these functions do not require a Gurobi object to invoke them.

models()

<table>
<thead>
<tr>
<th>models ()</th>
</tr>
</thead>
</table>

Print a list of loaded models. Note that this function will only list models stored in global variables. Models stored in Python data structures (lists, dictionaries, etc.), or inside user classes aren’t listed.

Example usage:

```python
a = Model("a")
b = Model("b")
models()
```

disposeDefaultEnv()

<table>
<thead>
<tr>
<th>disposeDefaultEnv ()</th>
</tr>
</thead>
</table>

Dispose of the default environment. Calling this function releases the default environment created by the Gurobi Python module. This function is particularly useful in a long-running Python session (e.g., within a Jupyter notebook), where the Gurobi environment would otherwise continue to exist for the full duration of the session.

Note that models built with the default environment must be garbage collected before the default environment can be freed. You can force a model \(m \) to be garbage collected with the statement `del m`. If no references to the default environment remain, `disposeDefaultEnv` prints the message

Freed default Gurobi environment

to confirm it was able to dispose of the default environment.

Example usage:

```python
disposeDefaultEnv()
```

multidict()

<table>
<thead>
<tr>
<th>multidict (data)</th>
</tr>
</thead>
</table>

This function splits a single dictionary into multiple dictionaries. The input dictionary should map each key to a list of \(n \) values. The function returns a list of the shared keys as its first result, followed by the \(n \) individual Gurobi tuple dictionaries (stored as `tupledict` objects).

Arguments:
data: A Python dictionary. Each key should map to a list of values.

Return value:
A list, where the first member contains the shared key values, and the following members contain the dictionaries that result from splitting the value lists from the input dictionary.

Example usage:

```python
keys, dict1, dict2 = multidict( {
    'key1': [1, 2],
    'key2': [1, 3],
    'key3': [1, 4] } )
```

paramHelp()

| paramHelp (paramname) |

Obtain help about a Gurobi parameter.

Arguments:

paramname: String containing the name of parameter that you would like help with. The name can include '*' and '?' wildcards. If more than one parameter matches, the matching names are listed. Note that case is ignored.

Example usage:

```python
paramHelp("Cuts")
paramHelp("Heu*")
paramHelp("*cuts")
```

quicksum()

| quicksum (data) |

A version of the Python `sum` function that is much more efficient for building large Gurobi expressions (LinExpr or QuadExpr objects). The function takes a list of terms as its argument.

Note that while `quicksum` is much faster than `sum`, it isn’t the fastest approach for building a large expression. Use addTerms or the LinExpr() constructor if you want the quickest possible expression construction.

Arguments:

data: List of terms to add. The terms can be constants, Var objects, LinExpr objects, or QuadExpr objects.

Return value:
An expression that represents the sum of the terms in the input list.

Example usage:

```python
expr = quicksum([2*x, 3*y+1, 4*z*z])
expr = quicksum(model.getVars())
```
read()

| read (filename, env=defaultEnv) |

Read a model from a file.

Arguments:
- `filename`: Name of file containing model. Note that the type of the file is encoded in the file name suffix. Valid suffixes are `.mps`, `.rew`, `.lp`, `.rlp`, `.ilp`, or `.opb`. The files can be compressed, so additional suffixes of `.gz`, `.bz2`, `.zip`, or `.7z` are accepted. The file name may contain `*` or `?` wildcards. No file is read when no wildcard match is found. If more than one match is found, this routine will attempt to read the first matching file.
- `env`: Environment in which to create the model. Creating your environment (using the `Env` constructor) gives you more control over Gurobi licensing, but it can make your program more complex. Use the default environment unless you know that you need to control your own environments.

Return value:
- `Model` object containing the model that was read from the input file.

Example usage:
```python
m = read("afiro.mps")
m.optimize()
```

readParams()

| readParams (filename) |

Read a set of parameter settings from a file. The file name must end in `.prm`, and the file must be in PRM format.

Arguments:
- `filename`: Name of file containing parameter settings.

Example usage:
```python
readParams("params.prm")
```

resetParams()

| resetParams () |

Reset the values of all parameters to their default values. Note that existing models that are stored inside Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Example usage:
```python
resetParams()
```

setParam()

| setParam (paramname, newvalue) |
Set the value of a parameter to a new value. Note that existing models that are stored inside Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Arguments:
- **paramname**: String containing the name of parameter that you would like to modify. The name can include ‘*’ and ‘?’ wildcards. If more than one parameter matches, the matching names are listed and none are modified. Note that case is ignored.
- **newvalue**: Desired new value for parameter. Can be ’default’, which indicates that the parameter should be reset to its default value.

Example usage:
- `setParam("Cuts", 2)`
- `setParam("Heu", 0.5)`
- `setParam("*Interval", 10)`

| system() |
| system (command) |

Issue a system command.

Arguments:
- **command**: A string containing the desired system command.

Example usage:
- `system("ls")`
- `system("rm junk")`

| writeParams() |
| writeParams (filename) |

Write all modified parameters to a file. The file is written in PRM format.

Example usage:
- `setParam("Heu", 0.5)`
- `writeParams("params.prm")` # file will contain changed parameter
- `system("cat params.prm")`
6.2 Model

Gurobi model object. Commonly used methods on the model object in the Gurobi shell include optimize (optimizes the model), printStats (prints statistics about the model), printAttr (prints the values of an attribute), and write (writes information about the model to a file). Commonly used methods when building a model include addVar (adds a new variable), addVars (adds multiple new variables), addMVar (adds an a NumPy ndarray of Gurobi variables), addConstr (adds a new constraint), and addConstrs (adds multiple new constraints).

Model()

| Model (name="", env=defaultEnv) |

Model constructor.

Arguments:
- name: Name of new model. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.
- env: Environment in which to create the model. Creating your environment (using the Env constructor) gives you more control over Gurobi licensing, but it can make your program more complex. Use the default environment unless you know that you need to control your own environments.

Return value:
New model object. Model initially contains no variables or constraints.

Example usage:

```python
m = Model("NewModel")
x0 = m.addVar()

env = Env("my.log")
m2 = Model("NewModel2", env)
```

Model.addConstr()

| addConstr (lhs, sense=None, rhs=None, name="") |

Add a constraint to a model.

Note that this method also accepts a TempConstr as its first argument (with the constraint name as its second argument). This allows you to use operator overloading to create a variety of different constraint types. See TempConstr for more information.

Arguments:
- lhs: Left-hand side for the new constraint. Can be a constant, a Var, a LinExpr, a QuadExpr, or a TempConstr.
- sense: Sense for the new constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- rhs: Right-hand side for the new constraint. Can be a constant, a Var, a LinExpr, or a QuadExpr.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Return value: New constraint object.

Example usage:

```python
model.addConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addConstr(x + y <= 2.0, "c1")
model.addConstr(x*x + y*y <= 4.0, "qc0")
model.addConstr(x + y + z == [1, 2], "rgc0")
model.addConstr(z == and_(x, y, w), "gc0")
model.addConstr(z == min_(x, y), "gc1")
model.addConstr((w == 1) >> (x + y <= 1), "ic0")
```

Warning: A constraint can only have a single comparison operator.

While $1 \leq x + y \leq 2$ or $1 \leq x[i] + y[i] \leq 2$ for i in range(3)

may look like valid constraints, our Python API won't interpret them as they were intended, which will almost certainly result in unexpected behavior.

Model.addConstrs()

```python
addConstrs ( generator, name="" )
```

Add multiple constraints to a model using a Python generator expression. Returns a Gurobi `tupledict` that contains the newly created constraints, indexed by the values generated by the generator expression.

The first argument to addConstrs is a Python generator expression, a special feature of the Python language that allows you to iterate over a Python expression. In this case, the Python expression will be a Gurobi constraint and the generator expression provides values to plug into that constraint. A new Gurobi constraint is added to the model for each iteration of the generator expression.

To give an example, if `x` is a Gurobi variable, then

```python
m.addConstr(x <= 1, name='c0')
```

would add a single linear constraint involving this variable. In contrast, if `x` is a list of Gurobi variables, then

```python
m.addConstrs((x[i] <= 1 for i in range(4)), name='c')
```

would add four constraints to the model. The entire first argument is a generator expression, where the indexing is controlled by the statement `for i in range(4)`. The first constraint that results from this expression would be named `c[0]`, and would involve variable `x[0]`. The second would be named `c[1]`, and would involve variable `x[1]`.

Generator expressions can be much more complex than this. They can involve multiple variables and conditional tests. For example, you could do:
m.addConstrs((x[i,j] == 0 for i in range(4) for j in range(4) if i != j), name='c')

One restriction that addConstrs places on the generator expression is that each variable must always take a scalar value (int, float, string, ...). Thus, for i in [1, 2.0, 'a', 'bc'] is fine, but for i in [(1, 2), [1, 2, 3]] isn’t.

This method can be used to add linear constraints, quadratic constraints, or general constraints to the model. Refer to the TempConstr documentation for more information on all of the different constraint types that can be added.

Note that if you supply a name argument, the generator expression must be enclosed in parenthesis. This requirement comes from the Python language interpreter.

Arguments:
- **generator**: A generator expression, where each iteration produces a constraint.
- **name**: Name pattern for new constraints. The given name will be subscripted by the index of the generator expression, so if the index is an integer, c would become c[0], c[1], etc. Note that the generated names will be stored as ASCII strings, so you should avoid using names that contain non-ASCII characters. In addition, names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
A dictionary of Constr objects, indexed by the values specified by the generator expression.

Example usage:

```python
model.addConstrs(x.sum(i, '*') <= capacity[i] for i in range(5))
model.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
model.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
model.addConstrs(z[i] == max_(x[i], y[i]) for i in range(5))
model.addConstrs((x[i] == 1) >> (y[i] + z[i] <= 5) for i in range(5))
```

Warning: A constraint can only have a single comparison operator.
While 1 <= x + y <= 2 or 1 <= x[i] + y[i] <= 2 for i in range(3) may look like valid constraints, our Python API won’t interpret them as they were intended, which will almost certainly result in unexpected behavior.

Model.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function) constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

- **addGenConstrMax**: \(y = \max(x_1, x_2, \ldots, c) \)
- **addGenConstrMin**: \(y = \min(x_1, x_2, \ldots, c) \)
- **addGenConstrAbs**: \(y = |x| \)
- **addGenConstrAnd**: \(y = x_1 \land x_2 \land x_3 \ldots \)
- **addGenConstrOr**: \(y = x_1 \lor x_2 \lor x_3 \ldots \)
- **addGenConstrIndicator**: \(y = 1 \rightarrow a'x \leq b \) (an indicator constraint)
- **addGenConstrPWL**: \(y = \text{pwl}(x) \) (a piecewise-linear function, specified using breakpoints)
- **addGenConstrPoly**: \(y = p_0x^d + p_1x^{d-1} + \ldots + p_{d-1}x + p_d \)
- **addGenConstrExp**: \(y = e^x \)
- **addGenConstrExpA**: \(y = a^x \)
- **addGenConstrLog**: \(y = \log_e(x) \)
- **addGenConstrLogA**: \(y = \log_a(x) \)
- **addGenConstrPow**: \(y = x^a \)
- **addGenConstrSin**: \(y = \sin(x) \)
- **addGenConstrCos**: \(y = \cos(x) \)
- **addGenConstrTan**: \(y = \tan(x) \)

You can also add several types of general constraints through `addConstr` or `addConstrs`, using overloaded operators and a few general constraint helper functions. The descriptions below will make note of these equivalent, more concise alternatives.

Please refer to this section for additional details on general constraints.

Model.addGenConstrMax()

```python
|addGenConstrMax ( resvar, vars, constant=None, name="" ) |
```

Add a new general constraint of type `GRB.GENCONSTR_MAX` to a model.

A MAX constraint \(r = \max\{x_1, \ldots, x_n, c\} \) states that the resultant variable \(r \) should be equal to the maximum of the operand variables \(x_1, \ldots, x_n \) and the constant \(c \).

You can also add a MAX constraint using the `max_` function.

Arguments:
resvar (Var): The variable whose value will be equal to the max of the other variables.
vars (list of Var): The variables over which the max will be taken. Note that this list may also contain constants (type int, long, or float).
constant (float, optional): An additional operand that allows you to include a constant among the arguments of the max operation.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = max(x1, x3, x4, 2.0)
model.addGenConstrMax(x5, [x1, x3, x4], 2.0, "maxconstr")

alternative form
model.addGenConstrMax(x5, [x1, x3, x4], 2.0, name="maxconstr")

overloaded forms
model.addConstr(x5 == max_([x1, x3, x4, 2.0]), name="maxconstr")
model.addConstr(x5 == max_(x1, x3, x4, 2.0), name="maxconstr")

Model.addGenConstrMin()

addGenConstrMin (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint \(r = \min\{x_1, \ldots, x_n, c\} \) states that the resultant variable \(r \) should be equal to the minimum of the operand variables \(x_1, \ldots, x_n \) and the constant \(c \).
You can also add a MIN constraint using the min function.

Arguments:
resvar (Var): The variable whose value will be equal to the min of the other variables.
vars (list of Var): The variables over which the min will be taken. Note that this list may also contain constants (type int, long, or float).
constant (float, optional): An additional operand that allows you to include a constant among the arguments of the min operation.
name (string, optional): Name for the new general constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = min(x1, x3, x4, 2.0)
model.addGenConstrMin(x5, [x1, x3, x4], 2.0, "minconstr")

alternative form
model.addGenConstrMin(x5, [x1, x3, x4], 2.0, name="minconstr")

overloaded forms
model.addConstr(x5 == min([x1, x3, x4, 2.0]), name="minconstr")
model.addConstr(x5 == min(x1, x3, x4, 2.0), name="minconstr")

Model.addGenConstrAbs()

addGenConstrAbs (resvar, argvar, name="")

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint $r = \text{abs}\{x\}$ states that the resultant variable r should be equal to the
absolute value of the argument variable x.

You can also add an ABS constraint using the abs_ function.

Arguments:
- resvar (Var): The variable whose value will be to equal the absolute value of the argument
 variable.
- argvar (Var): The variable for which the absolute value will be taken.
- name (string, optional): Name for the new general constraint. Note that name will be
 stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→'
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = abs(x1)
model.addGenConstrAbs(x5, x1, "absconstr")

overloaded form
model.addConstr(x5 == abs_(x1), name="absconstr")

Model.addGenConstrAnd()

addGenConstrAnd (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint $r = \text{and}\{x_1, \ldots, x_n\}$ states that the binary resultant variable r should be 1
if and only if all of the operand variables x_1, \ldots, x_n are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

You can also add an AND constraint using the and_ function.

Arguments:
- resvar (Var): The variable whose value will be equal to the AND concatenation of the
 other variables.
- vars (list of Var): The variables over which the AND concatenation will be taken.
- name (string, optional): Name for the new general constraint. Note that name will be
 stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→'
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = and(x1, x3, x4)
model.addGenConstrAnd(x5, [x1, x3, x4], "andconstr")

overloaded forms
model.addConstr(x5 == and_([x1, x3, x4]), "andconstr")
model.addConstr(x5 == and_(x1, x3, x4), "andconstr")

Model.addGenConstrOr()

<table>
<thead>
<tr>
<th>addGenConstrOr (resvar, vars, name="")</th>
</tr>
</thead>
</table>

Add a new general constraint of type GRB.GENCONSTR_OR to a model.

An OR constraint \(r = \text{or}\{x_1, \ldots, x_n\} \) states that the binary resultant variable \(r \) should be 1 if and only if any of the operand variables \(x_1, \ldots, x_n \) is equal to 1. If all operand variables are 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent of how they were created.

You can also add an OR constraint using the or_ function.

Arguments:
- \text{resvar} (Var): The variable whose value will be equal to the OR concatenation of the other variables.
- \text{vars} (list of Var): The variables over which the OR concatenation will be taken.
- \text{name} (string, optional): Name for the new general constraint. Note that \text{name} will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = or(x1, x3, x4)
model.addGenConstrOr(x5, [x1, x3, x4], "orconstr")

overloaded forms
model.addConstr(x5 == or_([x1, x3, x4]), "orconstr")
model.addConstr(x5 == or_(x1, x3, x4), "orconstr")

Model.addGenConstrIndicator()

<table>
<thead>
<tr>
<th>addGenConstrIndicator (binvar, binval, lhs, sense=None, rhs=None, name="")</th>
</tr>
</thead>
</table>

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.

An INDICATOR constraint \(z = f \rightarrow a^T x \leq b \) states that if the binary indicator variable \(z \) is equal to \(f \in \{0, 1\} \), then the linear constraint \(a^T x \leq b \) should hold. On the other hand, if \(z = 1-f \), the linear constraint may be violated. The sense of the linear constraint can also be specified to be \(= \) or \(\geq \).

Note that the indicator variable \(z \) of a constraint will be forced to be binary, independent of how it was created.
You can also add an INDICATOR constraint using a special overloaded syntax. See the examples below for details.

Arguments:
- **binvar (Var)**: The binary indicator variable.
- **binval (Boolean)**: The value for the binary indicator variable that would force the linear constraint to be satisfied.
- **lhs (float, Var, LinExpr, or TempConstr)**: Left-hand side expression for the linear constraint triggered by the indicator. Can be a constant, a Var, or a LinExpr. Alternatively, a temporary constraint object can be used to define the linear constraint that is triggered by the indicator. The temporary constraint object is created using an overloaded comparison operator. See TempConstr for more information. In this case, the “sense” and “rhs” parameters must stay at their default values None.
- **sense (char)**: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL.
- **rhs (float)**: Right-hand side value for the linear constraint.
- **name (string, optional)**: Name for the new general constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Example usage:
```python
# x7 = 1 -> x1 + 2 x3 + x4 = 1
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4, GRB.EQUAL, 1.0)

# alternative form
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4 == 1.0)

# overloaded form
model.addConstr((x7 == 1) >> (x1 + 2*x2 + x4 == 1.0))
```

Model.addGenConstrPWL()

```python
addGenConstrPWL ( xvar, yvar, xpts, ypts, name="" )
```

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.

A piecewise-linear (PWL) constraint states that the relationship \(y = f(x) \) must hold between variables \(x \) and \(y \), where \(f \) is a piecewise-linear function. The breakpoints for \(f \) are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Arguments:
- **xvar (Var)**: The \(x \) variable.
- **yvar (Var)**: The \(y \) variable.
- **xpts (list of float)**: The \(x \) values for the points that define the piecewise-linear function. Must be in non-decreasing order.
- **ypts (list of float)**: The \(y \) values for the points that define the piecewise-linear function.
- **name (string, optional)**: Name for the new general constraint.
Return value:
New general constraint.

Example usage:
```python
gc = model.addGenConstrPWL(x, y, [0, 1, 2], [1.5, 0, 3], "myPWLConstr")
```

Model.addGenConstrPoly()

```python
<table>
<thead>
<tr>
<th>addGenConstrPoly ( xvar, yvar, p, name=&quot;&quot;, options=&quot;&quot; )</th>
</tr>
</thead>
</table>
```

Add a new general constraint of type GRB.GENCONSTRAINT_POLY to a model.

A polynomial function constraint states that the relationship \(y = p_0x^d + p_1x^{d-1} + \ldots + p_{d-1}x + p_d \) should hold between variables \(x \) and \(y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- **xvar (Var)**: The \(x \) variable.
- **yvar (Var)**: The \(y \) variable.
- **p**: The coefficients for the polynomial function (starting with the coefficient for the highest power).
- **name (string, optional)**: Name for the new general constraint.
- **options (string, optional)**: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g., "FuncPieces=-1 FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
```python
# y = 2 x^3 + 1.5 x^2 + 1
gc = model.addGenConstrPoly(x, y, [2, 1.5, 0, 1])
```

Model.addGenConstrExp()

```python
<table>
<thead>
<tr>
<th>addGenConstrExp ( xvar, yvar, name=&quot;&quot;, options=&quot;&quot; )</th>
</tr>
</thead>
</table>
```

Add a new general constraint of type GRB.GENCONSTRAINT_EXP to a model.

A natural exponential function constraint states that the relationship \(y = \exp(x) \) should hold for variables \(x \) and \(y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- **xvar (Var)**: The \(x \) variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.
Example usage:
 # y = exp(x)
 gc = model.addGenConstrExp(x, y)

Model.addGenConstrExpA()
| addGenConstrExpA (xvar, yvar, a, name="", options="") |

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship \(y = a^x \) should hold for variables \(x \) and \(y \), where \(a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
 xvar (Var): The x variable.
 yvar (Var): The y variable.
 a (float): The base of the function, \(a > 0 \).
 name (string, optional): Name for the new general constraint.
 options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.
Example usage:
 # y = 3^x
 gc = model.addGenConstrExpA(x, y, 3.0, "expa")

Model.addGenConstrLog()
| addGenConstrLog (xvar, yvar, name="", options="") |

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship \(y = \log(x) \) should hold for variables \(x \) and \(y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.

Arguments:
- \texttt{xvar (Var)}: The \(x \) variable.
- \texttt{yvar (Var)}: The \(y \) variable.
- \texttt{name (string, optional)}: Name for the new general constraint.
- \texttt{options (string, optional)}: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
```python
# y = \log(x)
gc = model.addGenConstrLog(x, y)
```

Model.addGenConstrLogA()

```python
addGenConstrLogA ( xvar, yvar, a, name="", options="" )
```

Add a new general constraint of type \texttt{GRB.GENCONST?LOGA} to a model.

A logarithmic function constraint states that the relationship \(y = \log_a(x) \) should hold for variables \(x \) and \(y \), where \(a > 0 \) is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.

Arguments:
- \texttt{xvar (Var)}: The \(x \) variable.
- \texttt{yvar (Var)}: The \(y \) variable.
- \texttt{a (float)}: The base of the function, \(a > 0 \).
- \texttt{name (string, optional)}: Name for the new general constraint.
- \texttt{options (string, optional)}: A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
```python
# y = \log_{10}(x)
gc = model.addGenConstrLogA(x, y, 10)
```
gc = model.addGenConstrLogA(x, y, 10.0, "log10", "FuncPieces=-1 FuncPieceError=1e-5")

Model.addGenConstrPow()

| addGenConstrPow (xvar, yvar, a, name="", options="") |

Add a new general constraint of type GRB.GENCONST_POW to a model.
A power function constraint states that the relationship $y = x^a$ should hold for variables x and y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- xvar (Var): The x variable.
- yvar (Var): The y variable.
- a (float): The exponent of the function, $a > 0$.
- name (string, optional): Name for the new general constraint.
- options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
$y = x^{3.5}$
 gc = model.addGenConstrLogA(x, y, 3.5, "gf", "FuncPieces=1000")

Model.addGenConstrSin()

| addGenConstrSin (xvar, yvar, name="", options="") |

Add a new general constraint of type GRB.GENCONST_SIN to a model.
A sine function constraint states that the relationship $y = \sin(x)$ should hold for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- xvar (Var): The x variable.
- yvar (Var): The y variable.
- name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
y = sin(x)
gc = model.addGenConstrSin(x, y)

Model.addGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.

A cosine function constraint states that the relationship \(y = \cos(x) \) should hold for variables \(x \) and \(y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- xvar (Var): The \(x \) variable.
- yvar (Var): The \(y \) variable.
- name (string, optional): Name for the new general constraint.
- options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
y = cos(x)
gc = model.addGenConstrCos(x, y)

Model.addGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.

A tangent function constraint states that the relationship \(y = \tan(x) \) should hold for variables \(x \) and \(y \).

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- xvar (Var): The \(x \) variable.
- yvar (Var): The \(y \) variable.
- name (string, optional): Name for the new general constraint.
- options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
New general constraint.

Example usage:
y = tan(x)
gc = model.addGenConstrTan(x, y)
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Arguments:
- xvar (Var): The x variable.
- yvar (Var): The y variable.
- name (string, optional): Name for the new general constraint.
- options (string, optional): A string that can be used to set the attributes that control the piecewise-linear approximation of this function constraint. To assign a value to an attribute, follow the attribute name with an equal sign and the desired value (with no spaces). Assignments for different attributes should be separated by spaces (e.g. 'FuncPieces=-1 FuncPieceError=0.001').

Return value:
- New general constraint.

Example usage:

y = tan(x)
gc = model.addGenConstrTan(x, y)

Model.addLConstr()

Add a linear constraint to a model. This method is faster than addConstr() (as much as 50% faster for very sparse constraints), but can only be used to add linear constraints.

Note that this method also accepts a TempConstr as its first argument (with the name as its second argument). This allows you to use operator overloading to create constraints. See TempConstr for more information.

Arguments:
- lhs: Left-hand side for the new constraint. Can be a constant, a Var, a LinExpr, or a TempConstr (while the TempConstr can only be of linear form).
- sense: Sense for the new constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- rhs: Right-hand side for the new constraint. Can be a constant, a Var, or a LinExpr.
- name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Return value:
- New constraint object.

Example usage:

model.addLConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addLConstr(x + y <= 2.0, "c1")
model.addLConstr(LinExpr([1.0,1.0], [x,y]), GRB.LESS_EQUAL, 1)

Model.addMConstrs()

Add a linear constraint to a model. This method is faster than addConstr() (as much as 50% faster for very sparse constraints), but can only be used to add linear constraints.

Note that this method also accepts a TempConstr as its first argument (with the name as its second argument). This allows you to use operator overloading to create constraints. See TempConstr for more information.

Arguments:
- A: Matrix for the new constraint. Can be a constant, a Var, a LinExpr, or a TempConstr (while the TempConstr can only be of linear form).
- x: Variables for the new constraint. Can be a constant, a Var, or a LinExpr.
- sense: Sense for the new constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
- b: Right-hand side for the new constraint. Can be a constant, a LinExpr.
- names: Names for new constraints. Note that names will be stored as ASCII strings. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Return value:
- New constraint object.

Example usage:

model.addMConstrs(x, [1.0,1.0], [x,y], GRB.LESS_EQUAL, 1)
Add a set of linear constraints to the model using matrix semantics. The added constraints are $Ax = b$ (except that the constraint sense is determined by the sense argument). The A argument must be a NumPy dense ndarray or a SciPy sparse matrix.

Note that you will typically use overloaded operators to build and add constraints using matrix semantics. The overloaded @ operator can be used to build a linear matrix expression, which can then be used with an overloaded comparison operator to build a TempConstr object. This can then be passed to addConstr.

Arguments:
- A: The constraint matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix.
- x: Decision variables. Argument can be an MVar object, a list of Var objects, or None (None uses all variables in the model). The length of the argument must match the size of the second dimension of A.
- sense: Constraint senses, provided as a NumPy 1-D ndarray or as a single character. Valid values are $<$, $>$, or $=$. The length of the array must be equal the size of the first dimension of A. A character will be promoted to an ndarray of the appropriate length.
- b: Right-hand side vector, stored as a NumPy 1-D ndarray. The length of the array must be equal the size of the first dimension of A.
- names: Names for new constraints. The given name will be subscripted by the index of the constraint in the matrix.

Return value:
List of Constr objects.

Example usage:
```python
A = np.full((5, 10), 1)
x = model.addMVar(10)
b = np.full(5, 1)
model.addMConstrs(A, x, '=', b)
```

\textbf{Model.addMQConstr()}

\textbf{addMQConstr} (Q, c, sense, rhs, xQ_L=None, xQ_R=None, xc=None, name="")

Add a quadratic constraint to the model using matrix semantics. The added constraint is $x'Qx + c'x = \text{rhs}$ (except that the constraint sense is determined by the sense argument). The Q argument must be a NumPy ndarray or a SciPy sparse matrix.

Note that you will typically use overloaded operators to build and add constraints using matrix semantics. The overloaded @ operator can be used to build a linear matrix expression or quadratic matrix expression. An overloaded comparison operator can then be used to build a TempConstr object, which is then passed to addConstr.

Arguments:
- Q: The quadratic constraint matrix - a NumPy 2-D ndarray or a SciPy sparse matrix.
- c: The linear constraint vector - a NumPy 1-D ndarray. This can be None if there are no linear terms.
- sense: Constraint sense. Valid values are $<$, $>$, or $=$.
- rhs: Right-hand-side value.
xQ_L: Decision variables for quadratic terms; left multiplier for Q. Argument can be an
MVar object, a list of Var objects, or None (None uses all variables in the model). The
length of the argument must match the size of the first dimension of Q.
xQ_R: Decision variables for quadratic terms; right multiplier for Q. The length of the argument
must match the size of the second dimension of Q.
xc: Decision variables for linear terms. Argument can be an MVar object, a list of Var
objects, or None (None uses all variables in the model). The length of the argument must
match the length of c.
name: Name for new constraint.

Return value:
The QConstr object.

Example usage:
Q = np.full((2, 3), 1)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.addMQConstr(Q, None, '<', 1.0, xL, xR)

Model.addMVar()

addMVar (shape, lb=0.0, ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS,
name="")

Add an MVar object to a model. An MVar is a NumPy ndarray of Gurobi decision variables.
The ndarray can have an arbitrary number of dimensions, but you will generally need to slice a
multi-dimensional array into 1-D objects to use an MVar to build constraints.

You can multiply a 1-D MVar by a 2-D matrix (a NumPy dense ndarray or a SciPy sparse
matrix), using overloaded Python matrix-multiply operators (@), to create a linear matrix expression
or quadratic matrix expression, which can then be used to build linear or quadratic objectives or
constraints.

Note that the returned MVar object supports standard NumPy slicing.

Arguments:
shape: The shape of the array.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the
index of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid
using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
New MVar object.

Example usage:
x = model.addMVar(10) # add a 1-D array of 10 variables
y = model.addMVar((3,4), vtype=GRB.BINARY) # add a 3x4 2-D array of binary variables
print(y[:,1:3]) # take a slice of a 2-D array

Model.addQConstr()

|addQConstr (lhs, sense=None, rhs=None, name="")|

Add a quadratic constraint to a model.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The differences between them can be both important and subtle. Refer to this discussion for additional information.

Arguments:
- **lhs**: Left-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or a QuadExpr.
- **sense**: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
- **rhs**: Right-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or a QuadExpr.
- **name**: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Return value:
New quadratic constraint object.

Example usage:
```python
model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")
model.addQConstr(x*x + y*y <= 2.0, "c1")
```

Model.addRange()

|addRange (expr, lower, upper, name="")|

Add a range constraint to a model. A range constraint states that the value of the input expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra variable to the model to capture the range information. Thus, the Sense attribute on a range constraint will always be GRB.EQUAL.

Arguments:
- **expr**: Linear expression for new range constraint. Can be a Var or a LinExpr.
- **lower**: Lower bound for linear expression.
- **upper**: Upper bound for linear expression.
- **name**: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Return value:
New constraint object.

Example usage:
```python
model.addRange(expr, lower, upper, name="")
```
\# 1 <= x + y <= 2
model.addRange(x + y, 1.0, 2.0, "range0")

\# overloaded forms
model.addConstr(x + y == [1.0, 2.0], name="range0")

Model.addSOS()

\textbf{addSOS} \ (\text{type, vars, wts=None})

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

\textbf{Arguments:}
\begin{itemize}
 \item \textbf{type}: SOS type (can be \tt{GRB.SOS_TYPE1} or \tt{GRB.SOS_TYPE2}).
 \item \textbf{vars}: List of variables that participate in the SOS constraint.
 \item \textbf{weights (optional)}: Weights for the variables in the SOS constraint. Default weights are 1, 2, ...
\end{itemize}

\textbf{Return value:}
New \tt{SOS} object.

\textbf{Example usage:}
model.addSOS(GRB.SOS_TYPE1, [x, y, z], [1, 2, 4])

Model.addVar()

\textbf{addVar} \ (\text{lb=0.0, ub=\tt{GRB.INFINITY}, obj=0.0, vtype=\tt{GRB.CONTINUOUS}, name="", column=None})

Add a decision variable to a model.

\textbf{Arguments:}
\begin{itemize}
 \item \textbf{lb (optional)}: Lower bound for new variable.
 \item \textbf{ub (optional)}: Upper bound for new variable.
 \item \textbf{obj (optional)}: Objective coefficient for new variable.
 \item \textbf{vtype (optional)}: Variable type for new variable (\tt{GRB.CONTINUOUS}, \tt{GRB.BINARY}, \tt{GRB.INTEGER}, \tt{GRB.SEMICONT}, or \tt{GRB.SEMIINT}).
 \item \textbf{name (optional)}: Name for new variable. Note that \texttt{name} will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.
 \item \textbf{column (optional)}: Column object that indicates the set of constraints in which the new variable participates, and the associated coefficients.
\end{itemize}

\textbf{Return value:}
New variable object.

\textbf{Example usage:}
x = model.addVar() \quad \text{# all default arguments}
y = model.addVar(vtype=GRB.INTEGER, obj=1.0, name="y") \quad \text{# arguments by name}
z = model.addVar(0.0, 1.0, 1.0, GRB.BINARY, "z") \quad \text{# arguments by position}
Model.addVars()

```python
addVars ( *indices, lb=0.0, ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS,
        name="" )
```

Add multiple decision variables to a model.

Returns a Gurobi `tupledict` object that contains the newly created variables. The keys for the `tupledict` are derived from the `indices` argument(s). The arguments for this method can take several different forms, which will be described now.

The first arguments provide the indices that will be used as keys to access the variables in the returned `tupledict`. In its simplest version, you would specify one or more integer values, and this method would create the equivalent of a multi-dimensional array of variables. For example, `x = model.addVars(2, 3)` would create six variables, accessed as `x[0,0]`, `x[0,1]`, `x[0,2]`, `x[1,0]`, `x[1,1]`, and `x[1,2]`.

In a more complex version, you can specify arbitrary lists of immutable objects, and this method will create variables for each member of the cross product of these lists. For example, `x = model.addVars([3, 7], ['a', 'b', 'c'])` would create six variables, accessed as `x[3,'a']`, `x[7,'c']`, etc.

You can also provide your own list of tuples as indices. For example, `x = model.addVars([(3,'a'), (3,'b'), (7,'b'), (7,'c')])` would be accessed in the same way as the previous example (`x[3,'a']`, `x[7,'c']`, etc.), except that not all combinations will be present. This is typically how sparse indexing is handled.

Note that while the indices can be provided as multiple lists of objects, or as a list of tuples, the member values for a specific index must always be scalars (int, float, string, ...). For example, `x = model.addVars([(1, 3), 7], ['a'])` is not allowed, since the first argument for the first member would be `(1, 3)`. Similarly, `x = model.addVars([(1,3)'a'), (7,'a')])` is also not allowed.

The named arguments (`lb`, `obj`, etc.) can take several forms. If you provide a scalar value (or use the default), then every variable will use that value. Thus, for example, `lb=1.0` will give every created variable a lower bound of 1.0. Note that a scalar value for the name argument has a special meaning, which will be discussed separately.

You can also provide a Python `dict` as the argument. In that case, the value for each variable will be pulled from the dict, using the indices argument to build the keys. For example, if the variables created by this method are indexed as `x[i,j]`, then the `dict` provided for the argument should have an entry for each possible `(i,j)` value.

Finally, if your `indices` argument is a single list, you can provide a Python `list` of the same length for the named arguments. For each variable, it will pull the value from the corresponding position in the list.

As noted earlier, the `name` argument is special. If you provide a scalar argument for the name, that argument will be transformed to have a subscript that corresponds to the index of the associated variable. For example, if you do `x = model.addVars(2,3,name="x")`, the variables will get names `x[0,0]`, `x[0,1]`, etc.

Arguments:

- **indices**: Indices for accessing the new variables.
- **lb (optional)**: Lower bound(s) for new variables.
- **ub (optional)**: Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.

vtype (optional): Variable type(s) for new variables.

name (optional): Names for new variables. The given name will be subscripted by the index of the generator expression, so if the index is an integer, `c` would become `c[0]`, `c[1]`, etc. Note that the generated names will be stored as ASCII strings, so you should avoid using names that contain non-ASCII characters. In addition, names that contain spaces are strongly discouraged, because they can’t be written to LP format files.

Return value:
New `tupledict` object that contains the new variables as values, using the provided indices as keys.

Example usage:

```
# 3-D array of binary variables
x = model.addVars(3, 4, 5, vtype=GRB.BINARY)

# variables index by tuplelist
l = tuplelist([(1, 2), (1, 3), (2, 3)])
y = model.addVars(l, ub=[1, 2, 3])
```

Model.cbCut()

```
cbCut ( lhs, sense, rhs )
```

Add a new cutting plane to a MIP model from within a callback function. Note that this method can only be invoked when the `where` value on the callback function is equal to `GRB.Callback.MIPNODE` (see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be added sparingly, since they increase the size of the relaxation model that is solved at each node and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the relaxation solution at the current node, you should first call `cbGetNodeRel`.

When adding your own cuts, you must set parameter `PreCrush` to value 1. This setting shuts off a few presolve reductions that sometimes prevent cuts on the original model from being applied to the presolved model.

One very important note: you should only add cuts that are implied by the constraints in your model. If you cut off an integer solution that is feasible according to the original model constraints, you are likely to obtain an incorrect solution to your MIP problem.

Arguments:

- `lhs`: Left-hand side for new cut. Can be a constant, a `Var`, or a `LinExpr`.
- `sense`: Sense for new cut (`GRB.LESS_EQUAL`, `GRB.EQUAL`, or `GRB.GREATER_EQUAL`).
- `rhs`: Right-hand side for new cut. Can be a constant, a `Var`, or a `LinExpr`.

Example usage:

```
def mycallback(model, where):
    if where == GRB.Callback.MIPNODE:
        status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
        if status == GRB.OPTIMAL:
            rel = model.cbGetNodeRel([model._vars[0], model._vars[1]])
```
if rel[0] + rel[1] > 1.1:
 model.cbCut(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGet()

| cbGet (what) |

Query the optimizer from within the user callback.

Arguments:

- **what**: Integer code that indicates what type of information is being requested by the callback. The set of valid codes depends on the **where** value that is passed into the user callback function. Please refer to the Callback Codes section for a list of possible **where** and **what** values.

Example usage:

```python
def mycallback(model, where):
    if where == GRB.Callback.SIMPLEX:
        print(model.cbGet(GRB.Callback.SPX_OBJVAL))

model.optimize(mycallback)
```

Model.cbGetNodeRel()

| cbGetNodeRel (vars) |

Retrieve values from the node relaxation solution at the current node. Note that this method can only be invoked when the **where** value on the callback function is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS is equal to GRB.OPTIMAL (see the Callback Codes section for more information).

Arguments:

- **vars**: The variables whose relaxation values are desired. Can be a variable, a matrix variable, a list of variables or matrix variables, or a dict of variables.

Return value:

Values for the specified variables in the node relaxation for the current node. The format will depend on the input argument (a scalar, an ndarray, a list of values or ndarrays, or a dict).

Example usage:

```python
def mycallback(model, where):
    if where == GRB.Callback.MIPNODE:
        print(model.cbGetNodeRel(model._vars))

model._vars = model.getVars()
model.optimize(mycallback)```
Model.cbGetSolution()

\texttt{cbGetSolution} ( \texttt{vars} )

Retrieve values from the new MIP solution. Note that this method can only be invoked when the \texttt{where} value on the callback function is equal to \texttt{GRB.Callback.MIPSOL} or \texttt{GRB.Callback.MULTIOBJ} (see the Callback Codes section for more information).

\textbf{Arguments:}

\texttt{vars}: The variables whose solution values are desired. Can be a variable, a matrix variable, a list of variables or matrix variables, or a dict of variables.

\textbf{Return value:}

Values for the specified variables in the solution. The format will depend on the input argument (a scalar, an ndarray, a list of values or ndarrays, or a dict).

\textbf{Example usage:}

```python
def mycallback(model, where):
 if where == GRB.Callback.MIPSOL:
 print(model.cbGetSolution(model._vars))

 model._vars = model.getVars()
 model.optimize(mycallback)
```

Model.cbLazy()

\texttt{cbLazy} ( \texttt{lhs}, \texttt{sense}, \texttt{rhs} )

Add a new lazy constraint to a MIP model from within a callback function. Note that this method can only be invoked when the \texttt{where} value on the callback function is \texttt{GRB.Callback.MIPNODE} or \texttt{GRB.Callback.MIPSOL} (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large to represent explicitly. By only including the constraints that are actually violated by solutions found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling \texttt{cbGetSolution} from a \texttt{GRB.CB_MIPSOL} callback, or \texttt{cbGetNodeRel} from a \texttt{GRB.CB_MIPNODE} callback), and then calling \texttt{cbLazy()} to add a constraint that cuts off the solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints, including those that have already been added. Node solutions will usually respect previously added lazy constraints, but not always.

Note that you must set the \texttt{LazyConstraints} parameter if you want to use lazy constraints.

\textbf{Arguments:}

\texttt{lhs}: Left-hand side for new lazy constraint. Can be a constant, a \texttt{Var}, or a \texttt{LinExpr}.

\texttt{sense}: Sense for new lazy constraint (\texttt{GRB.LESS_EQUAL}, \texttt{GRB.EQUAL}, or \texttt{GRB.GREATER_EQUAL}).

\texttt{rhs}: Right-hand side for new lazy constraint. Can be a constant, a \texttt{Var}, or a \texttt{LinExpr}.

\textbf{Example usage:}
def mycallback(model, where):
    if where == GRB.Callback.MIPSOL:
        sol = model.cbGetSolution([model._vars[0], model._vars[1]])
        if sol[0] + sol[1] > 1.1:
            model.cbLazy(model._vars[0] + model._vars[1] <= 1)

    model._vars = model.getVars()
    model.optimize(mycallback)

Model.cbSetSolution()

| cbSetSolution  ( vars, solution ) |

Import solution values for a heuristic solution. Only available when the where value on the callback function is equal to GRB.CB_MIPNODE. (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined values. You should use this method to specify variable values. You can make multiple calls to cbSetSolution from one callback invocation to specify values for multiple sets of variables. After the callback, if values have been specified for any variables, the Gurobi optimizer will try to compute a feasible solution from the specified values, possibly filling in values for variables whose values were left undefined. You can also optionally call cbUseSolution within your callback function to try to immediately compute a feasible solution from the specified values.

Arguments:

vars: The variables whose values are being set. This can be a list of variables or a single variable.
solution: The desired values of the specified variables in the new solution.

Example usage:

```python
def mycallback(model, where):
 if where == GRB.Callback.MIPNODE:
 model.cbSetSolution(vars, newsolution)

model.optimize(mycallback)
```

Model.cbStopOneMultiObj()

| cbStopOneMultiObj  ( objcnt ) |

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process. Only available for multi-objective MIP models and when the where member variable is not equal to GRB.Callback.MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished number of multi-objectives steps, and using that number to stop the current step and move on to the next hierarchical objective (if any) as shown in the following example:

Example usage:
import time

def mycallback(model, where):
    if where == GRB.Callback.MULTIOBJ:
        # get current objective number
        model._objcnt = model.cbGet(GRB.Callback.MULTIOBJ_OBJCNT)

        # reset start time to current time
        model._starttime = time.time()

        # See if we want to stop current multiobjective step
        else if time.time() - model._starttime > BIG or solution is good enough:
            # stop only this optimization step
            cbStopOneMultiObj(model._objcnt)

    model._objcnt = 0
    model._starttime = time.time()
    model.optimize(mycallback)

You should refer to the section on Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

**Arguments:**

- **objnum**: The number of the multi-objective optimization step to interrupt. For processes running locally, this argument can have the special value -1, meaning to stop the current step.

**Model.cbUseSolution()**

*cbUseSolution* ( )

Once you have imported solution values using *cbSetSolution*, you can optionally call *cbUseSolution* to immediately use these values to try to compute a heuristic solution.

**Return value:**

The objective value for the solution obtained from your solution values (or GRB.INFINITY if no improved solution is found).

**Example usage:**

```python
def mycallback(model, where):
 if where == GRB.Callback.MIPNODE:
 model.cbSetSolution(vars, newsolution)
 objval = model.cbUseSolution()

 model.optimize(mycallback)
```
Model.chgCoeff()

chgCoeff ( constr, var, newvalue )

Change one coefficient in the model. The desired change is captured using a Var object, a Constr object, and a desired coefficient for the specified variable in the specified constraint. If you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

Example usage:
model.chgCoeff(c0, x, 2.0)

Model.computeIIS()

computeIIS ( void )

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

This method populates the IISCONSTR, IISQCONSTR, and IISSGENCONSTR constraint attributes, the IISSOS SOS attribute, and the IISLB, and IISUB variable attributes. You can also obtain information about the results of the IIS computation by writing an .ilp format file (see Model.write). This file contains only the IIS from the original model.

Note that this method can be used to compute IISs for both continuous and MIP models.

Example usage:
model.computeIIS()
model.write("model.ilp")

Model.copy()

copy ( )

Copy a model. Note that due to the lazy update approach in Gurobi, you have to call update before copying it.

Return value:
Copy of model.

**Example usage:**

```python
model.update() # If you have unstaged changes in the model
copy = model.copy()
```

**Model.discardConcurrentEnvs()**

- `discardConcurrentEnvs` ( )

Discard concurrent environments for a model.

The concurrent environments created by `getConcurrentEnv` will be used by every subsequent call to the concurrent optimizer until the concurrent environments are discarded.

**Example usage:**

```python
env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam('Method', 0)
env1.setParam('Method', 1)

model.optimize()

model.discardConcurrentEnvs()
```

**Model.discardMultiobjEnvs()**

- `discardMultiobjEnvs` ( )

Discard all multi-objective environments associated with the model, thus restoring multi-objective optimization to its default behavior.

Please refer to the discussion of **Multiple Objectives** for information on how to specify multiple objective functions and control the trade-off between them.

Use `getMultiobjEnv` to create a multi-objective environment.

**Example usage:**

```python
env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam('Method', 2)
env1.setParam('Method', 1)

model.optimize()

model.discardMultiobjEnvs()
```

**Model.dispose()**

- `dispose` ( )
Free all resources associated with this Model object. After this method is called, this Model object must no longer be used.

**Example usage:**
```python
env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()
```

**Model.feasRelaxS()**

```python
feasRelaxS (relaxobjtype, minrelax, vrelax, crelax)
```

Modifies the Model object to create a feasibility relaxation. Note that you need to call `optimize` on the result to compute the actual relaxed solution. Note also that this is a simplified version of this method - use `feasRelax` for more control over the relaxation performed.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This method provides a number of options for specifying the relaxation.

If you specify `relaxobjtype=0`, the objective of the feasibility relaxation is to minimize the sum of the magnitudes of the bound and constraint violations.

If you specify `relaxobjtype=1`, the objective of the feasibility relaxation is to minimize the sum of the squares of the bound and constraint violations.

If you specify `relaxobjtype=2`, the objective of the feasibility relaxation is to minimize the total number of bound and constraint violations.

To give an example, if a constraint is violated by 2.0, it would contribute 2.0 to the feasibility relaxation objective for `relaxobjtype=0`, it would contribute 2.0*2.0 for `relaxobjtype=1`, and it would contribute 1.0 for `relaxobjtype=2`.

The `minrelax` argument is a boolean that controls the type of feasibility relaxation that is created. If `minrelax=False`, optimizing the returned model gives a solution that minimizes the cost of the violation. If `minrelax=True`, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that `feasRelaxS` must solve an optimization problem to find the minimum possible relaxation when `minrelax=True`, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify your original model, use `copy` to create a copy before invoking this method.

**Arguments:**
- `relaxobjtype`: The cost function used when finding the minimum cost relaxation.
- `minrelax`: The type of feasibility relaxation to perform.
- `vrelax`: Indicates whether variable bounds can be relaxed.
- `crelax`: Indicates whether constraints can be relaxed.

**Return value:**
- Zero if `minrelax` is False. If `minrelax` is True, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

**Example usage:**
if model.status == GRB.INFEASIBLE:
    model.feasRelaxS(1, False, False, True)
    model.optimize()

Model.feasRelax()

| feasRelax | (relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen) |

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize on the result to compute the actual relaxed solution. Note also that this is a more complex version of this method - use feasRelaxS for a simplified version.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. This method provides a number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would contribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=False, optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=True, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that feasRelax must solve an optimization problem to find the minimum possible relaxation when minrelax=True, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you don’t want to modify your original model, use copy to create a copy before invoking this method.

Arguments:

- relaxobjtype: The cost function used when finding the minimum cost relaxation.
- minrelax: The type of feasibility relaxation to perform.
- vars: Variables whose bounds are allowed to be violated.
- lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument vars.
- ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument vars.
- constrs: Linear constraints that are allowed to be violated.
**rhspen**: Penalty for violating a linear constraint. One entry for each constraint in argument `constrs`.

**Return value:**
Zero if `minrelax` is False. If `minrelax` is True, the return value is the objective value for the relaxation performed. If the value is less than 0, it indicates that the method failed to create the feasibility relaxation.

**Example usage:**
```python
def minrelax(model):
 if model.status == GRB.INFEASIBLE:
 vars = model.getVars()
 ubpen = [1.0]*model.numVars
 model.feasRelax(1, False, vars, None, ubpen, None, None)
 model.optimize()
```

**Model.fixed()**

```python
def fixed():
 fixed = model.fixed()
```

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded (e.g., after a call to the `optimize` method). In the fixed model, each integer variable is fixed to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed to satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS constraints, or general constraints.

**Return value:**
Fixed model associated with calling object.

**Example usage:**
```python
fixed = model.fixed()
```

**Model.getA()**

```python
def getA():
 A = model.getA()
 print(A.toarray())
```

Query the linear constraint matrix of the model. You'll need to have `scipy` installed for this function to work.

**Arguments:**

**Return value:**
The matrix as a `scipy.sparse` matrix in CSR format.

**Example usage:**
```python
A = model.getA()
pd.print(A.toarray())
```

**Model.getAttr()**

```python
def getAttr(attrname, objs=None):
 result = model.getAttr(attrname, objs)
 return result
```

Query attributes of the model.
Query the value of an attribute. When called with a single argument, it returns the value of a model attribute. When called with two arguments, it returns the value of an attribute for either a list or a dictionary containing either variables or constraints. If called with a list, the result is a list. If called with a dictionary, the result is a dictionary that uses the same keys, but is populated with the requested attribute values. The full list of available attributes can be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.

Arguments:

- attrname: Name of the attribute.
- objs (optional): List or dictionary containing either constraints or variables

Example usage:

```python
print(model.numintvars)
print(model.getAttr("numIntVars"))
print(model.getAttr(GRB.Attr.NumIntVars))
print(model.getAttr("X", model.getVars()))
print(model.getAttr("Pi", model.getConstrs()))
```

**Model.getCoeff()**

| getCoeff | (constr, var) |

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

Arguments:

- constr: The requested constraint.
- var: The requested variable.

Return value:

The current value of the requested coefficient.

Example usage:

```python
print(model.getCoeff(constr, var))
```

**Model.getCol()**

| getCol | (var) |

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The result is returned as a Column object.

Arguments:

- var: The variable of interest.

Return value:

A Column object that captures the set of constraints in which the variable participates.

Example usage:

```python
print(model.getCol(x))
```
Model.getConcurrentEnv()

getConcurrentEnv  (  num  )

Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

Arguments:
  num (int): The concurrent environment number.
Return value:
  The concurrent environment for the model.
Example usage:
  env0 = model.getConcurrentEnv(0)
  env1 = model.getConcurrentEnv(1)

  env0.setParam('Method', 0)
  env1.setParam('Method', 1)

  model.optimize()

  model.discardConcurrentEnvs()

Model.getConstrByName()

getConstrByName  (  name  )

Retrieve a linear constraint from its name. If multiple linear constraints have the same name,
this method chooses one arbitrarily.

Arguments:
  name: Name of desired constraint.
Return value:
  Constraint with the specified name.
Example usage:
  c0 = model.getConstrByName("c0")
Model.getConstrs()

getConstrs ( )

Retrieve a list of all linear constraints in the model.

Return value:
All linear constraints in the model.

Example usage:
constrs = model.getConstrs()
c0 = constrs[0]

Model.getGenConstrMax()

gGetGenConstrMax ( genconstr )

Retrieve the data associated with a general constraint of type MAX. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrMax for a description of the semantics of this general constraint type.

Arguments:
genconstr: The general constraint object of interest.

Return value:
A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MAX constraint.
vars (list of Var): Operand variables of the MAX constraint.
constant (float): Additional constant operand of the MAX constraint.

Example usage:
(resvar, vars, constant) = model.getGenConstrMax(model.getGenConstrs()[0])

Model.getGenConstrMin()

gGetGenConstrMin ( genconstr )

Retrieve the data associated with a general constraint of type MIN. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrMin for a description of the semantics of this general constraint type.

Arguments:
genconstr: The general constraint object of interest.

Return value:
A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MIN constraint.
vars (list of Var): Operand variables of the MIN constraint.
constant (float): Additional constant operand of the MIN constraint.

Example usage:
(resvar, vars, constant) = model.getGenConstrMin(model.getGenConstrs()[0])
Model.getGenConstrAbs()

| getGenConstrAbs | ( genconstr ) |

Retrieve the data associated with a general constraint of type ABS. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

Arguments:
- genconstr: The general constraint object of interest.

Return value:
A tuple (resvar, argvar) that contains the data of the general constraint:
- resvar (Var): Resultant variable of ABS constraint.
- argvar (Var): Argument variable of ABS constraint.

Example usage:
(resvar, argvar) = model.getGenConstrAbs(model.getGenConstrs()[0])

Model.getGenConstrAnd()

| getGenConstrAnd | ( genconstr ) |

Retrieve the data associated with a general constraint of type AND. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

Arguments:
- genconstr: The general constraint object of interest.

Return value:
A tuple (resvar, vars) that contains the data of the general constraint:
- resvar (Var): Resultant variable of AND constraint.
- vars (list of Var): Operand variables of AND constraint.

Example usage:
(resvar, vars) = model.getGenConstrAnd(model.getGenConstrs()[0])

Model.getGenConstrOr()

| getGenConstrOr | ( genconstr ) |

Retrieve the data associated with a general constraint of type OR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrOr for a description of the semantics of this general constraint type.

Arguments:
- genconstr: The general constraint object of interest.

Return value:
A tuple (resvar, vars) that contains the data of the general constraint:
- resvar (Var): Resultant variable of OR constraint.
vars (list of Var): Operand variables of OR constraint.

Example usage:
(resvar, vars) = model.getGenConstrOr(model.getGenConstrs()[0])

Model.getGenConstrIndicator()

gGenConstrIndicator ( genconstr )

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint type.

Arguments:
    genconstr: The general constraint object of interest.

Return value:
A tuple (binvar, binval, expr, sense, rhs) that contains the data of the general constraint:
    binvar (Var): Antecedent variable of indicator constraint.
    binval (Boolean): Value of antecedent variable that activates the linear constraint.
    expr (LinExpr): LinExpr object containing the left-hand side of the constraint triggered by the indicator.
    sense (char): Sense of linear constraint triggered by the indicator (e.g., GRB.LESS_EQUAL).
    rhs (float): Right-hand side of linear constraint triggered by the indicator.

Example usage:
(binvar, binval, expr, sense, rhs) =
    model.getGenConstr(model.getGenConstrIndicator()[3])

Model.getGenConstrPWL()

gGenConstrPWL ( genconstr )

Retrieve the data associated with a general constraint of type PWL. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

Arguments:
    genc: The general constraint object.

Return value:
A tuple (xvar, yvar, xpts, ypts) that contains the data of the general constraint:
    xvar (Var): The x variable.
    yvar (Var): The y variable.
    xpts (list of float): The x values for the points that define the piecewise-linear function.
    ypts (list of float): The y values for the points that define the piecewise-linear function.

Example usage:
(xvar, yvar, xpts, ypts) = model.getGenConstrPWL(model.getGenConstrs()[0])

Model.getGenConstrPoly()

| getGenConstrPoly  ( genconstr ) |

Retrieve the data associated with a general constraint of type POLY. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

Arguments:

genc: The general constraint object.

Return value:

A tuple (xvar, yvar, p) that contains the data of the general constraint:

xvar (Var): The x variable.
yvar (Var): The y variable.
p (list of float): The coefficients for polynomial function.

Example usage:

(xvar, yvar, p) = model.getGenConstrPoly(model.getGenConstrs()[0])

Model.getGenConstrExp()

| getGenConstrExp  ( genconstr ) |

Retrieve the data associated with a general constraint of type EXP. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

Arguments:

genc: The general constraint object.

Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:

xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:

(xvar, yvar) = model.getGenConstrExp(model.getGenConstrs()[0])

Model.getGenConstrExpA()

| getGenConstrExpA  ( genconstr ) |

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.
Arguments:
genc: The general constraint object.

Return value:
A tuple \((xvar, yvar, a)\) that contains the data of the general constraint:
xvar (Var): The \(x\) variable.
yvar (Var): The \(y\) variable.
a (float): The base of the function.

Example usage:
\[(xvar, yvar, a) = model.getGenConstrExpA(model.getGenConstrs()[0])\]

Model.getGenConstrLog()

| getGenConstrLog | ( genconstr ) |

Retrieve the data associated with a general constraint of type LOG. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

Arguments:
genc: The general constraint object.

Return value:
A tuple \((xvar, yvar)\) that contains the data of the general constraint:
xvar (Var): The \(x\) variable.
yvar (Var): The \(y\) variable.

Model.getGenConstrLogA()

| getGenConstrLogA | ( genconstr ) |

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

Arguments:
genc: The general constraint object.

Return value:
A tuple \((xvar, yvar, a)\) that contains the data of the general constraint:
xvar (Var): The \(x\) variable.
yvar (Var): The \(y\) variable.
a (float): The base of the function.

Model.getGenConstrPow()

| getGenConstrPow | ( genconstr ) |

Retrieve the data associated with a general constraint of type POW. Calling this method for a general constraint of a different type leads to an exception. You can query the GenConstrType attribute to determine the type of the general constraint.
See also addGenConstrPow for a description of the semantics of this general constraint type.

**Arguments:**
- `genc`: The general constraint object.

**Return value:**
A tuple `(xvar, yvar, a)` that contains the data of the general constraint:
- `xvar` (Var): The `x` variable.
- `yvar` (Var): The `y` variable.
- `a` (float): The exponent of the function.

```
Model.getGenConstrSin()
```

`getGenConstrSin ( genconstr )`

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general constraint of a different type leads to an exception. You can query the `GenConstrType` attribute to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

**Arguments:**
- `genc`: The general constraint object.

**Return value:**
A tuple `(xvar, yvar)` that contains the data of the general constraint:
- `xvar` (Var): The `x` variable.
- `yvar` (Var): The `y` variable.

```
Model.getGenConstrCos()
```

`getGenConstrCos ( genconstr )`

Retrieve the data associated with a general constraint of type COS. Calling this method for a general constraint of a different type leads to an exception. You can query the `GenConstrType` attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

**Arguments:**
- `genc`: The general constraint object.

**Return value:**
A tuple `(xvar, yvar)` that contains the data of the general constraint:
- `xvar` (Var): The `x` variable.
- `yvar` (Var): The `y` variable.

```
Model.getGenConstrTan()
```

`getGenConstrTan ( genconstr )`

Retrieve the data associated with a general constraint of type TAN. Calling this method for a general constraint of a different type leads to an exception. You can query the `GenConstrType` attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

**Arguments:**
- `genc`: The general constraint object.
Return value:
A tuple (xvar, yvar) that contains the data of the general constraint:
  xvar (Var): The x variable.
  yvar (Var): The y variable.

Model.getGenConstrs()

GetGenConstrs ( )

Retrieve a list of all general constraints in the model.
Return value:
All general constraints in the model.
Example usage:
  gencons = model.getGenConstrs()
  for gc in gencons:
    print(model.getGenConstr(gc))

Model.getJSONSolution()

GetJSONSolution ( )

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.
Return value:
A JSON string.
Example usage:
  model = read('p0033.mps')
  model.optimize()
  print(model.getJSONSolution())

Model.getMultiobjEnv()

GetMultiobjEnv ( index )

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.
Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-
behavior.
Arguments:
  index (int): The objective index.
Return value:
The multi-objective environment for the model.
Example usage:
env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam('TimeLimit', 100)
env1.setParam('TimeLimit', 10)

model.optimize()

model.discardMultiobjEnvs()

Model.getObjective()

```
getObjective (index=None)
```

Retrieve the model objective(s).
Call this with no argument to retrieve the primary objective, or with an integer argument to retrieve the corresponding alternative objective.

Arguments:
- `index` (int, optional): The index for the requested alternative objective.

Return value:
The model objective. A LinExpr object for a linear objective, or a QuadExpr object for a quadratic objective. Note that alternative objectives are always linear.

Example usage:
```
obj = model.getObjective()
print(obj.getValue())
```

Model.getParamInfo()

```
getParamInfo (paramname)
```

Retrieve information about a Gurobi parameter, including the type, the current value, the minimum and maximum allowed values, and the default value.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

Arguments:
- `paramname`: String containing the name of the parameter of interest. The name can include '*' and '?' wildcards. If more than one parameter matches, the matching names are listed and the method returns None.

Return value:
Returns a 6-entry tuple that contains: the parameter name, the parameter type, the current value, the minimum value, the maximum value, and the default value.

Example usage:
```
print(model.getParamInfo('Heuristics'))
```
**Model.getPWLObj()**

`getPWLObj ( var )`

Retrieve the piecewise-linear objective function for a variable. The function returns a list of tuples, where each provides the $x$ and $y$ coordinates for the points that define the piecewise-linear objective function.

Refer to this discussion for additional information on what the values in $x$ and $y$ mean.

**Arguments:**

- var: A `Var` object that gives the variable whose objective function is being retrieved.

**Return value:**

The points that define the piecewise-linear objective function.

**Example usage:**

```python
> print(model.getPWLObj(var))
[(1, 1), (2, 2), (3, 4)]
```

**Model.getQConstrs()**

`getQConstrs ()`

Retrieve a list of all quadratic constraints in the model.

**Return value:**

All quadratic constraints in the model.

**Example usage:**

```python
qconstrs = model.getQConstrs()
qc0 = qconstrs[0]
```

**Model.getQCRow()**

`getQCRow ( qconstr )`

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a `QuadExpr` object.

**Arguments:**

- qconstr: The constraint of interest.

**Return value:**

A `QuadExpr` object that captures the left-hand side of the quadratic constraint.

**Example usage:**

```python
print(model.getQCRow(model.getQConstrs()[0]))
```

**Model.getRow()**

`getRow ( constr )`

Retrieve the list of variables that participate in a constraint, and the associated coefficients. The result is returned as a `LinExpr` object.

**Arguments:**

- constr: The constraint of interest.
constraint: The constraint of interest.

Return value:
A LinExpr object that captures the set of variables that participate in the constraint.

Example usage:
print(model.getRow(c0))

Model.getSOS()

g getSOS ( sos )

Retrieve information about an SOS constraint. The result is a tuple that contains the SOS type (1 or 2), the list of participating Var objects, and the list of associated SOS weights.

Arguments:
sos: The SOS object of interest.

Return value:
A tuple that contains the SOS type (1 or 2), a list of participating Var objects, and a list of associated SOS weights.

Example usage:
(sostype, vars, weights) = model.getSOS(s)

Model.getSOSs()

g getSOSs ( )

Retrieve a list of all SOS constraints in the model.

Return value:
All SOS constraints in the model.

Example usage:
sos = model.getSOSs()
for s in sos:
    print(model.getSOS(s))

Model.getTuneResult()

g getTuneResult ( )

Use this routine to retrieve the results of a previous tune call. Calling this method with argument n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of decreasing quality, with parameter set 0 being the best. The number of available sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

Arguments:
n: The index of the tuning result to retrieve. The best result is available as index 0. The number of stored results is available in attribute TuneResultCount.

Example usage:
model.tune()
for i in range(model.tuneResultCount):
    model.getTuneResult(i)
    model.write('tune'+str(i)+'.prm')

Model.getVarByName()

getVarByName ( name )

Retrieve a variable from its name. If multiple variables have the same name, this method
chooses one arbitrarily.

Arguments:
    name: Name of desired variable.

Return value:
    Variable with the specified name.

Example usage:
    x0 = model.getVarByName("x0")

Model.getVars()

gVars ( )

Retrieve a list of all variables in the model.

Return value:
    All variables in the model.

Example usage:
    vars = model.getVars()
    x0 = vars[0]

Model.message()

message ( msg )

Append a string to the Gurobi log file.

Arguments:
    msg: String to append to Gurobi log file.

Example usage:
    model.message('New message')

Model.optimize()

optimize ( callback=None )

Optimize the model. The algorithm used for the optimization depends on the model type
(simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful
completion, this method will populate the solution related attributes of the model. See the Attributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

Arguments:
- **callback**: Callback function. The callback function should take two arguments, `model` and `where`. During the optimization, the function will be called periodically, with `model` set to the model being optimized, and `where` indicating where in the optimization the callback is called from. See the Callback class for additional information.

Example usage:
```
model.optimize()
```

---

### Model.optimizeBatch()

This method submits a new batch request to the Cluster Manager. Returns the `BatchID` (a string), which uniquely identifies the job in the Cluster Manager and can be used to query the status of this request (from this program or from any other). Once the request has completed, the `BatchID` can also be used to retrieve the associated solution. To submit a batch request, you must tag at least one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

Example usage:
```
Submit batch request
batchID = model.optimizeBatch()
```

Return value:
- A unique string identifier for the batch request.

---

### Model.presolve()

This method performs presolve on a model.

Return value:
- Presolved version of original model.

Example usage:
```
p = model.presolve()
p.printStats()
```

---

### Model.printAttr()

This method prints the attributes of a model.

Example usage:
```
printAttr (attrs, filter=’*’)
```
Print the value of one or more attributes. If \texttt{attrs} is a constraint or variable attribute, print all non-zero values of the attribute, along with the associate constraint or variable names. If \texttt{attrs} is a list of attributes, print attribute values for all listed attributes. The method takes an optional \texttt{filter} argument, which allows you to select which specific attribute values to print (by filtering on the constraint or variable name).

See the Attributes section for a list of all available attributes.

**Arguments:**

\begin{itemize}
\item \texttt{attrs}: Name of attribute or attributes to print. The value can be a single attribute or a list of attributes. If a list is given, all listed attributes must be of the same type (model, variable, or constraint).
\item \texttt{filter} (optional): Filter for values to print -- name of constr/var must match filter to be printed.
\end{itemize}

**Example usage:**

\begin{verbatim}
model.printAttr('x') # all non-zero solution values
model.printAttr('lb', 'x*') # bounds for vars whose names begin with 'x'
model.printAttr(['lb', 'ub']) # lower and upper bounds
\end{verbatim}

\textbf{Model.printQuality()}

\begin{verbatim}
| printQuality () |
\end{verbatim}

Print statistics about the quality of the computed solution (constraint violations, integrality violations, etc.).

For continuous models, the output will include the maximum unscaled and scaled violation, as well as the variable or constraint name associated with the worst unscaled violation. For MIP models, the output will include the maximum unscaled violation and the associated variable or constraint name.

**Example usage:**

\begin{verbatim}
model.optimize()
model.printQuality()
\end{verbatim}

\textbf{Model.printStats()}

\begin{verbatim}
| printStats () |
\end{verbatim}

Print statistics about the model (number of constraints and variables, number of non-zeros in constraint matrix, smallest and largest coefficients, etc.).

**Example usage:**

\begin{verbatim}
model.printStats()
\end{verbatim}

\textbf{Model.read()}

\begin{verbatim}
| read ( filename ) |
\end{verbatim}

This method is the general entry point for importing data from a file into a model. It can be used to read basis files for continuous models, start vectors for MIP models, or parameter settings.
The type of data read is determined by the file suffix. File formats are described in the File Format section.

Note that this is not the method to use if you want to read a new model from a file. For that, use the read command.

**Arguments:**
- `filename`: Name of the file to read. The suffix on the file must be either `.bas` (for an LP basis), `.mst` or `.sol` (for a MIP start), `.hnt` (for MIP hints), `.ord` (for a priority order), or `.prm` (for a parameter file). The suffix may optionally be followed by `.zip`, `.gz`, `.bz2`, or `.7z`. The file name may contain `*` or `?` wildcards. No file is read when no wildcard match is found. If more than one match is found, this method will attempt to read the first matching file.

**Example usage:**
```python
model.read('input.bas')
model.read('input.mst')
```

---

**Model.relax()**

```python
relax ()
```

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS and general constraints.

**Return value:**
- Relaxed version of model.

**Example usage:**
```python
r = model.relax()
```

---

**Model.remove()**

```python
remove (items)
```

Remove variables, linear constraints, quadratic constraints, SOS constraints, or general constraints from a model.

**Arguments:**
- `items`: The items to remove from the model. Argument can be a single `Var`, `Constr`, `QConstr`, `SOS`, or `GenConstr`, or a list, tuple, or dict containing these objects. If the argument is a dict, the values will be removed, not the keys.

**Example usage:**
```python
model.remove(model.getVars()[0])
model.remove(model.getVars()[0:10])
model.remove(model.getConstrs()[0])
model.remove(model.getConstrs()[1:3])
model.remove(model.getQConstrs()[0])
model.remove(model.getSOSs()[0])
model.remove(model.getGenConstrs()[0])
```
Model.reset()

| reset   ( clearall=0 ) |

Reset the model to an unsolved state, discarding any previously computed solution information.

**Arguments:**
- `clearall` (int, optional): Should additional information such as MIP starts, variable hints, branching priorities, lazy flags, and partition information be cleared?

**Example usage:**
- `model.reset(0)`

Model.resetParams()

| resetParams ( ) |

Reset all parameters to their default values.

**Example usage:**
- `model.resetParams()`

Model.setAttr()

| setAttr ( attrname, objects, newvalues ) |

Change the value of an attribute.

Call this method with two arguments (i.e., `setAttr(attrname, newvalue)`) to set a model attribute.

Call it with three arguments (i.e., `setAttr(attrname, objects, newvalues)`) to set attribute values for a list or dict of model objects (`Var` objects, `Constr` objects, etc.). To set the same value for all objects in the second argument, you can pass a scalar value in the third argument. If the second argument is a list, the third argument should be a list of the same length. If the second argument is a dict, the third argument should be dict with a value for every key from the second.

The full list of available attributes can be found in the Attributes section.

Raises an `AttributeError` if the specified attribute doesn’t exist or can’t be set.

Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `Model.update`), optimize the model (using `Model.optimize`), or write the model to disk (using `Model.write`).

**Arguments:**
- `attrname`: Name of attribute to set.
- `objs`: List of model objects (Var or Constr or ...)
- `newvalue`: Desired new value(s) for attribute.

**Example usage:**
- `model.setAttr("objCon", 0)`
- `model.setAttr(GRB.Attr.ObjCon, 0)`
- `model.setAttr("LB", model.getVars(), [0]*model.numVars)`
- `model.setAttr("RHS", model.getConstrs(), [1.0]*model.numConstrs)`
- `model.setAttr("vType", model.getVars(), GRB.CONTINUOUS)`
- `model.objcon = 0`
Model.setMObjective()

```python
setMObjective (Q, c, constant, xQ_L=None, xQ_R=None, xc=None, sense=None)
```

Set the model objective equal to a quadratic (or linear) expression using matrix semantics.
Note that you will typically use overloaded operators to set the objective using matrix objects.
The overloaded @ operator can be used to build a linear matrix expression or a quadratic matrix expression, which is then passed to setObjective.

**Arguments:**
- **Q**: The quadratic objective matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix. This can be `None` if there are no quadratic terms.
- **c**: The linear constraint vector - a NumPy 1-D ndarray. This can be `None` if there are no linear terms.
- **constant**: Objective constant.
- **xQ_L** *(optional)*: Decision variables for quadratic objective terms; left multiplier for Q. Argument can be an MVar object, a list of Var objects, or `None` (*None* uses all variables in the model). The length of the argument must match the size of the first dimension of Q.
- **xQ_R** *(optional)*: Decision variables for quadratic objective terms; right multiplier for Q. The length of the argument must match the size of the second dimension of Q.
- **xc** *(optional)*: Decision variables for linear objective terms. Argument can be an MVar object, a list of Var objects, or `None` (*None* uses all variables in the model). The length of the argument must match the length of c.
- **sense** *(optional)*: Optimization sense (*GRB.MINIMIZE* for minimization, *GRB.MAXIMIZE* for maximization). Omit this argument to use the ModelSense attribute value to determine the sense.

**Example usage:**
```python
c = np.full(10, 1.0)
xc = model.addMVar(10)
model.setMObjective(None, c, 0.0, None, None, xc, GRB.MAXIMIZE)
Q = np.full((2, 3), 1.0)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.setMObjective(Q, None, 0.0, xL, xR, None, GRB.MINIMIZE)
```

Model.setObjective()

```python
setObjective (expr, sense=None)
```

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization, see setObjectiveN).

Note that you can also modify a linear model objective using the Obj variable attribute. If you wish to mix and match these two approaches, please note that this method will replace the existing objective.
Arguments:

- **expr**: New objective expression. Argument can be a linear or quadratic expression (an objective of type LinExpr or QuadExpr).
- **sense (optional)**: Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maximization). Omit this argument to use the ModelSense attribute value to determine the sense.

Example usage:

```python
model.setObjective(x + y, GRB.MAXIMIZE)
model.setObjective(x*x + y*y)
```

**Model.setObjectiveN()**

```python
setObjectiveN (expr, index, priority=0, weight=1, abstol=0, reltol=0, name="")
```

Set an alternative optimization objective equal to a linear expression.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

Note that you can also modify an alternative objective using the ObjN variable attribute. If you wish to mix and match these two approaches, please note that this method replaces the entire existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:

- **expr (LinExpr)**: New alternative objective.
- **index (int)**: Index for new objective. If you use an index of 0, this routine will change the primary optimization objective.
- **priority (int, optional)**: Priority for the alternative objective. This initializes the ObjNPriority attribute for this objective.
- **weight (float, optional)**: Weight for the alternative objective. This initializes the ObjNWeight attribute for this objective.
- **abstol (float, optional)**: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol attribute for this objective.
- **reltol (float, optional)**: Relative tolerance for the alternative objective. This initializes the ObjNRelTol attribute for this objective.
- **name (string, optional)**: Name of the alternative objective. This initializes the ObjNName attribute for this objective. Note that name will be stored as an ASCII string. Thus, a name like 'A→B' will produce an error, because '→' can not be represented as an ASCII character. Note also that names that contain spaces are strongly discouraged, because they can't be written to LP format files.

Example usage:

```python
Primary objective: x + 2 y
model.setObjectiveN(x + 2*y, 0, 2)

Alternative, lower priority objectives: 3 y + z and x + z
model.setObjectiveN(3*y + z, 1, 1)
model.setObjectiveN(x + z, 2, 0)
```
Model.setPWLObj()

```
setPWLObj (var, x, y)
```

Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective function for a single variable. Specifically, the $x$ and $y$ arguments give coordinates for the vertices of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

**Arguments:**
- `var`: A `Var` object that gives the variable whose objective function is being set.
- `x`: The $x$ values for the points that define the piecewise-linear function. Must be in non-decreasing order.
- `y`: The $y$ values for the points that define the piecewise-linear function.

**Example usage:**
```
model.setPWLObj(var, [1, 3, 5], [1, 2, 4])
```

Model.setParam()

```
setParam (paramname, newvalue)
```

Set the value of a parameter to a new value. Note that this method only affects the parameter setting for this model. Use global function `setParam` to change the parameter for all models.

You can also set parameters using the `Model.Params` class. For example, to set parameter `MIPGap` to value 0 for model `m`, you can do either `m.setParam('MIPGap', 0)` or `m.Params.MIPGap=0`.

Please consult the parameter section for a complete list of Gurobi parameters, including descriptions of their purposes and their minimum, maximum, and default values.

**Arguments:**
- `paramname`: String containing the name of parameter that you would like to modify. The name can include '*' and '?' wildcards. If more than one parameter matches, the matching names are listed and none are modified. Note that case is ignored.
- `newvalue`: Desired new value for parameter. Can be 'default', which indicates that the parameter should be reset to its default value.

**Example usage:**
```
model.setParam("heu*", 0.5)
model.setParam(GRB.Param.heuristics, 0.5)
model.setParam("heu*", "default")
```

Model.singleScenarioModel()

```
singleScenarioModel ()
```

Capture a single scenario from a multi-scenario model. Use the `ScenarioNumber` parameter to indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will be a single-scenario model.

**Return value:**

---

557
Model for a single scenario.

**Example usage:**
```python
model.params.ScenarioNumber = 0
s = model.singleScenarioModel()
```

`Model.terminate()`

`terminate()`

Generate a request to terminate the current optimization. This method is typically called from within a user callback (see Callbacks for more information). When the optimization stops, the Status attribute will be equal to `GRB_INTERRUPTED`.

**Example usage:**
```python
model.terminate()
```

`Model.tune()`

`tune()`

Perform an automated search for parameter settings that improve performance. Upon completion, this method stores the best parameter sets it found. The number of stored parameter sets can be determined by querying the value of the TuneResultCount attribute. The actual settings can be retrieved using `getTuneResult`.

Please refer to the parameter tuning section for details on the tuning tool.

**Example usage:**
```python
model.tune()
```

`Model.update()`

`update()`

Process any pending model modifications.

**Example usage:**
```python
model.update()
```

`Model.write()`

`write()`

This method is the general entry point for writing optimization data to a file. It can be used to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings. The type of data written is determined by the file suffix. File formats are described in the File Format section.

Note that writing a model to a file will process all pending model modifications. However, writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.
Arguments:

filename: The name of the file to be written. The file type is encoded in the file name suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp for writing just the IIS associated with an infeasible model (see Model.computeIIS for further information), .sol for writing the current solution, .mst for writing a start vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified parameter settings, .attr for writing model attributes, or .json for writing solution information in JSON format. If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

Example usage:

model.write("out.mst")
model.write("out.sol")
6.3  Var

Gurobi variable object. Variables are always associated with a particular model. You create a variable object by adding a variable to a model (using Model.addVar), rather than by using a Var constructor.

Variable objects have a number of attributes. The full list can be found in the Attributes section of this document. Some variable attributes can only be queried, while others can also be set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value can be queried using var.lb. The Gurobi library ignores letter case in attribute names, so it can also be queried as var.LB. It can be set using a standard assignment statement (e.g., var.lb = 0). However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes can not be set (e.g., the x attribute), so attempts to assign new values to them will raise an exception.

You can also use Var.getAttr/ Var.setAttr to access attributes. The attribute name can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.LB).

To build expressions using variable objects, you generally use operator overloading. You can build either linear or quadratic expressions:

\[
\text{expr1} = x + 2 \cdot y + 3 \cdot z + 4.0 \\
\text{expr2} = x \cdot x + 2 \cdot x \cdot y + 3 \cdot z + 4.0
\]

The first expression is linear, while the second is quadratic. An expression is typically then passed to setObjective (to set the optimization objective) or addConstr (to add a constraint).

### Var.getAttr()

| getAttr | ( attrname ) |

Query the value of a variable attribute. The full list of available attributes can be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.

**Arguments:**
- attrname: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

**Example usage:**

```python
print(var.getAttr(GRB.Attr.X))
print(var.getAttr("x"))
```

### Var.sameAs()

| sameAs | ( var2 ) |

Check whether two variable objects refer to the same variable.
**Arguments:**

*var2*: The other variable.

**Return value:**

Boolean result indicates whether the two variable objects refer to the same model variable.

**Example usage:**

```python
print(model.getVars()[0].sameAs(model.getVars()[1]))
```

---

**Var.index**

|- **index**

This property returns the current index, or order, of the variable in the underlying constraint matrix.

**Return value:**

- `-2`: removed
- `-1`: not in model
- `≥ 0`: index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.

**Example usage:**

```python
v = model.getVars()[0]
print(v.index) # Index will be 0
```

---

**Var.setAttr()**

|- **setAttr** ( attrname, newvalue )

Set the value of a variable attribute. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `Model.update`), optimize the model (using `Model.optimize`), or write the model to disk (using `Model.write`).

The full list of available attributes can be found in the Attributes section. Raises an `AttributeError` if the specified attribute doesn’t exist or can’t be set.

**Arguments:**

*attrname*: The attribute being modified.

*newvalue*: The desired new value of the attribute.

**Example usage:**

```python
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)
```
6.4 MVar

Gurobi matrix variable object. An MVar is a NumPy ndarray of Gurobi variables. Variables are always associated with a particular model. You typically create these objects using Model.addMVar.

You generally use MVar objects to build matrix expressions, typically using overloaded operators. You can build linear matrix expressions or quadratic matrix expressions:

\[
\begin{align*}
\text{expr1} & = A \odot x \\
\text{expr2} & = A \odot x + B \odot y + z \\
\text{expr3} & = x \odot A \odot x + y \odot B \odot y
\end{align*}
\]

The first two expressions are linear, while the third is quadratic.

Dimensions and data types must always be compatible. In the examples above, matrix \(A\) must be either a NumPy ndarray with two dimensions or a SciPy sparse matrix (which will always have two dimensions), and \(x\) must be a 1-D MVar. In expr1, the size of the second dimension of \(A\) must be equal to the length of \(x\). The same must be true of \(B\) and \(y\) in expr2. In addition, the size of the first dimension of \(A\) in expr2 must be equal to the size of the first dimension of \(B\), and also to the length of \(z\).

For expr3, the size of the first dimension of \(A\) must be equal to the length of the MVar on the left, and the size of the second dimension must be equal to the length of the MVar on the right. The same is true for \(B\).

An expression is typically then passed to setObjective (to set the optimization objective) or addConstr (to add a constraint).

Variable objects have a number of attributes. The full list can be found in the Attributes section of this document. Some variable attributes can only be queried, while others can also be set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value can be queried using \(\text{var.lb}\). The Gurobi library ignores letter case in attribute names, so it can also be queried as \(\text{var.LB}\). It can be set using a standard assignment statement (e.g., \(\text{var.lb} = 0\)). However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes can not be set (e.g., the \(x\) attribute), so attempts to assign new values to them will raise an exception.

You can also use MVar.getAttr/ MVar.setAttr to access attributes. The attribute name can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.LB).

MVar()  

MVar ( vars )

MVar constructor. Create an MVar object from a list of Var objects. Note that MVar objects are typically created using Model.addMVar.

Arguments:

vars: List of Gurobi Var objects.

Return value:

The new MVar object.
Example usage:

    x = MVar(model.getVars())

MVar.copy()

    copy ( )

Copy an MVar object.

Arguments:

Return value:

    The new object.

Example usage:

    print(copy = mvar.copy)

MVar.getAttr()

    getAttr ( attrname )

Query the value of an attribute for a matrix variable. The full list of available attributes can be found in the Attributes section.

    Raises an AttributeError if the requested attribute doesn't exist or can't be queried.

The result is returned in a NumPy ndarray with the same shape as the MVar object.

Arguments:

    attrname: The attribute being queried.

Return value:

    Current values for the requested attribute.

Example usage:

    print(var.getAttr(GRB.Attr.X))
    print(var.getAttr("x"))

MVar.setAttr()

    setAttr ( attrname, newvalue )

Set the value of a matrix variable attribute.

    Note that, due to our lazy update approach, the change won't actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).

    The full list of available attributes can be found in the Attributes section.

    Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.

Arguments:

    attrname: The attribute being modified.

    newvalue: The desired new value of the attribute. The shape must be the same as that of the input argument. The one exception is a scalar argument, where the argument is automatically promoted to have the right shape.

Example usage:
var.setAttr("ub", np.full((5,), 0))
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)

MVar.sum()

sum ( )

Sum the variables in an MVar. Returns an MLinExpr.

Return value:
The sum, as a linear matrix expression.

Example usage:
x.sum()
x[:,1].sum()
6.5 Constr

Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using Model.addConstr), rather than by using
a Constr constructor.

Constraint objects have a number of attributes. The full list can be found in the Attributes
section of this document. Some constraint attributes can only be queried, while others can also be
set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t
take effect until the next call to Model.update, Model.optimize, or Model.write on the associated
model.

We should point out a few things about constraint attributes. Consider the rhs attribute. Its
value can be queried using constr.rhs. The Gurobi library ignores letter case in attribute names,
so it can also be queried as constr.rhs. It can be set using a standard assignment statement (e.g.,
constr.rhs = 0). However, as mentioned earlier, attribute modification is done in a lazy fashion,
so you won’t see the effect of the change immediately. And some attributes cannot be set (e.g.,
the Pi attribute), so attempts to assign new values to them will raise an exception.

You can also use Constr.getAttr/ Constr.setAttr to access attributes. The attribute name can
be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.RHS).

Constr.getAttr()

| getAttr | ( attrname ) |

Query the value of a constraint attribute. The full list of available attributes can be found in
the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.

Arguments:

attrname: The attribute being queried.

Return value:

The current value of the requested attribute.

Example usage:

print(constr.getAttr(GRB.Attr.Slack))
print(constr.getAttr("slack"))

Constr.index

| index |

This property returns the current index, or order, of the constraint in the underlying constraint
matrix.

Return value:

= -2: removed
= -1: not in model
\geq 0 : index of the constraint in the model

Note that the index of a constraint may change after subsequent model modifications.

Example usage:
c = model.getConstrs()[0]
print(c.index)  # Index will be 0

Constr.sameAs()

sameAs ( constr2 )

Check whether two constraint objects refer to the same constraint.

Arguments:
constr2: The other constraint.

Return value:
Boolean result indicates whether the two constraint objects refer to the same model constraint.

Example usage:
print(model.getConstrs()[0].sameAs(model.getConstrs()[1]))

Constr.setAttr()

setAttr ( attrname, newvalue )

Set the value of a constraint attribute. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section. Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.

Arguments:
attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.RHS, 0.0)
constr.setAttr("rhs", 0.0)
6.6 QConstr

Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular model. You create a quadratic constraint object by adding a quadratic constraint to a model (using Model.addQConstr), rather than by using a QConstr constructor.

Quadratic constraint objects have a number of attributes. The full list can be found in the Attributes section of this document. Some constraint attributes can only be queried, while others can also be set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect until the next call to Model.update, Model.optimize, Model.write on the associated model.

We should point out a few things about quadratic constraint attributes. Consider the qcrhs attribute. Its value can be queried using qconstr.qcrhs. The Gurobi library ignores letter case in attribute names, so it can also be queried as qconstr.QCRHS. It can be set using a standard assignment statement (e.g., qconstr.qcrhs = 0). However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see the effect of the change immediately. And some attributes can not be set (e.g., the qcpi attribute), so attempts to assign new values to them will raise an exception.

You can also use QConstr.getAttr/ QConstr.setAttr to access attributes. The attribute name can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class (e.g., GRB.Attr.QCRHS).

QConstr.getAttr()

getAttr  ( attrname )

Query the value of a quadratic constraint attribute. The full list of available attributes can be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.

Arguments:

attrname: The attribute being queried.

Return value:

The current value of the requested attribute.

Example usage:

print(qconstr.getAttr(GRB.Attr.QCSense))
print(qconstr.getAttr("qcsense"))

QConstr.setAttr()

setAttr  ( attrname, newvalue )

Set the value of a quadratic constraint attribute. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using Model.update), optimize the model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.

Raises an AttributeError if the specified attribute doesn’t exist or can’t be set.

Arguments:
**attrname**: The attribute being modified.

**newvalue**: The desired new value of the attribute.

**Example usage:**

```python
constr.setAttr(GRB.Attr.QCRHS, 0.0)
constr.setAttr("qcrhs", 0.0)
```
6.7 SOS

Gurobi SOS constraint object. SOS constraints are always associated with a particular model. You create an SOS object by adding an SOS constraint to a model (using Model.addSOS), rather than by using an SOS constructor. Similarly, SOS constraints are removed using the Model.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS constraint is a set of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the SOS.getAttr method.

**SOS.getAttr()**

```python
getAttr(attrname)
```

Query the value of an SOS attribute. The full list of available attributes can be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried.

**Arguments:**

- `attrname`: The attribute being queried.

**Return value:**

The current value of the requested attribute.

**Example usage:**

```python
print(sos.getAttr(GRB.Attr.IISSOS))
```
6.8 **GenConstr**

Gurobi general constraint object. General constraints are always associated with a particular model. You add a general constraint to a model either by using one of the `Model.addGenConstrXxx` method, or by using `Model.addConstr` or `Model.addConstrs` plus a general constraint helper function).

General constraint objects have a number of attributes, which can be queried with the `GenConstr.getAttr` method. The full list can be found in the Attributes section of this document.

**GenConstr.getAttr()**

```python
getAttr (attrname)
```

Query the value of a general constraint attribute. The full list of available attributes can be found in the Attributes section.

Raises an `AttributeError` if the requested attribute doesn’t exist or can’t be queried.

**Arguments:**
- `attrname`: The attribute being queried.

**Return value:**
- The current value of the requested attribute.

**Example usage:**
```python
print(genconstr.getAttr(GRB.Attr.GenConstrType))
print(genconstr.getAttr("GenConstrType"))
```

**GenConstr.setAttr()**

```python
setAttr (attrname, newvalue)
```

Set the value of a general constraint attribute. Note that, due to our lazy update approach, the change won’t actually take effect until you update the model (using `Model.update`), optimize the model (using `Model.optimize`), or write the model to disk (using `Model.write`).

The full list of available attributes can be found in the Attributes section.

Raises an `AttributeError` if the specified attribute doesn’t exist or can’t be set.

**Arguments:**
- `attrname`: The attribute being modified.
- `newvalue`: The desired new value of the attribute.

6.9 **LinExpr**

Gurobi linear expression object. A linear expression consists of a constant term, plus a list of coefficient-variable pairs that capture the linear terms. Linear expressions are used to build linear objective and constraints. They are temporary objects that typically have short lifespans.

You generally build linear expressions using overloaded operators. For example, if `x` is a `Var` object, then `x + 1` is a `LinExpr` object. Expressions can be built from constants (e.g., `expr = 0`), variables (e.g., `expr = 1 * x + 2 * y`), or from other expressions (e.g., `expr2 = 2 + expr1 + x`, or `expr3 = expr1 + 2 * expr2`). You can also modify existing expressions (e.g., `expr += x`, or `expr2 -= expr1`).
The full list of overloaded operators on LinExpr objects is as follows: +, +=, -, -=, *, *=, and /. In Python parlance, we’ve defined the following LinExpr functions: __add__, __radd__, __iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__, and __div__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from linear expressions.

You can also use add or addTerms to modify expressions. The LinExpr() constructor can be used to build expressions. Another option is quicksum; it is a more efficient version of the Python sum function. Terms can be removed from an expression using remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- While the Python sum function can be used to build expressions, it should be avoided. Its cost is quadratic in the length of the expression.
- For similar reasons, you should avoid using expr = expr + x in a loop. Building large expressions in this way also leads to quadratic runtimes.
- The quicksum function is much quicker than sum, as are loops over expr += x or expr.add(x). These approaches are fast enough for most programs, but they may still be expensive for very large expressions.
- The two most efficient ways to build large linear expressions are addTerms or the LinExpr() constructor.

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getConstant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These duplicate terms are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using getVar).

LinExpr()

| LinExpr ( arg1=0.0, arg2=None ) |

Linear expression constructor. Note that you should generally use overloaded operators instead of the explicit constructor to build linear expression objects.

This constructor takes multiple forms. You can initialize a linear expression using a constant (LinExpr(2.0)), a variable (LinExpr(x)), an expression (LinExpr(2*x)), a pair of lists containing coefficients and variables, respectively (LinExpr([1.0, 2.0], [x, y])), or a list of coefficient-variable tuples (LinExpr([(1.0, x), (2.0, y), (1.0, z)])).

Return value:
A linear expression object.

Example usage:

expr = LinExpr(2.0)
expr = LinExpr(2*x)
expr = LinExpr([1.0, 2.0], [x, y])
ex = LinExpr([(1.0, x), (2.0, y), (1.0, z)])
LinExpr.add()

```
add (expr, mult=1.0)
```

Add one linear expression into another. Upon completion, the invoking linear expression will be equal to the sum of itself and the argument expression.

**Arguments:**
- expr: Linear expression to add.
- mult (optional): Multiplier for argument expression.

**Example usage:**
```
e1 = x + y
e1.add(z, 3.0)
```

LinExpr.addConstant()

```
addConstant (c)
```

Add a constant into a linear expression.

**Arguments:**
- c: Constant to add to expression.

**Example usage:**
```
expr = x + 2 * y
expr.addConstant(0.1)
```

LinExpr.addTerms()

```
addTerms (coeffs, vars)
```

Add new terms into a linear expression.

**Arguments:**
- coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The two arguments must have the same size.
- vars: Variables for new terms; either a list of variables or a single variable. The two arguments must have the same size.

**Example usage:**
```
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])
```

LinExpr.clear()

```
clear ()
```

Set a linear expression to 0.

**Example usage:**
```
expr.clear()
```
LinExpr.copy()

    copy ( )

    Copy a linear expression
    
    Return value:
    Copy of input expression.
    
    Example usage:
    e0 = 2 * x + 3
    e1 = e0.copy()

LinExpr.getConstant()

    getConstant ( )

    Retrieve the constant term from a linear expression.
    
    Return value:
    Constant from expression.
    
    Example usage:
    e = 2 * x + 3
    print(e.getConstant())

LinExpr.getCoeff()

    getCoeff ( i )

    Retrieve the coefficient from a single term of the expression.
    
    Return value:
    Coefficient for the term at index i in the expression.
    
    Example usage:
    e = x + 2 * y + 3
    print(e.getCoeff(1))

LinExpr.getValue()

    getValue ( )

    Compute the value of an expression using the current solution.
    
    Return value:
    The value of the expression.
    
    Example usage:
    obj = model.getObjective()
    print(obj.getValue())
LinExpr.getVar()

`getVar ( i )`

Retrieve the variable object from a single term of the expression.

**Return value:**
- Variable for the term at index `i` in the expression.

**Example usage:**
```python
e = x + 2 * y + 3
print(e.getVar(1))
```

LinExpr.remove()

`remove ( item )`

Remove a term from a linear expression.

**Arguments:**
- `item`: If `item` is an integer, then the term stored at index `item` of the expression is removed. If `item` is a Var, then all terms that involve `item` are removed.

**Example usage:**
```python
e = x + 2 * y + 3
e.remove(x)
```

LinExpr.size()

`size ( )`

Retrieve the number of terms in the linear expression (not including the constant).

**Return value:**
- Number of terms in the expression.

**Example usage:**
```python
e = x + 2 * y + 3
print(e.size())
```

LinExpr.__eq__()

`__eq__ ( )`

Overloads the `==` operator, creating a TempConstr object that captures an equality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
- A TempConstr object.

**Example usage:**
```python
m.addConstr(x + y == 1)
```
LinExpr.__le__()  

__le__ ( )

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
A TempConstr object.

**Example usage:**
m.addConstr(x + y <= 1)

LinExpr.__ge__()  

__ge__ ( arg )

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
A TempConstr object.

**Example usage:**
m.addConstr(x + y >= 1)
6.10 QuadExpr

Gurobi quadratic expression object. A quadratic expression consists of a linear expression plus a list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions are used to build quadratic objective functions and quadratic constraints. They are temporary objects that typically have short lifespans.

You generally build quadratic expressions using overloaded operators. For example, if x is a Var object, then x * x is a QuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x * x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x * x, or expr2 -= expr1).

The full list of overloaded operators on QuadExpr objects is as follows: +, +=, -, -=, *, **, and /. In Python parlance, we've defined the following QuadExpr functions: __add__, __radd__, __iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__, and __div__.

We've also overloaded the comparison operators (==, <=, and >=), to make it easier to build constraints from quadratic expressions.

You can use quicksum to build quadratic expressions; it is a more efficient version of the Python sum function. You can also use add or addTerms to modify expressions. Terms can be removed from an expression using remove.

Note that the cost of building expressions depends heavily on the approach you use. While you can generally ignore this issue when building small expressions, you should be aware of a few efficiency issues when building large expressions:

- While the Python sum function can be used to build expressions, it should be avoided. Its cost is quadratic in the length of the expression.
- For similar reasons, you should avoid using expr = expr + x*x in a loop. Building large expressions in this way also leads to quadratic runtimes.
- The quicksum function is much quicker than sum, as are loops over expr += x*x or expr.add(x*x). These approaches are fast enough for most programs, but they may still be expensive for very large expressions.
- The most efficient way to build a large quadratic expression is with a single call to addTerms.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2, and getCoef methods. You can query the number of quadratic terms in the expression using the size method. To query the constant and linear terms associated with a quadratic expression, use getLinExpr to obtain the linear portion of the quadratic expression, and then use the getVar, getCoef, and getConstant methods on this LinExpr object. Note that a quadratic expression may contain multiple terms that involve the same variable pair. These duplicate terms are merged when creating a constraint from an expression, but they may be visible when inspecting individual terms in the expression (e.g., when using getVar1 and getVar2).

**QuadExpr()**

| QuadExpr | ( expr = None ) |
Quadratic expression constructor. Note that you should generally use overloaded operators instead of the explicit constructor to build quadratic expression objects.

**Arguments:**
- `expr` *(optional)*: Initial value of quadratic expression. Can be a `LinExpr` or a `QuadExpr`. If no argument is specified, the initial expression value is 0.

**Return value:**
A quadratic expression object.

**Example usage:**
```python
eexpr = QuadExpr()
eexpr = QuadExpr(2*x)
eexpr = QuadExpr(x*x + y+y)
```

QuadExpr.add()  
add(expr, mult=1.0)

Add an expression into a quadratic expression. Argument can be either a linear or a quadratic expression. Upon completion, the invoking quadratic expression will be equal to the sum of itself and the argument expression.

**Arguments:**
- `expr`: Linear or quadratic expression to add.
- `mult` *(optional)*: Multiplier for argument expression.

**Example usage:**
```python
eexpr = x * x + 2 * y * y
eexpr.add(z * z, 3.0)
```

QuadExpr.addConstant()  
addConstant(c)

Add a constant into a quadratic expression.

**Arguments:**
- `c`: Constant to add to expression.

**Example usage:**
```python
eexpr = x * x + 2 * y * y
eexpr.addConstant(0.1)
```

QuadExpr.addTerms()  
addTerms(coeffs, vars, vars2=None)

Add new linear or quadratic terms into a quadratic expression.

**Arguments:**
- `coeffs`: Coefficients for new terms; either a list of coefficients or a single coefficient. The arguments must have the same size.
**vars**: Variables for new terms; either a list of variables or a single variable. The arguments must have the same size.

**vars2 (optional)**: Variables for new quadratic terms; either a list of variables or a single variable. Only present when you are adding quadratic terms. The arguments must have the same size.

**Example usage**:
```
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])
expr.addTerms([2.0, 3.0], [x, y], [y, z])
```

**QuadExpr.clear()**
```
clear ()
```
Set a quadratic expression to 0.

**Example usage**:
```
expr.clear()
```

**QuadExpr.copy()**
```
copy ()
```
Copy a quadratic expression

**Return value**:
Copy of input expression.

**Example usage**:
```
e0 = x * x + 2 * y * y + z
e1 = e0.copy()
```

**QuadExpr.getCoeff()**
```
cCoeff (i)
```
Retrieve the coefficient from a single term of the expression.

**Return value**:
Coefficient for the quadratic term at index `i` in the expression.

**Example usage**:
```
expr = x * x + 2 * y * y + z
print(expr.getCoeff(1))
```

**QuadExpr.getLinExpr()**
```
cLinExpr ()
```
A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This method retrieves the linear expression associated with the quadratic expression.

**Return value**:

Linear expression from quadratic expression.

Example usage:
  expr = x * x + 2 * y * y + z
  le = expr.getLinExpr()

QuadExpr.getValue()
  getValue ( )

Compute the value of an expression using the current solution.

Return value:
  The value of the expression.

Example usage:
  obj = model.getObjective()
  print(obj.getValue())

QuadExpr.getVar1()
  getVar1 ( i )

Retrieve the first variable for a single quadratic term of the quadratic expression.

Return value:
  First variable associated with the quadratic term at index i in the quadratic expression.

Example usage:
  expr = x * x + 2 * y * y + z
  print(expr.getVar1(1))

QuadExpr.getVar2()
  getVar2 ( i )

Retrieve the second variable for a single quadratic term of the quadratic expression.

Return value:
  Second variable associated with the quadratic term at index i in the quadratic expression.

Example usage:
  expr = x * x + 2 * y * y + z
  print(expr.getVar2(1))

QuadExpr.remove()
  remove ( item )

Remove a term from a quadratic expression.

Arguments:
  item: If item is an integer, then the quadratic term stored at index item of the expression
        is removed. If item is a Var, then all quadratic terms that involve item are removed.

Example usage:
expr = x * x + 2 * y * y + z
expr.remove(x)

QuadExpr.size()

```python
size ()
```

Retrieve the number of quadratic terms in the expression.

**Return value:**
Number of quadratic terms in the expression.

**Example usage:**
```python
eexpr = x * x + 2 * y * y + z
print(expr.size())
```

QuadExpr.__eq__()

```python
__eq__ ()
```

Overloads the `==` operator, creating a TempConstr object that captures an equality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
A TempConstr object.

**Example usage:**
```python
m.addConstr(x*x + y*y == 1)
```

QuadExpr.__le__()

```python
__le__ ()
```

Overloads the `<=` operator, creating a TempConstr object that captures an inequality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
A TempConstr object.

**Example usage:**
```python
m.addConstr(x*x + y*y <= 1)
```

QuadExpr.__ge__()

```python
__ge__ (arg)
```

Overloads the `>=` operator, creating a TempConstr object that captures an inequality constraint. The result is typically immediately passed to Model.addConstr.

**Return value:**
A TempConstr object.

**Example usage:**
```python
m.addConstr(x*x + y*y >= 1)
```
6.11 GenExpr

Gurobi general expression object. Objects of this class are created by a set of general constraint helper functions functions. They are temporary objects, meant to be used in conjunction with overloaded operators to build TempConstr objects, which are then passed to addConstr or addConstrs to build general constraints.

To be more specific, the following creates a GenExpr object...

```python
max_(x, y)
```

The following creates a TempConstr object...

```python
z == max_(x, y)
```

The following adds a general constraint to a model...

```python
model.addConstr(z == max_(x, y))
```

Please refer to the TempConstr documentation for more information on building general constraints.
6.12  MLinExpr

Gurobi linear matrix expression object. A linear matrix expression consists of a matrix-vector product, where the matrix is a NumPy dense matrix or a SciPy sparse matrix and the vector is a Gurobi MVar object, plus an optional constant vector of compatible dimensions (i.e., $Ax + b$). Linear matrix expressions are used to build linear objectives and constraints. They are temporary objects that typically have short lifespans.

You generally build linear matrix expressions using overloaded operators, typically by multiplying a 2-D matrix (dense or sparse) by a 1-D MVar object using the Python matrix multiply ($@$) operator (e.g., $expr = A @ x$). You can also promote an MVar object to an MLinExpr using arithmetic expressions (e.g., $expr = x + 1$). Most arithmetic operations are supported on MLinExpr objects, including addition and subtraction (e.g., $expr = A @ x - B @ y$), and multiplication by a constant (e.g. $expr = 2 * A @ x$).

An MLinExpr object has a shape, defined similarly to that of other NumPy ndarray objects. Due to the way it is defined, the shape will always be 1-dimensional, with the length reflecting the size of the corresponding matrix-vector result. To give an example, forming $A @ x$ where $A$ has shape $(10,3)$ and $x$ has shape $(3,)$ gives a result with shape $(10,)$.

When working with MLinExpr objects, you of course need to make sure that the shapes are compatible. If you want to form $A @ x$, then $A$ must be a 2-D array, $x$ must be a 1-D array, and the size of the second dimension of $A$ must be equal to the size of $x$. Similarly, adding an object into an MLinExpr object (including another MLinExpr) requires an object of the same shape. The one exception is a constant, which is automatically promoted to have a compatible shape.

The full list of overloaded operators on MLinExpr objects is as follows: $+$, $+=$, $-$, $-=$, $*$, $*=$, and $@$. In Python parlance, we’ve defined the following MLinExpr functions: $__add__$, $__radd__$, $__iadd__$, $__sub__$, $__rsub__$, $__isub__$, $__neg__$, $__mul__$, $__rmul__$, $__imul__$, $__matmul__$, and $__rmatmul__$.

We’ve also overloaded the comparison operators ($==$, $<=$, and $>=$), to make it easier to build constraints from linear matrix expressions.

Note that the Python matrix multiplication operator ($@$) was introduced in Python version 3.5; it isn’t available from Python 2.7.

MLinExpr.copy()

| copy  ( ) |

Create a (shallow) copy of a linear matrix expression.

Return value:
Copy of expression object.

Example usage:
expr2 = expr1.copy()

MLinExpr.getValue()

| getValue ( ) |

Compute the value of a linear matrix expression using the current solution.
Return value:
Value of expression (1-D array).

Example usage:
expr = A @ x + b
eexpr.getValue()

MLinExpr.__eq__()  

|__eq__  (  )

Overloads the == operator, creating a TempConstr object that captures a 1-D array of equality constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x == 1)

MLinExpr.__le__()  

|__le__  (  )

Overloads the <= operator, creating a TempConstr object that captures a 1-D array of inequality constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x <= 1)

MLinExpr.__ge__()  

|__ge__  (  arg )

Overloads the >= operator, creating a TempConstr object that captures a 1-D array of inequality constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x >= 1)
6.13 MQuadExpr

Gurobi quadratic matrix expression object. Quadratic matrix expressions are used to build quadratic objective functions and quadratic constraints. They are temporary objects that typically have short lifespans.

You generally build quadratic matrix expressions using overloaded operators. For example, if \( x \) is an MVar object and \( A \) is a 2-D matrix (dense or sparse), then \( x \odot A \odot x \) and \( x \odot x \) are both MQuadExpr objects. Most arithmetic operations are support on MQuadExpr objects, including addition and subtraction (e.g., \( \text{expr} = x \odot A \odot x - y \odot B \odot y \)), and multiplication by a constant (e.g. \( \text{expr} = 2 \ast x \odot A \odot y \)).

The full list of overloaded operators on MQuadExpr objects is as follows: \(+\), \(+=\), \(-\), \(-=\), \(*\), \(*=\), and \(/\). In Python parlance, we’ve defined the following QuadExpr functions: \(_\text{add}\_\), \(_\text{radd}\_\), \(_\text{iadd}\_\), \(_\text{sub}\_\), \(_\text{rsub}\_\), \(_\text{isub}\_\), \(_\text{neg}\_\), \(_\text{mul}\_\), \(_\text{rmul}\_\), and \(_\text{imul}\_\).

We’ve also overloaded the comparison operators (\(==\), \(<=\), and \(>=\)), to make it easier to build constraints from quadratic expressions.

Note that the Python matrix multiplication operator (\(\odot\)) was introduced in Python version 3.5; it isn’t available from Python 2.7.

Note that a quadratic matrix expression always produces a scalar result (a result with shape \((1,)\)). You can add linear terms into a quadratic matrix expression, but for the dimensions to be compatible they must also have shape \((1,)\).

MQuadExpr.copy()

| copy ( ) |

Create a (shallow) copy of a quadratic matrix expression.

Return value:
Copy of expression object.

Example usage:
expr2 = expr1.copy()

MQuadExpr.getValue()

| getValue ( ) |

Compute the value of a quadratic matrix expression using the current solution.

Return value:
Value of expression (scalar).

Example usage:
qexpr = x \odot A \odot x
qexpr.getValue()

MQuadExpr.__eq__()

| __eq__ ( ) |
Overloads the \(==\) operator, creating a \texttt{TempConstr} object that captures an equality constraint. The result is typically immediately passed to \texttt{Model.addConstr}.

\textbf{Return value:}\n\begin{itemize}
\item A \texttt{TempConstr} object.
\end{itemize}

\textbf{Example usage:}\n\begin{verbatim}
m.addConstr(x @ Q @ y == 1)
\end{verbatim}

\texttt{MQuadExpr.__le__()}

\texttt{__le__}( )

Overloads the \(\leq\) operator, creating a \texttt{TempConstr} object that captures an inequality constraint. The result is typically immediately passed to \texttt{Model.addConstr}.

\textbf{Return value:}\n\begin{itemize}
\item A \texttt{TempConstr} object.
\end{itemize}

\textbf{Example usage:}\n\begin{verbatim}
m.addConstr(x @ Q @ y <= 1)
\end{verbatim}

\texttt{MQuadExpr.__ge__()}

\texttt{__ge__}( arg )

Overloads the \(\geq\) operator, creating a \texttt{TempConstr} object that captures an inequality constraint. The result is typically immediately passed to \texttt{Model.addConstr}.

\textbf{Return value:}\n\begin{itemize}
\item A \texttt{TempConstr} object.
\end{itemize}

\textbf{Example usage:}\n\begin{verbatim}
m.addConstr(x @ Q @ y >= 1)
\end{verbatim}
6.14 TempConstr

Gurobi temporary constraint object. Objects of this class are created as intermediate results when building constraints using overloaded operators. There are no member functions on this class. Instead, TempConstr objects are created by a set of functions on Var, MVar, LinExpr, QuadExpr, MLinExpr, MQuadExpr, and GenExpr objects (e.g., ==, <=, and >=). You will generally never store objects of this class in your own variables.

The TempConstr object allows you to create several different types of constraints:

- **Linear Constraint**: an expression of the form `Expr1 sense Expr1`, where `Expr1` and `Expr2` are LinExpr objects, Var objects, or constants, and `sense` is one of `==`, `<=` or `>=`. For example, `x + y <= 1 + z` is a linear constraint, as is `x + y == 5`. Note that `Expr1` and `Expr2` can't both be constants.

- **Ranged Linear Constraint**: an expression of the form `LinExpr == [Const1, Const2]`, where `Const1` and `Const2` are constants and `LinExpr` is a LinExpr object. For example, `x + y == [1, 2]` is a ranged linear constraint.

- **Quadratic Constraint**: an expression of the form `Expr1 sense Expr2`, where `Expr1` and `Expr2` are QuadExpr objects, LinExpr objects, Var objects, or constants, and `sense` is one of `==`, `<=` or `>=`. For example, `x*x + y*y <= 3` is a quadratic constraint, as is `x*x + y*y <= z*z`. Note that one of `Expr1` or `Expr2` must be a QuadExpr (otherwise, the constraint would be linear).

- **Linear Matrix Constraint**: an expression of the form `Expr1 sense Expr1`, where one or both of `Expr1` and `Expr2` are MLinExpr objects and `sense` is one of `==`, `<=` or `>=`. For example, `A @ x <= 1` is a linear matrix constraint, as is `A @ x == B @ y`.

- **Quadratic Matrix Constraint**: an expression of the form `Expr1 sense Expr2`, where one or both of `Expr1` and `Expr2` are MQuadExpr objects and `sense` is one of `==`, `<=` or `>=`. For example, `x @ Q @ y <= 3` is a quadratic constraint, as is `x @ Q @ x <= y @ A @ y`.

- **Absolute Value Constraint**: an expression of the form `x == abs_(y)`, where `x` and `y` must be Var objects.

- **Logical Constraint**: an expression of the form `x == op_(y)`, where `x` is a binary Var object, and `y` is a binary Var, a list of binary Var, or a tupledict of binary Var, and `op_` is either `and_` or `or_` (or the Python-specific variants, `all_` and `any_`).

- **Min or Max Constraint**: an expression of the form `x == op_(y)`, where `x` is a Var object, and `y` is a Var, a list of Var and constants, or a tupledict of Var, and `op_` is one of `min_` or `max_`.

- **Indicator Constraint**: an expression of the form `(x == b) >> (Expr1 sense Expr2)`, where `x` is a binary Var object, `b` is either 0 or 1; `Expr1` and `Expr2` are LinExpr objects, Var objects, or constants, and `sense` is one of `==`, `<=` or `>=`. Parenthesizing both expressions is required. For example, `(x == 1) >> (y + w <= 5)` is an indicator constraint, indicating that whenever the binary variable `x` takes the value 1 then the linear constraint `y + w <= 5` must hold.
Consider the following examples:

```java
model.addConstr(x + y == 1);
model.addConstr(x + y == [1, 2]);
model.addConstr(x*x + y*y <= 1);
model.addConstr(A @ x <= 1);
model.addConstr(x @ A @ x <= 1);
model.addConstr(x == abs_(y));
model.addConstr(x == or_(y, z));
model.addConstr(x == max_(y, z));
model.addConstr((x == 1) >> (y + z <= 5));
```

In each case, the overloaded comparison operator creates an object of type `TempConstr`, which is then immediately passed to method `Model.addConstr`. 
6.15 Column

Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used to represent the set of constraints in which a variable participates, and the associated coefficients. They are temporary objects that typically have short lifespans.

You generally build columns using the Column constructor. Terms can be added to an existing column using addTerms. Terms can also be removed from a column using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You can query the number of terms in the column using the size method.

Column()

| Column ( coeffs=None, constrs=None ) |

Column constructor.

Arguments:
- **coeffs (optional)**: Lists the coefficients associated with the members of constrs.
- **constrs (optional)**: Constraint or constraints that participate in expression. If constrs is a list, then coeffs must contain a list of the same length. If constrs is a single constraint, then coeffs must be a scalar.

Return value:
An expression object.

Example usage:
```
col = Column()
col = Column(3, c1)
col = Column([1.0, 2.0], [c1, c2])
```

Column.addTerms()

| addTerms ( coeffs, constrs ) |

Add new terms into a column.

Arguments:
- **coeffs**: Coefficients for added constraints; either a list of coefficients or a single coefficient. The two arguments must have the same size.
- **constrs**: Constraints to add to column; either a list of constraints or a single constraint. The two arguments must have the same size.

Example usage:
```
col.addTerms(1.0, x)
col.addTerms([2.0, 3.0], [y, z])
```

Column.clear()

| clear ( ) |

Remove all terms from a column.
Example usage:
    col.clear()

Column.copy()

    copy ( )

Copy a column.
Return value:
    Copy of input column.
Example usage:
    col0 = Column(1.0, c0)
    col1 = col0.copy()

Column.getCoeff()

    getCoeff ( i )

Retrieve the coefficient from a single term in the column.
Return value:
    Coefficient for the term at index i in the column.
Example usage:
    col = Column([1.0, 2.0], [c0, c1])
    print(col.getCoeff(1))

Column.getConstr()

    getConstr ( i )

Retrieve the constraint object from a single term in the column.
Return value:
    Constraint for the term at index i in the column.
Example usage:
    col = Column([1.0, 2.0], [c0, c1])
    print(col.getConstr(1))

Column.remove()

    remove ( item )

Remove a term from a column.
Arguments:
    item: If item is an integer, then the term stored at index item of the column is removed.
    If item is a Constr, then all terms that involve item are removed.
Example usage:
    col = Column([1.0, 2.0], [c0, c1])
    col.remove(c0)
Column.size()

size  (  )

Retrieve the number of terms in the column.

Return value:
Number of terms in the column.

Example usage:
print(Column([1.0, 2.0], [c0, c1]).size())
6.16 Callbacks

Gurobi callback class. A callback is a user function that is called periodically by the Gurobi optimizer in order to allow the user to query or modify the state of the optimization. More precisely, if you pass a function that takes two arguments (model and where) as the argument to Model.optimize, your function will be called during the optimization. Your callback function can then call Model.cbGet to query the optimizer for details on the state of the optimization.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify the behavior of the Gurobi optimizer. A simple user callback function might call Model.cbGet to produce a custom display, or perhaps to terminate optimization early (using Model.terminate). More sophisticated MIP callbacks might use Model.cbGetNodeRel or Model.cbGetSolution to retrieve values from the solution to the current node, and then use Model.cbCut or Model.cbLazy to add a constraint to cut off that solution, or Model.cbSetSolution to import a heuristic solution built from that solution. For multi-objective problems, you might use Model.cbStopOneMultiObj to interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem without stopping the hierarchical optimization process.

The Gurobi callback class provides a set of constants that are used within the user callback function. The first set of constants in this class list the options for the where argument to the user callback function. The where argument indicates from where in the optimization process the user callback is being called. Options are listed in the Callback Codes section of this document.

The other set of constants in this class list the options for the what argument to Model.cbGet. The what argument is used by the user callback to indicate what piece of status information it would like to retrieve. The full list of options can be found in the Callback Codes section. As with the where argument, you refer to a what constant through GRB.Callback. For example, the simplex objective value would be requested using GRB.Callback.SPX_OBJVAL.

If you would like to pass data to your callback function, you can do so through the Model object. For example, if your program includes the statement model._value = 1 before the optimization begins, then your callback function can query the value of model._value. Note that the name of the user data field must begin with an underscore.

When solving a model using multiple threads, the user callback is only ever called from a single thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

You can look at callback.py in the examples directory for details of how to use Gurobi callbacks.
6.17 GurobiError

Gurobi exception object. Upon catching an exception `e`, you can examine `e.errno` (an integer) or `e.message` (a string). A list of possible values for `errno` can be found in the Error Code section. `message` provides additional information on the source of the error.
6.18 Env

Gurobi environment object. Note that environments play a much smaller role in the Python interface than they do in other Gurobi language APIs, mainly because the Python interface has a default environment. Unless you explicitly pass your own environment to routines that require an environment, the default environment will be used.

The primary situations where you will want to use your own environment are:

- When you are using a Gurobi Compute Server and want to choose the server from within your program.
- When you need control over garbage collection of your environment. The Gurobi Python interface maintains a reference to the default environment, so by default it will never be garbage collected. By creating your own environment, you can control exactly when your program releases any licensing tokens or Compute Servers it is using.
- When you are using concurrent environments in one of the concurrent optimizers.

It is good practice to use the `with` keyword when dealing with environment (and model) objects. That way the resources tied to these objects are properly released even if an exception is raised at some point. The following example illustrates two typical use patterns.

Example usage:

```python
import gurobipy as gp

with gp.Env("gurobi.log") as env, gp.Model(env=env) as model:
 # Populate model object here...
 m.optimize()

with gp.Env(empty=True) as env:
 env.setParam("ComputeServer", "myserver1:32123")
 env.setParam("ServerPassword", "pass")
 env.start()
 with gp.Model(env=env) as model:
 # Populate model object here...
 model.optimize()
```

Note that you can manually remove the reference to the default environment by calling `disposeDefaultEnv`. After calling this, and after all models built within the default environment are garbage collected, the default environment will be garbage collected as well. A new default environment will be created automatically if you call a routine that needs one.

Env()

Env ( logfilename="", empty=False, params=None )

Env constructor. You will generally want to use the default environment in Gurobi Python programs. The exception is when you want explicit control over environment garbage collection. By creating your own environment object and always passing it to methods that take an environment as input (read or the Model constructor), you will avoid creating the default environment. Once
every model created using an Env object is garbage collected, and once the Env object itself is no longer referenced, the garbage collector will reclaim the environment and release all associated resources.

If the environment is not empty, This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Arguments:
- logfilename: Name of the log file for this environment. Pass an empty string if you don’t want a log file.
- empty: Indicates whether the environment should be empty. You should use empty=True if you want to set parameters before actually starting the environment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or a Cluster Manager. See the Environment Section for more details.
- params: A dict containing Gurobi parameter/value pairs that should be set already upon environment creation. Any server related parameters can be set through this dict, too.

Return value:
- New environment object.

Example usage:
```python
env = Env("gurobi.log")
m = read("misc07.mps", env)
m.optimize()
```

Example usage:
```python
p = {"ComputeServer": "localhost:33322",
 "ServerPassword": "pass",
 "TimeLimit": 120.0}
with Env(params=p) as env, read('misc07.mps', env=env) as model:
 model.optimize()
```

Env.ClientEnv()

Env.ClientEnv ( logfilename="", computeServer="", router="", password="", group="", CStlsInsecure=0, priority=0, timeout=-1 )

Compute Server Env constructor. Creates a client environment on a compute server. If all compute servers are at capacity, this command will cause a job to be placed in the compute server queue, and the command will return an environment once capacity is available.

Client environments have limited uses in the Python environment. You can use a client environment as an argument to the Model constructor, to indicate that a model should be constructed
on a Compute Server, or as an argument to the global read function, to indicate that the result of reading the file should be place on a Compute Server.

This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Arguments:**

- **logfile**: Name of the log file for this environment. Pass an empty string if you don’t want a log file.
- **computeServer**: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., server1:61000).
- **router**: The router for a Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You should refer to the router using either its name or its IP address. If no router is used (which is the typical case), pass an empty string.
- **password**: The password for gaining access to the specified Compute Server cluster. Pass an empty string if no password is required.
- **group**: The name of the Compute Server group.
- **CStlsInsecure**: Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.
- **priority**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. Depending on the configuration of the server, a job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash. This behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server options.
- **timeout**: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that the call should never timeout.

**Return value:**

New environment object.

**Example usage:**

```python
env = Env.ClientEnv("client.log", "server1.mycompany.com,server2.mycompany.com")
m = read("misc07.mps", env)
m.optimize()
```
Env.CloudEnv()  

Instant Cloud Env constructor. Creates a Gurobi environment on an Instant Cloud server. Uses an existing Instant Cloud machine if one is currently active within the specified machine pool, and launches a new one otherwise. Note that launching a machine can take a few minutes.

Once an Instant Cloud server is active (either because it was already active or because the launch of a new server completed), this command places a job in the server queue. If the server has sufficient capacity, the job will start immediately. Otherwise, it is placed in the server queue and this command returns once capacity becomes available.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, configure your machine pools, and perform other cloud setup and maintenance tasks.

Note that you should keep your secretKey private. Sharing it with others will allow them to launch Instant Cloud instances in your account.

This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

Most methods in the Gurobi Python interface will use the default environment, so you'll need to take special action to use the cloud environment created by this method. You can use a cloud environment as an argument to the Model constructor, to indicate that a model should be constructed on the given Instant Cloud server, or as an argument to the global read function, to indicate that the result of reading the file should be placed on the given Instant Cloud Server.

Arguments:

- **logfile**: The name of the log file for this environment. May be NULL (or an empty string), in which case no log file is created.
- **accessID**: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your secretKey, this allows you to launch Instant Cloud instances and submit jobs to them.
- **secretKey**: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your accessID, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.
- **pool**: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restart the configuration information each time you launch a machine. May be NULL (or an empty string), in which case your job will be launched in the default pool associated with your cloud license.
- **priority**: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs.

**Return value:**
New environment object.

**Example usage:**
```python
e = Env.CloudEnv("cloud.log",
 "3d1ecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas");
m = read("misc07.mps", env)
m.optimize()
```

**Env.resetParams()**

```
resetParams ()
```

Reset the values of all parameters to their default values.

**Example usage:**
```python
e = Env.resetParams()
```

**Env.setParam()**

```
setParam (paramname, newvalue)
```

Set the value of a parameter to a new value.

**Arguments:**
- `paramname`: String containing the name of parameter that you would like to modify. The name can include '*' and '?' wildcards. If more than one parameter matches, the matching names are listed and none are modified. Note that case is ignored.
- `newvalue`: Desired new value for parameter. Can be 'default', which indicates that the parameter should be reset to its default value.

**Example usage:**
```python
e.setParam("Cuts", 2)
e.setParam("Heu*", 0.5)
e.setParam("*Interval", 10)
```

**Env.start()**

```
start ()
```

Start an empty environment. If the environment has already been started, this method will do nothing. If the call fails, the environment will have the same state as it had before the call to this method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in the `gurobi.env` file, if present.

After all these changes are performed, the code will actually activate the environment, and make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you plan to work with multiple models. Reusing one environment is much more efficient than creating and destroying multiple environments. The one exception is if you are writing a multi-threaded program, since environments are not thread safe. In this case, you will need a separate environment for each of your threads.

**Example usage:**
```
env = Env(empty=True)
env.setParam('ComputeServer', 'server.mydomain.com:61000')
env.setParam('ServerPassword', 'mypassword')
env.start()
```

**Env.writeParams()**
```
writeParams (filename)
```
Write all modified parameters to a file. The file is written in PRM format.

**Example usage:**
```
env.setParam("Heu*", 0.5)
env.writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")
```

**Env.dispose()**
```
dispose (force=False)
```
Free all resources associated with this Env object.

Dispose of all models created in this environment before disposing of this Env object. An error will be raised if this is not the case. Use the ‘force’ parameter to override this behavior, and to proceed with the disposal nevertheless. When doing so, any resource (memory, etc.), consumed by still existing models cannot be reclaimed.

After this method is called, this Env object must no longer be used.

**Example usage:**
```
env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()
```
6.19 Batch

Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and later check on the status of the model and retrieve its solution. For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted or failed batch), discard (remove the batch request and all related information from the Cluster Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

- **BatchID**: Unique ID for the batch request.
- **BatchStatus**: Last batch status.
- **BatchErrorCode**: Last error code.
- **BatchErrorMessage**: Last error message.

You can access their values as you would for other attributes: `batch.BatchStatus, batch.BatchID,` etc. Note that all Batch attributes are locally cached, and are only updated when you create a client-side batch object or when you explicitly update this cache, which can done by calling `update`.

**Batch()**

```
Batch (batchID, env)
```

Given a BatchID, as returned by `optimizeBatch`, and a Gurobi environment that can connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and ServerPassword have been set appropriately), this function returns a Batch object. With it, you can query the current status of the associated batch request and, once the batch request has been processed, you can query its solution. Please refer to the Batch Optimization section for details and examples.

**Arguments:**

- **batchID**: ID of the batch request for which you want to access status and other information.
- **env**: The environment in which the new batch object should be created.

**Return value:**

New batch object.

**Example usage:**

```python
batch = gp.Batch(batchID, env)

Automatically disposed with context manager
with gp.Batch(batchID, env) as batch:
 pass
```
**Batch.abort()**

| abort ( ) |

This method instructs the Cluster Manager to abort the processing of this batch request, changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Example usage:

```python
starttime = time.time()
while batch.BatchStatus == GRB.BATCH_SUBMITTED:
 # Abort this batch if it is taking too long
 curtime = time.time()
 if curtime - starttime > maxwaittime:
 batch.abort()
 break

 # Wait for two seconds
 time.sleep(2)

 # Update the resident attribute cache of the Batch object with the latest values from the cluster manager.
 batch.update()

 # If the batch failed, we retry it
```

**Batch.discard()**

| discard ( ) |

This method instructs the Cluster Manager to remove all information related to the batch request in question, including the stored solution if available. Further queries for the associated batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as the removed information can not be recovered later on.

Example usage:

```python
Remove batch request from manager
batch.discard()
```

**Batch.dispose()**

| dispose ( ) |

Free all resources associated with this Batch object. After this method is called, this Batch object must no longer be used.

Example usage:

```python
batch.dispose()
```

**Batch.getJSONSolution()**

| getJSONSolution ( ) |
This method retrieves the solution of a completed batch request from a Cluster Manager. The solution is returned as a JSON solution string. For this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Example usage:

```python
print("JSON solution:")
Get JSON solution as string, create dict from it
sol = json.loads(batch.getJSONSolution())
```

**Batch.retry()**

| retry ( ) |

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further details.

Example usage:

```python
break
Wait for two seconds
time.sleep(2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update()

If the batch failed, we retry it
if batch.BatchStatus == GRB.BATCH_FAILED:
 batch.retry()
```

**Batch.update()**

| update ( ) |

All Batch attribute values are cached locally, so queries return the value received during the last communication with the Cluster Manager. This method refreshes the values of all attributes with the values currently available in the Cluster Manager (which involves network communication).

Example usage:

```python
Update the resident attribute cache of the Batch object with the
latest values from the cluster manager.
batch.update()
```

**Batch.writeJSONSolution()**

| writeJSONSolution ( filename ) |

This method returns the stored solution of a completed batch request from a Cluster Manager. The solution is returned in a gzip-compressed JSON file. The file name you provide must end with a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be **COMPLETED**. Please refer to the Batch Status Codes section for further details.

**Arguments:**
- **filename**: Name of file where the solution should be stored (in JSON format).

**Example usage:**
```
batch.writeJSONSolution('batch-sol.json.gz')
```
6.20 GRB

Class for Python constants. Classes GRB.Attr and GRB.Param are used to get or set Gurobi attributes and parameters, respectively.

Constants

The following list contains a set of constants that are used by the Gurobi Python interface. You would refer to them using a GRB. prefix (e.g., GRB.OPTIMAL).

# Status codes

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADED</td>
<td>1</td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>2</td>
</tr>
<tr>
<td>INFEASIBLE</td>
<td>3</td>
</tr>
<tr>
<td>INF_OR_UNBD</td>
<td>4</td>
</tr>
<tr>
<td>UNBOUNDED</td>
<td>5</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>6</td>
</tr>
<tr>
<td>ITERATION_LIMIT</td>
<td>7</td>
</tr>
<tr>
<td>NODE_LIMIT</td>
<td>8</td>
</tr>
<tr>
<td>TIME_LIMIT</td>
<td>9</td>
</tr>
<tr>
<td>SOLUTION_LIMIT</td>
<td>10</td>
</tr>
<tr>
<td>INTERRUPTED</td>
<td>11</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>12</td>
</tr>
<tr>
<td>SUBOPTIMAL</td>
<td>13</td>
</tr>
<tr>
<td>INPROGRESS</td>
<td>14</td>
</tr>
<tr>
<td>USER_OBJ_LIMIT</td>
<td>15</td>
</tr>
</tbody>
</table>

# Batch status codes

<table>
<thead>
<tr>
<th>Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATCH_CREATED</td>
<td>1</td>
</tr>
<tr>
<td>BATCH_SUBMITTED</td>
<td>2</td>
</tr>
<tr>
<td>BATCH_ABORTED</td>
<td>3</td>
</tr>
<tr>
<td>BATCH_FAILED</td>
<td>4</td>
</tr>
<tr>
<td>BATCH_COMPLETED</td>
<td>5</td>
</tr>
</tbody>
</table>

# Version number

<table>
<thead>
<tr>
<th>Version</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSION_MAJOR</td>
<td>9</td>
</tr>
<tr>
<td>VERSION_MINOR</td>
<td>0</td>
</tr>
<tr>
<td>VERSION_TECHNICAL</td>
<td>1</td>
</tr>
</tbody>
</table>

# Basis status

<table>
<thead>
<tr>
<th>Basis Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC</td>
<td>0</td>
</tr>
<tr>
<td>NONBASIC_LOWER</td>
<td>-1</td>
</tr>
<tr>
<td>NONBASIC_UPPER</td>
<td>-2</td>
</tr>
<tr>
<td>SUPERBASIC</td>
<td>-3</td>
</tr>
</tbody>
</table>

# Constraint senses

<table>
<thead>
<tr>
<th>Sense</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS_EQUAL</td>
<td>'&lt;'</td>
</tr>
<tr>
<td>GREATER_EQUAL</td>
<td>'&gt;'</td>
</tr>
<tr>
<td>EQUAL</td>
<td>'='</td>
</tr>
</tbody>
</table>

# Variable types
CONTINUOUS = 'C'
BINARY = 'B'
INTEGER = 'I'
SEMICONT = 'S'
SEMIINT = 'N'

# Objective sense
MINIMIZE = 1
MAXIMIZE = -1

# SOS types
SOS_TYPE1 = 1
SOS_TYPE2 = 2

# General constraint types
GENCONSTR_MAX = 0
GENCONSTR_MIN = 1
GENCONSTR_ABS = 2
GENCONSTR_AND = 3
GENCONSTR_OR = 4
GENCONSTR_INDICATOR = 5
GENCONSTR_PWL = 6
GENCONSTR_POLY = 7
GENCONSTR_EXP = 8
GENCONSTR_EXPA = 9
GENCONSTR_LOG = 10
GENCONSTR_LOGA = 11
GENCONSTR_POW = 12
GENCONSTR_SIN = 13
GENCONSTR_COS = 14
GENCONSTR_TAN = 15

# Numeric constants
INFINITY = 1e100
UNDEFINED = 1e101
MAXINT = 2000000000

# Limits
MAX_NAMELEN = 255
MAX_STRLEN = 512
MAX_TAGLEN = 10240
MAX_CONCURRENT = 64

# Other constants
DEFAULT_CS_PORT = 61000

# Errors
ERROR_OUT_OF_MEMORY = 10001
GRB.Attr

The constants defined in this class are used to get or set attributes (through Model.getAttr or Model.setAttr, for example). Please refer to the Attributes section to see a list of all attributes and their functions. You refer to an attribute using a GRB.Attr prefix (e.g., GRB.Attr.Obj). Note that these constants are simply strings, so wherever you might use this constant, you also have the option of using the string directly (e.g., 'obj' rather than GRB.Attr.Obj).

GRB.Param

The constants defined in this class are used to get or set parameters Model.getParamInfo or Model.setParam. Please refer to the Parameters section to see a list of all parameters and their functions. You refer to a parameter using a GRB.Param prefix (e.g., GRB.Param.displayInterval). Note that these constants are simply strings, so wherever you might use this constant, you also have the option of using the string directly (e.g., 'displayInterval' rather than GRB.Param.-displayInterval).
6.21 tuplelist

Gurobi tuple list. This is a sub-class of the Python list class that is designed to efficiently support a usage pattern that is quite common when building optimization models. In particular, if a tuplelist is populated with a list of tuples, the select function on this class efficiently selects tuples whose values match specified values in specified tuple fields. To give an example, the statement l.select(1, '*', 5) would select all member tuples whose first field is equal to '1' and whose third field is equal to '5'. The '*' character is used as a wildcard to indicate that any value is acceptable in that field.

You generally build tuplelist objects in the same way you would build standard Python lists. For example, you can use the += operator to append a new list of items to an existing tuplelist, or the + operator to concatenate a pair of tuplelist objects. You can also call the append, extend, insert, pop, and remove functions.

To access the members of a tuplelist, you also use standard list functions. For example, l[0] returns the first member of a tuplelist, while l[0:10] returns a tuplelist containing the first ten members. You can also use len(l) to query the length of a list.

Note that tuplelist objects build and maintain a set of internal data structures to support efficient select operations. If you wish to reclaim the storage associated with these data structures, you can call the clean function.

A tuplelist is designed to store tuples containing scalar values (int, float, string, ...). It may produce unpredictable results with other Python objects, such as tuples of tuples. Thus, you can store (1, 2.0, 'abc') in a tuplelist, but you shouldn’t store ((1, 2.0), 'abc')

tuplelist()

| tuplelist ( list ) |

tuplelist constructor.

Arguments:
- list: Initial list of member tuples.

Return value:
A tuplelist object.

Example usage:

```python
l = tuplelist([(1,2), (1,3), (2,4)])
l = tuplelist([('A', 'B', 'C'), ('A', 'C', 'D')])
```

tuplelist.select()

| select ( pattern ) |

Returns a tuplelist containing all member tuples that match the specified pattern. The pattern requires one argument for each field in the member tuple. A scalar argument must match the corresponding field exactly. A list argument matches if any list member matches the corresponding field. A '...' argument matches any value in the corresponding field.

Arguments:
- pattern: Pattern to match for a member tuple.
Example usage:
  l.select(1, 3, '*', 6)
  l.select([1, 2], 3, '*', 6)
  l.select('A', '*', 'C')

tuplelist.clean()

  clean ( )

  Discards internal data structure associated with a tuplelist object. Note that calling this routine won’t affect the contents of the tuplelist. It only affects the memory used and the performance of later calls to select.

  Example usage:
  l.clean()

tuplelist.__contains__()  

  __contains__ ( val )

  Provides efficient support for the Python in operator.

  Example usage:
  if (1,2) in l:
    print("Tuple (1,2) is in tuplelist l")
6.22  tupledict

Gurobi tuple dict. This is a sub-class of the Python dict class that is designed to efficiently support a usage pattern that is quite common when building optimization models. In particular, a tupledict is a Python dict where the keys are stored as a Gurobi tuplelist, and where the values are typically Gurobi Var objects. Objects of this class make it easier to build linear expressions on sets of Gurobi variables, using tuplelist.select() syntax and semantics.

You typically build a tupledict by calling Model.addVars. Once you’ve created a tupledict d, you can use d.sum() to create a linear expression that captures the sum of the variables in the tupledict. You can also use a command like d.sum(1, '*', 5) to create a sum over a subset of the variables in d. Assuming the keys for the tupledict are tuples containing three fields, this statement would create a linear expression that captures the sum over all variables in d whose keys contain a 1 in the first field of the tuple and a 5 in the third field (the '*' character is a wildcard that indicates that any value is acceptable in that field). You can also use d.prod(coeff) to create a linear expression where the coefficients are pulled from the dictionary coeff. For example, if d(1,2,5) contains variable x and coeff(1,2,5) is 2.0, then the resulting expression would include term 2.0 * x.

To access the members of a tupledict, you can use standard dict indexing. For example, d[1,2] returns the value associated with tuple (1,2).

Note that a tupledict key must be a tuple of scalar values (int, float, string, ...). Thus, you can use (1, 2.0, 'abc') as a key, but you can’t use ((1, 2.0), 'abc').

Note that tupledict objects build and maintain a set of internal data structures to support efficient select operations. If you wish to reclaim the storage associated with these data structures, you can call the clean function.

tupledict()

| tupledict  ( args, kwargs ) |

    tupledict constructor. Arguments are identical to those of a Python dict constructor. Note that you will typically use Model.addVars to build a tupledict.

Arguments:
    args: Positional arguments.
    kwargs: Named arguments.

Return value:
    A tupledict object.

Example usage:

    d = tupledict([(1,2), 'onetwo'), ((1,3), 'onethree'), ((2,3), 'twothree')])
    print(d[1,2]) # prints 'onetwo'

tupledict.select()

| select  ( pattern ) |
Returns a list containing the values associated with keys that match the specified tuple pattern. The pattern should provide one value for each field in the key tuple. A ‘*’ value indicates that any value is accepted in that field.

Without arguments, this method returns a list of all values in the tupledict.

Arguments:
- **pattern**: Pattern to match for a key tuple.

Example usage:
```python
d = tupledict([(1,2, 'onetwo'), (1,3, 'onethree'), (2,3, 'twothree')])
print(d.select()) # prints ['onetwo', 'onethree', 'twothree']
print(d.select(1, '*')) # prints ['onetwo', 'onethree']
print(d.select('*', 3)) # prints ['onethree', 'twothree']
print(d.select(1, 3)) # prints ['onethree']
```

### tupledict.sum()

```
| sum (pattern) |
```

Returns the sum of the values associated with keys that match the specified pattern. If the values are Gurobi Var objects, the result is a LinExpr. The pattern should provide one value for each field in the key tuple. A ‘*’ value indicates that any value is accepted in that field.

Without arguments, this method returns the sum of all values in the tupledict.

Arguments:
- **pattern**: Pattern to match for a key tuple.

Example usage:
```python
x = m.addVars([(1,2), (1,3), (2,3)])
expr = x.sum() # LinExpr: x[1,2] + x[1,3] + x[2,3]
expr = x.sum(1, '*') # LinExpr: x[1,2] + x[1,3]
expr = x.sum('*', 3) # LinExpr: x[1,3] + x[2,3]
expr = x.sum(1, 3) # LinExpr: x[1,3]
```

### tupledict.prod()

```
| prod (coeff, pattern) |
```

Returns a linear expression that contains one term for each tuple that is present in both the tupledict and in the argument dict. For example, \( x.prod(coeff) \) would contain term \( 2.0 \times var \) if \( x[1,2] = var \) and \( coeff[1,2] = 2.0 \).

Arguments:
- **coeff**: Python dict that maps tuples to coefficients.
- **pattern**: Pattern to match for a key tuple.

Example usage:
```python
x = m.addVars([(1,2), (1,3), (2,3)])
coeff = dict([(1,2, 2.0), ((1,3), 2.1), ((2,3), 3.3)])
expr = x.prod(coeff) # LinExpr: 2.0 x[1,2] + 2.1 x[1,3] + 3.3 x[2,3]
expr = x.prod(coeff, '*', 3) # LinExpr: 2.1 x[1,3] + 3.3 x[2,3]
```
tupledict.clean()

| clean ( ) |

Discards internal data structure associated with a tupledict object. Note that calling this routine won’t affect the contents of the tupledict. It only affects the memory used and the performance of later calls to select.

**Example usage:**

```python
d.clean()
```
6.23 General Constraint Helper Functions

Gurobi general constraint helper functions - used in conjunction with overloaded operators and Model.addConstr or Model.addConstrs to build general constraints.

abs_()

 abs_ ( variable )

Used to set a decision variable equal to the absolute value of another decision variable.

Example usage:

m.addConstr(y == abs_(x))

Return value:
Returns a GenExpr object.

and_()

 and_ ( variables )

Used to set a binary decision variable equal to the logical AND of a list of other binary decision variables. You can pass the arguments as a Python list or as a comma-separated list. Note that the Gurobi Python interface includes an equivalent all_() function.

Example usage:

m.addConstr(z == and_(x, y))
m.addConstr(z == and_([x, y]))

Return value:
Returns a GenExpr object.

max_()

 max_ ( variables )

Used to set a decision variable equal to the maximum of a list of decision variables (or constants). You can pass the arguments as a Python list or as a comma-separated list.

Example usage:

m.addConstr(z == max_(x, y, 3))
m.addConstr(z == max_([x, y, 3]))

Return value:
Returns a GenExpr object.
min_()

\textbf{min_ ( variables )}

Used to set a decision variable equal to the minimum of a list of decision variables (or constants). You can pass the arguments as a Python list or as a comma-separated list.

\textbf{Example usage:}

\begin{verbatim}
    m.addConstr(z == min_(x, y, 3))
    m.addConstr(z == min_([x, y, 3]))
\end{verbatim}

\textbf{Return value:}

Returns a \texttt{GenExpr} object.

or_()

\textbf{or_ ( variables )}

Used to set a binary decision variable equal to the logical OR of a list of other binary decision variables. You can pass the arguments as a Python list or as a comma-separated list.

Note that the Gurobi Python interface includes an equivalent \texttt{any_()} function.

\textbf{Example usage:}

\begin{verbatim}
    m.addConstr(z == or_(x, y))
    m.addConstr(z == or_([x, y]))
\end{verbatim}

\textbf{Return value:}

Returns a \texttt{GenExpr} object.
This section documents the Gurobi MATLAB® interface. For those of you who are not familiar with MATLAB, it is an environment for doing numerical computing. Please visit the MATLAB website for more information. This manual begins with a quick overview of the methods provided by our MATLAB API. It then continues with a comprehensive presentation of all of the available methods, their arguments, and their return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the methods described here.

The MATLAB Optimization Toolbox provides its own interface for building optimization models (starting with version 2017b). Gurobi supports this interface as well. We’ll discuss this aspect in the problem-based modeling section; consult also the linprog, intlinprog, opttoolbox_lp, and opttoolbox_mip1 examples in the Gurobi distribution for illustrations of how to pass models built using this interface to Gurobi.

A quick note for new users: the convention in math programming is that variables are non-negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables to be able to take negative values.

Models

Our Gurobi MATLAB interface enables you to express problems of the following form:

\[
\begin{align*}
\text{minimize} & \quad x^T Q x + c^T x + \alpha \\
\text{subject to} & \quad A x = b \quad \text{(linear constraints)} \\
& \quad \ell \leq x \leq u \quad \text{(bound constraints)} \\
& \quad \text{some } x_j \text{ integral} \quad \text{(integrality constraints)} \\
& \quad x^T Q c x + q^T x \leq \beta \quad \text{(quadratic constraints)} \\
& \quad \text{some } x_i \text{ in SOS} \quad \text{(special ordered set constraints)} \\
& \quad \text{min, max, abs, or, ...} \quad \text{(general constraints)}
\end{align*}
\]

Models are stored as struct variables, each consisting of multiple fields. The fields capture the different model components listed above. Many of these model components are optional. For example, integrality constraints may be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it can be built by populating the appropriate fields of a model variable (using standard MATLAB constructs). We will discuss the details of how models are represented in the model argument section.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of...
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We'll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call `gurobi` to compute a solution. By default, `gurobi` will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models and QCP models with convex constraints, and the branch-and-cut algorithm to solve mixed integer models. The solution is returned as a struct variable. We will discuss the details of how optimization results are represented when we discuss the `gurobi` function. Here is a simple example of a likely sequence of commands in the MATLAB API:

```matlab
model = gurobi_read('examples/data/stein9.mps');
result = gurobi(model);
```

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a model with a single objective function. Gurobi provides features that allow you to relax either of these assumptions. You should refer to the section on Solution Pools for information on how to request more than one solution, or the section on Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call `gurobi_iis` to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. We will discuss the details of how IIS results are represented in the `gurobi_iis` function documentation.

To attempt to repair an infeasibility, call `gurobi_feasrelax` to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a struct variable. The name of each field within this struct must be the name of a Gurobi parameter, and the associated value should be the desired value of that parameter. You can find a complete list of the available Gurobi parameters here. We will provide additional details on changing parameter settings in the `params` argument section.
Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, set the LogFile parameter to the name of your desired log file. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

Error Handling

If unsuccessful, the methods of the Gurobi MATLAB interface will return an error code and an error message. A list of possible error codes can be found in the Error Code section.

Environments

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi environment. This environment exists for as long as the corresponding MATLAB API function is running, and is released upon completion.

Another option is to provide an optional env argument (also through a struct). This argument allows you to solve the given problem on a Gurobi Compute Server or using the Gurobi Instant Cloud. We will discuss this topic further in the env argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).
7.1 Common Arguments

Most common arguments in the Gurobi MATLAB interface are MATLAB struct variables, each containing multiple fields. Several of these fields are optional. Note that you refer to a field of a struct variable by adding a period to the end of the variable name, followed by the name of the field. For example, `model.A` refers to field A of variable `model`.

**The model argument**

Model variables store optimization problems (as described in the problem statement).

Models can be built in a number of ways. You can populate the appropriate fields of the model struct using standard MATLAB routines. You can also read a model from a file, using `gurobi_read`. A few API functions (`gurobi_feasrelax` and `gurobi_relax`) also return models.

Note that all vector fields within the model variable must be dense vectors except for the linear part of the quadratic constraints and INDICATOR general constraints, all matrix fields must be sparse matrices, and all strings, names, etc. must be char arrays.

The following is an enumeration of all of the fields of the model argument that Gurobi will take into account when optimizing the model:

Commonly used fields:

- **A**: The linear constraint matrix.

- **obj** (optional): The linear objective vector (the c vector in the problem statement). When present, you must specify one value for each column of A. When absent, each variable has a default objective coefficient of 0.

- **sense** (optional): The senses of the linear constraints. Allowed values are '=' , '<', or '>'. You must specify one value for each row of A, or a single value to specify that all constraints have the same sense. When absent, all senses default to '<'.

- **rhs** (optional): The right-hand side vector for the linear constraints (b in the problem statement). You must specify one value for each row of A. When absent, the right-hand side vector defaults to the zero vector.

- **lb** (optional): The lower bound vector. When present, you must specify one value for each column of A. When absent, each variable has a default lower bound of 0.

- **ub** (optional): The upper bound vector. When present, you must specify one value for each column of A. When absent, the variables have infinite upper bounds.

- **vtype** (optional): The variable types. This vector is used to capture variable integrality constraints. Allowed values are 'C' (continuous), 'B' (binary), 'I' (integer), 'S' (semi-continuous), or 'N' (semi-integer). Binary variables must be either 0 or 1. Integer variables can take any integer value between the specified lower and upper bounds. Semi-continuous variables can take any value between the specified lower and upper bounds, or a value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds, or a value of zero. When present, you must specify one value for each column of A, or a single value to specify that all variables have the same type. When absent, each variable is treated as being continuous. Refer to this section for more information on variable types.
modelsense (optional): The optimization sense. Allowed values are 'min' (minimize) or 'max' (maximize). When absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when writing a model to a file.

objccon (optional): The constant offset in the objective function (alpha in the problem statement).

varnames (optional): The variable names vector. A cell array. When present, each element of this vector defines the name of a variable. You must specify a name for each column of A.

constrnames (optional): The constraint names vector. A cell array. When present, each element of the vector defines the name of a constraint. You must specify a name for each row of A.

Quadratic objective and constraint fields:

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose row and column counts are equal to the number of columns in A.

quadcon (optional): The quadratic constraints. A struct array. When present, each element in quadcon defines a single quadratic constraint: $x^TQc x + q^T x \leq \beta$. The Qc matrix must be a square matrix whose row and column counts are equal to the number of columns of A. There are two options to store the matrix: (i) in model.quadcon(i).Qc as a sparse matrix; (ii) through three dense vectors model.quadcon(i).Qrow, model.quadcon(i).Qcol, and model.quadcon(i).Qval specifying the matrix in triple format, with row indices, column indices, and values, respectively.

The optional q vector defines the linear terms in the constraint. It can be a dense vector specifying a value for each column of A or a sparse vector (sparse n-by-1 matrix). It is stored in model.quadcon(i).q.

The scalar $\beta$ is stored in model.quadcon(i).rhs. It defines the right-hand side value for the constraint.

The optional sense string defines the sense of the quadratic constraint. Allowed values are '<', '=', or '>'. If not present, the default sense is '<'. It is stored in model.quadcon(i).sense.

The optional name string defines the name of the quadratic constraint. It is stored in model.quadcon(i).name.

SOS constraint fields:

sos (optional): The Special Ordered Set (SOS) constraints. A struct array. When present, each entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The type of SOS constraint $i$ is specified via model.sos(i).type. A type 1 SOS constraint is a set of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zeros values, they must be contiguous in the ordered set. The members of an SOS constraint are specified by placing their indices in vector model.sos(i).index. Weights associated with SOS members are provided in vector model.sos(i).weight. Please refer to this section for details on SOS constraints.
Multi-objective fields:

multiobj (optional): Multi-objective specification for the model. A struct array. When present, each entry in multiobj defines a single objective of a multi-objective problem. Please refer to the Multiple Objectives section for more details on multi-objective optimization. Each objective i may have the following fields:

objn: Specified via model.multiobj(i).objn. This is the i-th objective vector.

objcon (optional): Specified via model.multiobj(i).objcon. If provided, this is the i-th objective constant. The default value is 0.

priority (optional): Specified via model.multiobj(i).priority. If provided, this value is the hierarchical priority for this objective. The default value is 0.

weight (optional): Specified via model.multiobj(i).weight. If provided, this value is the multiplier used when aggregating objectives. The default value is 1.0.

reltol (optional): Specified via model.multiobj(i).reltol. If provided, this value specifies the relative objective degradation when doing hierarchical multi-objective optimization. The default value is 0.

abstol (optional): Specified via model.multiobj(i).abstol. If provided, this value specifies the absolute objective degradation when doing hierarchical multi-objective optimization. The default value is 0.

name (optional): Specified via model.multiobj(i).name. If provided, this string specifies the name of the i-th objective function.

Note that when multiple objectives are present, the result.objval field that is returned in the result of an optimization call will be a vector of the same length as model.multiobj.

A multi-objective model can’t have other objectives. Thus, combining model.multiobj with any of model.obj, model.objcon, model.pwlobj, or model.Q is an error.

General constraint fields:

The struct arrays described below are used to add general constraints to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general (function) constraints. These are typically not treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (genconmax): set a decision variable equal to the maximum value from among a set of decision variables
• MIN (genconmin): set a decision variable equal to the minimum value from among a set of
decision variables
• ABS (genconabs): set a decision variable equal to the absolute value of some other decision
variable
• AND (genconand): set a binary variable equal to one if and only if all of a set of binary
decision variables are equal to one
• OR (genconor): set a binary variable equal to one if and only if at least one variable out of
a set of binary decision variables is equal to one
• INDICATOR (genconind): whenever a given binary variable takes a certain value, then the
given linear constraint must be satisfied
• Piecewise-linear constraints (genconpwl): set a variable equal to the piecewise-linear function
defined by a set of points using some other variable
• Polynomial (genconpoly): set a variable equal to the polynomial function defined by some
other variable
• Natural exponential (genconexp): set a variable equal to the natural exponential function by
some other variable
• Exponential (genconexpa): set a variable equal to the exponential function by some other
variable
• Natural logarithm (genconlog): set a variable equal to the natural logarithmic function by
some other variable
• Logarithm (genconloga): set a variable equal to the logarithmic function by some other
variable
• Power (genconpow): set a variable equal to the power function by some other variable
• SIN (genconsin): set a variable equal to the sine function by some other variable
• COS (genconcos): set a variable equal to the cosine function by some other variable
• TAN (gencontan): set a variable equal to the tangent function by some other variable

Please refer to this section for additional details on general constraints.

**genconmax (optional)**: A struct array. When present, each entry in genconmax defines a MAX
general constraint of the form

\[ x[\text{resvar}] = \max \{\text{con}, x[j] : j \in \text{vars}\} \]

Each entry may have the following fields:

- **resvar**: Specified via model.genconmax(i).resvar. Index of the variable in the left-hand
  side of the constraint.
vars: Specified via `model.genconmax(i).vars`, it is a vector of indices of variables in the right-hand side of the constraint.

con (optional): Specified via `model.genconmax(i).con`. When present, specifies the constant on the left-hand side. Default value is $-\infty$.

name (optional): Specified via `model.genconmax(i).name`. When present, specifies the name of the $i$-th MAX general constraint.

genconmin (optional): A struct array. When present, each entry in `genconmax` defines a MIN general constraint of the form

$$x[resvar] = \min\{\text{con}, x[j] : j \in \text{vars}\}$$

Each entry may have the following fields:

resvar: Specified via `model.genconmin(i).resvar`. Index of the variable in the left-hand side of the constraint.

vars: Specified via `model.genconmin(i).vars`, it is a vector of indices of variables in the right-hand side of the constraint.

con (optional): Specified via `model.genconmin(i).con`. When present, specifies the constant on the left-hand side. Default value is $\infty$.

name (optional): Specified via `model.genconmin(i).name`. When present, specifies the name of the $i$-th MIN general constraint.

genconabs (optional): A struct array. When present, each entry in `genconmax` defines an ABS general constraint of the form

$$x[resvar] = |x[argvar]|$$

Each entry may have the following fields:

resvar: Specified via `model.genconabs(i).resvar`. Index of the variable in the left-hand side of the constraint.

argvar: Specified via `model.genconabs(i).argvar`. Index of the variable in the right-hand side of the constraint.

name (optional): Specified via `model.genconabs(i).name`. When present, specifies the name of the $i$-th ABS general constraint.

genconand (optional): A struct array. When present, each entry in `genconand` defines an AND general constraint of the form

$$x[resvar] = \text{and}\{x[i] : i \in \text{vars}\}$$

Each entry may have the following fields:

resvar: Specified via `model.genconand(i).resvar`. Index of the variable in the left-hand side of the constraint.
vars: Specified via `model.genconand(i).vars`, it is a vector of indices of variables in the right-hand side of the constraint.

name (optional): Specified via `model.genconand(i).name`. When present, specifies the name of the i-th AND general constraint.

genconor (optional): A struct array. When present, each entry in `genconor` defines an OR general constraint of the form

\[ x[\text{resvar}] = \text{or}\{x[i] : i \in \text{vars}\} \]

Each entry may have the following fields:

resvar: Specified via `model.genconor(i).resvar`. Index of the variable in the left-hand side of the constraint.

vars: Specified via `model.genconor(i).vars`, it is a vector of indices of variables in the right-hand side of the constraint.

name (optional): Specified via `model.genconor(i).name`. When present, specifies the name of the i-th OR general constraint.

genconind (optional): A struct array. When present, each entry in `genconind` defines an INDICATOR general constraint of the form

\[ x[\text{binvar}] = \text{binval} \Rightarrow \sum (x(j) \cdot a(j)) \text{ sense rhs} \]

This constraint states that when the binary variable \( x[\text{binvar}] \) takes the value \( \text{binval} \) then the linear constraint \( \sum (x[\text{vars}(j)] \cdot \text{val}(j)) \text{ sense rhs} \) must hold. Note that `sense` is one of '=', '<', or '>' for equality (=), less than or equal (≤) or greater than or equal (≥) constraints. Each entry may have the following fields:

binvar: Specified via `model.genconind(i).binvar`. Index of the implicating binary variable.

binval: Specified via `model.genconind(i).binval`. Value for the binary variable that forces the following linear constraint to be satisfied. It can be either 0 or 1.

a: Specified via `model.genconind(i).a`. Vector of coefficients of variables participating in the implied linear constraint. You can specify a value for `a` for each column of `A` (dense vector) or pass a sparse vector (sparse n-by-1 matrix).

sense: Specified via `model.genconind(i).sense`. Sense of the implied linear constraint. Must be one of '=', '<', or '>'.

rhs: Specified via `model.genconind(i).rhs`. Right-hand side value of the implied linear constraint.

name (optional): Specified via `model.genconind(i).name`. When present, specifies the name of the i-th INDICATOR general constraint.

genconpwl (optional): A struct array. When present, each entry in `genconpwl` defines a piecewise-linear constraint of the form
The breakpoints for $f$ are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Each entry may have the following fields:

**xvar**: Specified via `model.genconpwl(i).xvar`. Index of the variable in the right-hand side of the constraint.

**yvar**: Specified via `model.genconpwl(i).yvar`. Index of the variable in the left-hand side of the constraint.

**xpts**: Specified via `model.genconpwl(i).xpts`. Specifies the $x$ values for the points that define the piecewise-linear function. Must be in non-decreasing order.

**ypts**: Specified via `model.genconpwl(i).ypts`. Specifies the $y$ values for the points that define the piecewise-linear function.

**name (optional)**: Specified via `model.genconpwl(i).name`. When present, specifies the name of the $i$-th piecewise-linear general constraint.

**genconpoly (optional)**: A struct array. When present, each entry in `genconpoly` defines a polynomial function constraint of the form

$$x[yvar] = p_0 x[xvar]^d + p_1 x[xvar]^{d-1} + ... + p_{d-1} x[xvar] + p_d$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPieceLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

**xvar**: Specified via `model.genconpoly(i).xvar`. Index of the variable in the right-hand side of the constraint.

**yvar**: Specified via `model.genconpoly(i).yvar`. Index of the variable in the left-hand side of the constraint.

**p**: Specified via `model.genconpoly(i).p`. Specifies the coefficients for the polynomial function (starting with the coefficient for the highest power). If $x^d$ is the highest power term, a dense vector of length $d + 1$ is returned.

**name (optional)**: Specified via `model.genconpoly(i).name`. When present, specifies the name of the $i$-th polynomial function constraint.

**funcpieces (optional)**: Specified via `model.genconpoly(i).funcpieces`. When present, specifies the FuncPieces attribute of the $i$-th polynomial function constraint.

**funcpiece_length (optional)**: Specified via `model.genconpoly(i).funcpiece_length`. When present, specifies the FuncPieceLength attribute of the $i$-th polynomial function constraint.

**funcpiece_error (optional)**: Specified via `model.genconpoly(i).funcpiece_error`. When present, specifies the FuncPieceError attribute of the $i$-th polynomial function constraint.
funcpieceratio (optional): Specified via model.genconpoly(i).funcpieceratio. When present, specifies the FuncPieceRatio attribute of the i-th polynomial function constraint.

genconexp (optional): A struct array. When present, each entry in genconexp defines the natural exponential function constraint of the form

\[ x[yvar] = \exp(x[xvar]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via model.genconexp(i).xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model.genconexp(i).yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model.genconexp(i).name. When present, specifies the name of the i-th natural exponential function constraint.

funcpieces (optional): Specified via model.genconexp(i).funcpieces. When present, specifies the FuncPieces attribute of the i-th natural exponential function constraint.

funcpiecelength (optional): Specified via model.genconexp(i).funcpiecelength. When present, specifies the FuncPieceLength attribute of the i-th natural exponential function constraint.

funcpieceerror (optional): Specified via model.genconexp(i).funcpieceerror. When present, specifies the FuncPieceError attribute of the i-th natural exponential function constraint.

funcpieceratio (optional): Specified via model.genconexp(i).funcpieceratio. When present, specifies the FuncPieceRatio attribute of the i-th natural exponential function constraint.

genconexpa (optional): A struct array. When present, each entry in genconexpa defines an exponential function constraint of the form

\[ x[yvar] = a^{x[xvar]} \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via model.genconexpa(i).xvar. Index of the variable in the right-hand side of the constraint.
yvar: Specified via `model.genconexpa(i).yvar`. Index of the variable in the left-hand side of the constraint.

a: Specified via `model.genconexpa(i).a`. Specifies the base of the exponential function \( a > 0 \).

name (optional): Specified via `model.genconexpa(i).name`. When present, specifies the name of the \( i \)-th exponential function constraint.

funcpieces (optional): Specified via `model.genconexpa(i).funcpieces`. When present, specifies the `FuncPieces` attribute of the \( i \)-th exponential function constraint.

funcpielleenth (optional): Specified via `model.genconexpa(i).funcpielleenth`. When present, specifies the `FuncPieceLength` attribute of the \( i \)-th exponential function constraint.

funcpieceerror (optional): Specified via `model.genconexpa(i).funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the \( i \)-th exponential function constraint.

funcpieceratio (optional): Specified via `model.genconexpa(i).funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the \( i \)-th exponential function constraint.

genconlog (optional): A struct array. When present, each entry in `genconlog` defines the natural logarithmic function constraint of the form

\[ x[yvar] = \log(x[xvar]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPieceLength`, and `FuncPieceRatio`. For details, consult the `General Constraint` discussion.

Each entry may have the following fields:

xvar: Specified via `model.genconlog(i).xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model.genconlog(i).yvar`. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via `model.genconlog(i).name`. When present, specifies the name of the \( i \)-th natural logarithmic function constraint.

funcpieces (optional): Specified via `model.genconlog(i).funcpieces`. When present, specifies the `FuncPieces` attribute of the \( i \)-th natural logarithmic function constraint.

funcpielleenth (optional): Specified via `model.genconlog(i).funcpielleenth`. When present, specifies the `FuncPieceLength` attribute of the \( i \)-th natural logarithmic function constraint.

funcpieceerror (optional): Specified via `model.genconlog(i).funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the \( i \)-th natural logarithmic function constraint.
funcpieceratio (optional): Specified via model.genconlog(i).funcpieceratio. When present, specifies the FuncPieceRatio attribute of the $i$-th natural logarithmic function constraint.

genconloga (optional): A struct array. When present, each entry in genconloga defines a logarithmic function constraint of the form

$$x[yvar] = \log(x[xvar]) \div \log(a)$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via model.genconloga(i).xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model.genconloga(i).yvar. Index of the variable in the left-hand side of the constraint.

a: Specified via model.genconloga(i).a. Specifies the base of the logarithmic function $a > 0$.

name (optional): Specified via model.genconloga(i).name. When present, specifies the name of the $i$-th logarithmic function constraint.

funcpieces (optional): Specified via model.genconloga(i).funcpieces. When present, specifies the FuncPieces attribute of the $i$-th logarithmic function constraint.

funcpiecelength (optional): Specified via model.genconloga(i).funcpiecelength. When present, specifies the FuncPieceLength attribute of the $i$-th logarithmic function constraint.

funcpieceerror (optional): Specified via model.genconloga(i).funcpieceerror. When present, specifies the FuncPieceError attribute of the $i$-th logarithmic function constraint.

funcpieceratio (optional): Specified via model.genconloga(i).funcpieceratio. When present, specifies the FuncPieceRatio attribute of the $i$-th logarithmic function constraint.

genconpow (optional): A struct array. When present, each entry in genconpow defines a power function constraint of the form

$$x[yvar] = x[xvar]^a$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:
xvar: Specified via `model.genconpow(i).xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model.genconpow(i).yvar`. Index of the variable in the left-hand side of the constraint.

a: Specified via `model.genconpow(i).a`. Specifies the exponent of the power function.

name (optional): Specified via `model.genconpow(i).name`. When present, specifies the name of the \( i \)-th power function constraint.

funcpieces (optional): Specified via `model.genconpow(i).funcpieces`. When present, specifies the `FuncPieces` attribute of the \( i \)-th power function constraint.

funcpiecelength (optional): Specified via `model.genconpow(i).funcpiecelength`. When present, specifies the `FuncPieceLength` attribute of the \( i \)-th power function constraint.

funcpieceerror (optional): Specified via `model.genconpow(i).funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the \( i \)-th power function constraint.

funcpieceratio (optional): Specified via `model.genconpow(i).funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the \( i \)-th power function constraint.

genconsin (optional): A struct array. When present, each entry in `genconsin` defines the sine function constraint of the form

\[
x[yvar] = \sin(x[xvar])
\]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPieceLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via `model.genconsin(i).xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model.genconsin(i).yvar`. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via `model.genconsin(i).name`. When present, specifies the name of the \( i \)-th sine function constraint.

funcpieces (optional): Specified via `model.genconsin(i).funcpieces`. When present, specifies the `FuncPieces` attribute of the \( i \)-th sine function constraint.

funcpiecelength (optional): Specified via `model.genconsin(i).funcpiecelength`. When present, specifies the `FuncPieceLength` attribute of the \( i \)-th sine function constraint.

funcpieceerror (optional): Specified via `model.genconsin(i).funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the \( i \)-th sine function constraint.

funcpieceratio (optional): Specified via `model.genconsin(i).funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the \( i \)-th sine function constraint.

genconcos (optional): A struct array. When present, each entry in `genconcos` defines the cosine function constraint of the form
\[ x[y\text{var}] = \cos(x[x\text{var}]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via \texttt{model.genconcos(i).xvar}. Index of the variable in the right-hand side of the constraint.

yvar: Specified via \texttt{model.genconcos(i).yvar}. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via \texttt{model.genconcos(i).name}. When present, specifies the name of the \(i\)-th cosine function constraint.

funcpieces (optional): Specified via \texttt{model.genconcos(i).funcpieces}. When present, specifies the FuncPieces attribute of the \(i\)-th cosine function constraint.

funcpiecelength (optional): Specified via \texttt{model.genconcos(i).funcpiecelength}. When present, specifies the FuncPieceLength attribute of the \(i\)-th cosine function constraint.

funcpieceerror (optional): Specified via \texttt{model.genconcos(i).funcpieceerror}. When present, specifies the FuncPieceError attribute of the \(i\)-th cosine function constraint.

funcpieceratio (optional): Specified via \texttt{model.genconcos(i).funcpieceratio}. When present, specifies the FuncPieceRatio attribute of the \(i\)-th cosine function constraint.

\texttt{gencontan} (optional): A struct array. When present, each entry in \texttt{gencontan} defines the tangent function constraint of the form

\[ x[y\text{var}] = \tan(x[x\text{var}]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following fields:

xvar: Specified via \texttt{model.gencontan(i).xvar}. Index of the variable in the right-hand side of the constraint.

yvar: Specified via \texttt{model.gencontan(i).yvar}. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via \texttt{model.gencontancos(i).name}. When present, specifies the name of the \(i\)-th tangent function constraint.

funcpieces (optional): Specified via \texttt{model.gencontan(i).funcpieces}. When present, specifies the FuncPieces attribute of the \(i\)-th tangent function constraint.

funcpiecelength (optional): Specified via \texttt{model.gencontan(i).funcpiecelength}. When present, specifies the FuncPieceLength attribute of the \(i\)-th tangent function constraint.
funcpieceerror (optional): Specified via model.gencontan(i).funcpieceerror. When present, specifies the FuncPieceError attribute of the i-th tangent function constraint.

funcpieceratio (optional): Specified via model.gencontan(i).funcpieceratio. When present, specifies the FuncPieceRatio attribute of the i-th tangent function constraint.

Advanced fields:

pwlobj (optional): The piecewise-linear objective functions. A struct array. When present, each entry in pwlobj defines a piecewise-linear objective function for a single variable. The index of the variable whose objective function is being defined is stored in model.pwlobj(i).var. The x values for the points that define the piecewise-linear function are stored in model.pwlobj(i).x. The values in the x vector must be in non-decreasing order. The y values for the points that define the piecewise-linear function are stored in model.pwlobj(i).y.

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point for the simplex algorithm. You would generally never concern yourself with the contents of this vector, but would instead simply pass it from the result of a previous optimization run to the input of a subsequent run. When present, you must specify one value for each column of A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting point for the simplex algorithm. Consult the vbasis description for details. When present, you must specify one value for each row of A.

varhintval (optional): A set of user hints. If you know that a variable is likely to take a particular value in high quality solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide information about your level of confidence in a hint with the varhintpri field. If present, you must specify one value for each column of A. Use a value of nan for variables where no such hint is known. For more details, please refer to the VarHitVal attribute documentation.

varhintpri (optional): Priorities on user hints. After providing variable hints through the varhintval struct, you can optionally also provide hint priorities to give an indication of your level of confidence in your hints. If present, you must specify a value for each column of A. For more details, please refer to the VarHintPri attribute documentation.

branchpriority (optional): Variable branching priority. If present, the value of this attribute is used as the primary criteria for selecting a fractional variable for branching during the MIP search. Variables with larger values always take priority over those with smaller values. Ties are broken using the standard branch variable selection criteria. If present, you must specify one value for each column of A.

pstart (optional): The current simplex start vector. If you set pstart values for every variable in the model and dstart values for every constraint, then simplex will use those values to compute a warm start basis. For more details, please refer to the PStart attribute documentation.

dstart (optional): The current simplex start vector. If you set dstart values for every linear constraint in the model and pstart values for every variable, then simplex will use those
values to compute a warm start basis. For more details, please refer to the DStart attribute documentation.

**lazy (optional):** Determines whether a linear constraint is treated as a lazy constraint. If present, you must specify one value for each row of A. For more details, please refer to the Lazy attribute documentation.

**start (optional):** The MIP start vector. The MIP solver will attempt to build an initial solution from this vector. When present, you must specify a start value for each variable. Note that you can set the start value for a variable to *nan*, which instructs the MIP solver to try to fill in a value for that variable.

**partition (optional):** The MIP variable partition number, which is used by the MIP solution improvement heuristic. If present, you must specify one value for each variable of A. For more details, please refer to the Partition attribute documentation.

If any of the mandatory components listed above are missing, the *gurobi()* function will return an error.

Below is an example that demonstrates the construction of a simple optimization model:

```matlab
model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 1];
model.modelsense = 'max';
model.rhs = [4; 1];
model.sense = '<>'
```

### The *params* argument

As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Parameter changes are specified using a *struct* variable having multiple *fields*, which is passed as an argument to the appropriate Gurobi function (e.g., *gurobi*). The name of each field must be the name of a Gurobi parameter, and the associated value should be the desired value of that parameter. You can find a complete list of the available Gurobi parameters here.

To create a struct that would set the Gurobi Method parameter to 2 and the ResultFile parameter to *model.mps*, you would do the following:

```matlab
params.Method = 2;
params.ResultFile = 'model.mps';
```

We should say a bit more about the ResultFile parameter. If this parameter is set, the optimization model that is eventually passed to Gurobi will also be output to the specified file. The filename suffix should be one of .mps, .lp, .rew, or .rlp, to indicate the desired file format (see the file format section for details on Gurobi file formats).
The env argument

The optional env argument is also a struct. It allows you to solve your problem on a Gurobi Compute Server or the Gurobi Instant Cloud.

Using a Compute Server License

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are organized into clusters. By providing the name of any node within the cluster, your job will automatically be sent to the least heavily loaded node in the cluster. If all nodes are at capacity, your job will be placed in a queue, and will proceed once capacity becomes available. You can find additional information about Gurobi Compute Server in the Gurobi Remote Services Reference Manual.

The following is an enumeration of all of the fields of the env argument that Gurobi will take into account.

computeserver: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., server1:61000).

password (optional): User password on the Compute Server cluster. Obtain this from your Compute Server administrator.

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

router (optional): The router for the Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You can refer to the router using either its name or its IP address. A typical Remote Services deployment won’t use a router, so you typically won’t need to set this.

CStlsinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use an env argument to connect to a Compute Server:

```python
env.computeserver = 'server1.mycompany.com:61000';
env.priority = 5;
```

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the cloud. If an appropriate machine is already running, the job will run on that machine. It will automatically launch a new machine otherwise. Note that launching a new machine can take a few minutes. You can find additional information about the Gurobi Instant Cloud service here.

The following is an enumeration of all of the fields of the env argument that Gurobi will take into account.
**accessid**: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **secretkey**, this allows you to launch Instant Cloud instances and submit jobs to them.

**secretkey**: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your **accessid**, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.

**pool (optional)**: The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restate configuration information each time you launch a machine. If not provided, your job will be launched in the default pool associated with your cloud license.

**priority (optional)**: The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

Here is an example of how to use an **env** argument to launch a Gurobi Instant Cloud instance:

```python
env.accessid = '3d1ecef9-dfad-eff4-b3fa';
env.secretkey = 'ae6L23alJe3+fas';
```

Note that when creating an environment variable, you need to choose to use either Compute Server or Instant Cloud. Populating fields for both will result in an error.
7.2 Solving a Model

gurobi()

This function optimizes the given model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion it will return a struct variable containing solution information.

Please consult this section for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:

- `model`: The model struct must contain a valid Gurobi model. See the `model` argument section for more information.
- `params`: The params struct, when provided, contains a list of modified Gurobi parameters. See the `params` argument section for more information.
- `env`: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the `env` argument section for more information.

Example usage:

```matlab
result = gurobi(model, params);
if strcmp(result.status, 'OPTIMAL');
 fprintf('Optimal objective: %e
', result.objval);
 disp(result.x)
else
 fprintf('Optimization returned status: %s
', result.status);
end
```

Return value:

The optimization result

The `gurobi` function returns a struct, with the various results of the optimization stored in its fields. The specific results that are available depend on the type of model that was solved, the parameters used, and the status of the optimization. The following is a list of fields that might be available in the returned result. We will discuss the circumstances under which each will be available after presenting the list.

Model fields:

- `status`: The status of the optimization, returned as a string. The desired result is 'OPTIMAL', which indicates that an optimal solution to the model was found. Other status are possible, for example if the model has no feasible solution or if you set a Gurobi parameter that leads to early solver termination. See the Status Code section for further information on the Gurobi status codes.
objval: The objective value of the computed solution. Note that for multi-objective models `result.objval` will be a vector, where `result.objval(i)` stores the value for `model.multiobj(i)`.

objbound: Best available bound on solution (lower bound for minimization, upper bound for maximization).

objboundc: The best unrounded bound on the optimal objective. In contrast to `objbound`, this attribute does not take advantage of objective integrality information to round to a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5, `ObjBound` will return 2.0 while `ObjBoundC` will return 1.5.

mipgap: Current relative MIP optimality gap; computed as $|ObjBound - ObjVal|/|ObjVal|$ (where `ObjBound` and `ObjVal` are the MIP objective bound and incumbent solution objective, respectively). Returns `GRB_INFINITY` when an incumbent solution has not yet been found, when no objective bound is available, or when the current incumbent objective is 0. This is only available for mixed-integer problems.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

itercount: Number of simplex iterations performed.

baritercount: Number of barrier iterations performed.

nodecount: Number of branch-and-cut nodes explored.

farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to `FarkasProof` for details.

Variable fields:

x: The computed solution. This vector contains one entry for each column of $A$.

rc: Variable reduced costs for the computed solution. This vector contains one entry for each column of $A$.

vbasis: Variable basis status values for the computed optimal basis. You generally should not concern yourself with the contents of this vector. If you wish to use an advanced start later, you would simply copy the `vbasis` and `cbasis` fields into the corresponding fields for the next model. This vector contains one entry for each column of $A$.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a new solution that is also feasible but improves the objective. Only available if the model is found to be unbounded. This vector contains one entry for each column of $A$.

Linear constraint fields:

slack: The constraint slack for the computed solution. This vector contains one entry for each row of $A$.

pi: Dual values for the computed solution (also known as shadow prices). This vector contains one entry for each row of $A$.
cbasis: Constraint basis status values for the computed optimal basis. This vector contains one entry for each row of $A$.

farkas dual: Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to FarkasDual for details.

**Quadratic constraint fields:**

qcslack: The quadratic constraint slack in the current solution. This vector contains one entry for each quadratic constraint.

qcpi: The dual values associated with the quadratic constraints. This vector contains one entry for each quadratic constraint.

**Solution Pool fields:**

pool: When multiple solutions are found during the optimization call, these solutions are returned in this field. A struct array. When present, each struct has the following fields:

- **objval**: Stores the objective value of the $i$-th solution in result.pool(i).objval. Note that when the model is a multi-objective model, instead of a single value, result.pool(i).objval(j) stores the value of the $j$-th objective function for the $i$-th solution.

- **xn**: Stores the $i$-th solution in result.pool(i).xn. This vector contains one entry for each column of $A$.

Note that to query the number of solutions stored, you can query the length of result.pool.

poolobjbound: For single-objective MIP optimization problems, this value gives a bound on the best possible objective of an undiscovered solution. The difference between this value and objbound is that the former gives an objective bound for undiscovered solutions, while the latter gives a bound for any solution.

**What is Available When**

The **status** field will be present in all cases. It indicates whether Gurobi was able to find a proven optimal solution to the model. In cases where a solution to the model was found, optimal or otherwise, the **objval** and **x** fields will be present.

For linear and quadratic programs, if a solution is available, then the **pi** and **rc** fields will also be present. For models with quadratic constraints, if the parameter **qcpdual** is set to 1, the field **qcpi** will be present. If the final solution is a basic solution (computed by simplex), then **vbasis** and **cbasis** will be present. If the model is an unbounded linear program and the **InfUnbdInfo** parameter is set to 1, the field **unbdray** will be present. Finally, if the model is an infeasible linear program and the InfUnbdInfo parameter is set to 1, the fields **farkas dual** and **farkas proof** will be set.

For mixed integer problems, no dual information (i.e. **pi**, **slack**, **rc**, **vbasis**, **cbasis**, **qcs slack**, **qcpi**, **ubdray** or **farkas dual**) is ever available. When multiple solutions are found, the **pool** and **poolobjbound** fields will be present. Depending on the **status** field value, the fields **nodecount**, **objbound**, **objbundc** and **mip gap** will be available.

For continuous and mixed-integer models, under normal execution, the fields **runtime**, **itercount** and **baritercount** will be available.
gurobi_iis()

```markdown
<table>
<thead>
<tr>
<th>gurobi_iis (model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gurobi_iis (model, params)</td>
</tr>
<tr>
<td>gurobi_iis (model, params, env)</td>
</tr>
</tbody>
</table>
```

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

You can obtain information about the outcome of the IIS computation from the returned IIS result (described below). Note that this method can be used to compute IISs for both continuous and MIP models.

**Arguments:**

- **model:** The model struct must contain a valid Gurobi model. See the `model` argument section for more information.
- **params:** The params struct, when provided, contains a list of modified Gurobi parameters. See the `params` argument section for more information.
- **env:** The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the `env` argument section for more information.

**Example usage:**

```python
model = gurobi_read('examples/data/klein1.mps');
iis = gurobi_iis(model);
```

**Return value:**

The `gurobi_iis()` function returns a struct, with various results stored in its fields. The specific results that are available depend on the type of model.

The returned struct will always contain the following fields:

- **minimal:** A logical scalar that indicates whether the computed IIS is minimal. It will normally be true, but it may be false if the IIS computation was stopped early (due to a time limit or a user interrupt).

- **arows:** A logical vector that indicates whether a linear constraint appears in the computed IIS.

- **lb:** A logical vector that indicates whether a lower bound appears in the computed IIS.

- **ub:** A logical vector that indicates whether a upper bound appears in the computed IIS.
If your model contains general constraints, the returned struct will also contain the following fields:

genconmax: A logical vector that indicates whether a general MAX constraint appears in the computed IIS.

genconmin: A logical vector that indicates whether a general MIN constraint appears in the computed IIS.

genconand: A logical vector that indicates whether a general AND constraint appears in the computed IIS.

genconor: A logical vector that indicates whether a general OR constraint appears in the computed IIS.

genconabs: A logical vector that indicates whether a general ABS constraint appears in the computed IIS.

genconind: A logical vector that indicates whether a general INDICATOR constraint appears in the computed IIS.

genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint appears in the computed IIS.

genconpoly: A logical vector that indicates whether a polynomial function constraint appears in the computed IIS.

genconexp: A logical vector that indicates whether a natural exponential function constraint appears in the computed IIS.

genconexpa: A logical vector that indicates whether an exponential function constraint appears in the computed IIS.

genconlog: A logical vector that indicates whether a natural logarithmic function constraint appears in the computed IIS.

genconloga: A logical vector that indicates whether a logarithmic function constraint appears in the computed IIS.

genconpow: A logical vector that indicates whether a power function constraint appears in the computed IIS.

genconsin: A logical vector that indicates whether a SIN function constraint appears in the computed IIS.

genconcos: A logical vector that indicates whether a COS function constraint appears in the computed IIS.

gencontan: A logical vector that indicates whether a TAN function constraint appears in the computed IIS.
If your model contains SOS constraints, the returned struct will also contain the following field:

sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS.

If your model contains quadratic constraints, the returned struct will also contain the following field:

quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed IIS.

gurobi_feasrelax()

gurobi_feasrelax ( model, relaxobjtype, minrelax, penalties )
gurobi_feasrelax ( model, relaxobjtype, minrelax, penalties, params )
gurobi_feasrelax ( model, relaxobjtype, minrelax, penalties, params, env )

This function computes a feasibility relaxation for the input model argument. The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. You must provide a penalty to associate with relaxing each individual bound or constraint (through the penalties argument). These penalties are interpreted in different ways, depending on the value of the relaxobjtype argument.

Arguments:

model: The model struct must contain a valid Gurobi model. See the model argument section for more information.

relaxobjtype: The approach used to impose penalties on violations.

If you specify relaxobjtype=0, the objective for the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations.

If you specify relaxobjtype=1, the objective for the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations.

If you specify relaxobjtype=2, the objective for the feasibility relaxation is to minimize the weighted count of bound and constraint violations.

In all cases, the weights are taken from penalties.lb, penalties.ub and penalties.rhs. You can provide the special penalty value Inf to indicate that the corresponding bound or constraint cannot be relaxed.

minrelax: The minrelax argument is a boolean that controls the type of feasibility relaxation that is created. If minrelax=False, optimizing the returned model gives a solution that minimizes the cost of the violation. If minrelax=True, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that gurobi_feasrelax must solve an optimization problem to find the minimum possible relaxation when minrelax=True, which can be quite expensive.

penalties: The penalties argument is a struct array, having the following optional fields (default: all Inf):

lb Penalty for violating each lower bound.
ub Penalty for violating each upper bound.
rhs Penalty for violating each constraint.
To give an example, if a constraint with `penalties.rhs` value \( p \) is violated by 2.0, it would contribute \( 2p \) to the feasibility relaxation objective for `relaxobjtype=0`, \( 2*2*p \) for `relaxobjtype=1`, and \( p \) for `relaxobjtype=2`.

**env**: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Return value:**

A struct containing two fields:
- `result.model`, a struct variable, as described in the model argument section.
- `result.feasobj`, a scalar. If `minrelax==true` this is the relaxation problem objective value, 0.0 otherwise.

**Example usage:**

```matlab
model = gurobi_read('stein9.mps');
penalties.lb = ones(length(model.lb),1);
penalties.ub = ones(length(model.ub),1);
penalties.rhs = ones(length(model.rhs),1);
feasrelaxresult = gurobi_feasrelax(model, 0, false, penalties);
```

---

**gurobi_relax()**

```matlab
gurobi_relax (model)
gurobi_relax (model, env)
```

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS and general constraints.

**Arguments:**
- `model`: The model struct must contain a valid Gurobi model. See the model argument section for more information.
- `env`: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Return value:**

A `model` struct variable, as described in the `model` parameter section.

**Example usage:**

```matlab
model = gurobi_read('stein9.mps');
relaxed = gurobi_relax(model);
```
7.3 Input/Output

gurobi_read()

<table>
<thead>
<tr>
<th>gurobi_read</th>
<th>( filename )</th>
</tr>
</thead>
<tbody>
<tr>
<td>gurobi_read</td>
<td>( filename, env )</td>
</tr>
</tbody>
</table>

Reads a model from a file.

**Arguments:**
- **filename**: Name of the file to read. Note that the type of the file is encoded in the file name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, .ilp, or .opb (see the file formats section for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.
- **env**: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Return value:**
- A model struct variable, as described in the model section.

**Example usage:**
```
model = gurobi_read('stein9.mps');
result = gurobi(model);
```

gurobi_write()

<table>
<thead>
<tr>
<th>gurobi_write</th>
<th>( model, filename )</th>
</tr>
</thead>
<tbody>
<tr>
<td>gurobi_write</td>
<td>( model, filename, env )</td>
</tr>
</tbody>
</table>

Writes a model to a file.

**Arguments:**
- **model**: The model struct must contain a valid Gurobi model. See the model argument section for more information.
- **filename**: Name of the file to write. Note that the type of the file is encoded in the file name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate the desired file format (see the file formats section for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.
- **env**: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Example usage:**
```
model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model.modelsense = 'max';
model.rhs = [4; 1];
model.sense = '<>';
gurobi_write(model, 'mymodel.mps');
gurobi_write(model, 'mymodel.lp');
gurobi_write(model, 'mymodel.mps.bz2');
```
7.4 Using Gurobi within MATLAB’s Problem-Based Optimization

Starting with release R2017b, the MATLAB Optimization Toolbox offers an alternative way to formulate optimization problems, coined “Problem-Based Optimization”. In this section we’ll explain how this modeling technique can be used in combination with the Gurobi solver.

The problem-based modeling approach uses an object-oriented paradigm for the components of an optimization problem; the optimization problem itself, the decision variables, and the linear constraints are represented by objects. Their creation and modification is effected through methods. The complete documentation for problem-based optimization is part of the Optimization Toolbox; we will only walk through a simple example. For this it is important that your MATLAB path contains Gurobi’s example directory, which can be set as follows:

```matlab
addpath(fullfile(<path_to_Gurobi>, <architecture>, 'examples', 'matlab'));
```

The first step is to create an optimization problem:

```matlab
prob = optimproblem('ObjectiveSense','maximize');
```

The variable `prob` now refers to an optimization problem object, which we have specified to be a maximization problem. Next we create three non-negative optimization variables: `x`, `y` and `z`:

```matlab
x = optimvar('x', 'LowerBound', 0);
y = optimvar('y', 'LowerBound', 0);
z = optimvar('z', 'LowerBound', 0);
```

With these variables at hand, we now build linear expressions in order to set an objective function, and to add two linear constraints to `prob`:

```matlab
prob.Objective = x + 2 * y + 3 * z;
prob.Constraints.cons1 = x + y <= 1;
prob.Constraints.cons2 = y + z <= 1;
```

Finally we create an options object that guides `prob`’s solution method to the linear program solver function `linprog`, and call the `solve` method.

```matlab
options = optimoptions('linprog');
sol = solve(prob, options);
```

Since the `examples` directory of the Gurobi installation has been added to the path in the very first step above, a bit of magic happens at this stage: The directory contains a file `linprog.m`, so that the invocation of the `solve` method ends up calling this latter function instead of the built-in function `linprog` of MATLAB’s Optimization Toolbox. The following output from Gurobi will be shown on the console:

```
Gurobi Optimizer version 9.0.1 build v9.0.1rc0 (linux64)
Optimize a model with 2 rows, 3 columns and 4 nonzeros
Model fingerprint: 0x3a4c68c2
Coefficient statistics:
 Matrix range [1e+00, 1e+00]
 Objective range [1e+00, 3e+00]
 Bounds range [0e+00, 0e+00]
 RHS range [1e+00, 1e+00]
Presolve removed 2 rows and 3 columns
Presolve time: 0.03s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time
 0 -4.0000000e+00 0.000000e+00 0.000000e+00 0s
```

---

640
Solved in 0 iterations and 0.05 seconds
Optimal objective -4.000000000e+00

The example we just discussed can be found in the examples directory in the file `opttoolbox_lp.m`. The example `opttoolbox_mip1.m` shows an analogous problem formulation with integer variables, that uses the function `intlinprog.m`, also found in the Gurobi examples directory, as a surrogate for MATLAB’s built-in counterpart.

The modeling constructs provided by the Optimization Toolbox do not cover all the features of Gurobi, e.g., SOS, semi-continuous variables and general constraints to name a few. Moreover not all Gurobi parameters have equivalent counterparts in the option objects for `linprog` and `intlinprog`. In order to use such features, Gurobi’s own Matlab API should be used.
7.5 Setting up the Gurobi MATLAB interface

In order to use our MATLAB interface, you’ll need to use the MATLAB function `gurobi_setup` to tell MATLAB where to find the Gurobi Mex file. This file is stored in the `<installdir>/matlab` directory of your Gurobi installation. For example, if you installed the 64-bit Windows version of Gurobi 9.0 in the default location, you should run

```matlab
>> cd c:/Users/jones/gurobi901/win64/matlab
>> gurobi_setup
```

The `gurobi_setup` function adjusts your MATLAB path to include the `<installdir>/matlab` directory. If you want to avoid typing this command every time you start MATLAB, follow the instructions issued by `gurobi_setup` to permanently adjust your path.

The MATLAB examples provided with the Gurobi distribution are included in the `<installdir>/examples/matlab` directory. To run these examples you need to change to this directory. For example, if you are running the 64-bit Windows version of Gurobi, you would say:

```matlab
>> cd c:/Users/jones/gurobi901/win64/examples/matlab
>> mip1
```

If the Gurobi package was successfully installed, you should see the following output:

```
status: 'OPTIMAL'
versioninfo: [1x1 struct]
 runtime: 2.9397e-04
 objval: 3
 x: [3x1 double]
 slack: [2x1 double]
poolobjbound: 3
 pool: [1x2 struct]
 mipgap: 0
 objbound: 3
 objboundc: 3
 itercount: 0
 baritercount: 0
 nodelimit: 0

x 1
y 0
z 1
Obj: 3.000000e+00
```
This section documents the Gurobi R interface. For those of you who are not familiar with R, it is a free language for statistical computing. Please visit the R web site for more information. This manual begins with a quick overview of the methods provided by our R API. It then continues with a comprehensive presentation of all of the available methods, their arguments, and their return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide or the Example Tour. These documents provide concrete examples of how to use the methods described here.

A quick note for new users: the convention in math programming is that variables are non-negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables to be able to take negative values.

Models

Our Gurobi R interface enables you to express problems of the following form:

\[
\begin{align*}
\text{minimize} & \quad x^T Q x + c^T x + \alpha \\
\text{subject to} & \quad Ax = b \quad \text{(linear constraints)} \\
& \quad \ell \leq x \leq u \quad \text{(bound constraints)} \\
& \quad \text{some } x_j \text{ integral} \quad \text{(integrality constraints)} \\
& \quad x^T Q c x + q^T x \leq \beta \quad \text{(quadratic constraints)} \\
& \quad \text{some } x_i \text{ in SOS} \quad \text{(special ordered set constraints)} \\
& \quad \text{min, max, abs, or, ...} \quad \text{(general constraints)}
\end{align*}
\]

Models are stored as list variables, each consisting of multiple named components. The named components capture the different model components listed above. Many of these model components are optional. For example, integrality constraints may be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it can be built by populating the appropriate named components of a model variable (using standard R constructs). We will discuss the details of how models are represented in the model argument section.

We often refer to the class of an optimization model. A model with a linear objective function, linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic, the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, including Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Programs (MISOCP). The Gurobi Optimizer handles all of these model classes.

Solving a Model

Once you have built a model, you can call `gurobi` to compute a solution. By default, `gurobi` will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models and QCP models with convex constraints, and the branch-and-cut algorithm to solve mixed integer models. The solution is returned as a list variable. We will discuss the details of how optimization results are represented when we discuss the `gurobi` function.

Here is a simple example of a likely sequence of commands in the R API:

```r
model <- gurobi_read('examples/data/stein9.mps')
result <- gurobi(model)
```

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to a model with a single objective function. Gurobi provides features that allow you to relax either of these assumptions. You should refer to the section on Solution Pools for information on how to request more than one solution, or the section on Multiple Objectives for information on how to specify multiple objective functions and control the trade-off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful for diagnosing the cause of an infeasibility, call `gurobi_iis` to compute an Irreducible Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but you should be aware that the MIP version can be quite expensive. We will discuss the details of how IIS results are represented in the `gurobi_iis` function documentation.

To attempt to repair an infeasibility, call `gurobi_feasrelax` to compute a feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes the magnitude of the constraint violation.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a list variable. The name of each named component within this list must be the name of a Gurobi parameter, and the associated value should be the desired value of that parameter. You can find a complete list of the available Gurobi parameters here. We will provide additional details on changing parameter settings in the `params` argument section.

Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will send output to the screen. A few simple controls are available for modifying the default logging behavior. If you would like to direct output to a file as well as to the screen, set the `LogFile`
parameter to the name of your desired log file. The frequency of logging output can be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging section.

Error Handling

If unsuccessful, the methods of the Gurobi R interface will return an error code and an error message. A list of possible error codes can be found in the Error Code section.

Environments

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi environment. This environment exists for as long as the corresponding R API function is running, and is released upon completion.

Another option is to provide an optional env argument (also through a list). This argument allows you to solve the given problem on a Gurobi Compute Server or using the Gurobi Instant Cloud. We will discuss this topic further in the env argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter name, followed by the desired value for that parameter).
8.1 Common Arguments

Most common arguments in the Gurobi R interface are R list variables, each containing multiple named components. Several of these named components are optional. Note that you refer to a named component of a list variable by adding a dollar sign to the end of the variable name, followed by the name of the named component. For example, `model$A` refers to named component `A` of variable `model`.

The model argument

Model variables store optimization problems (as described in the problem statement).

Models can be built in a number of ways. You can populate the appropriate named components of the `model` list using standard R routines. You can also read a model from a file, using `gurobi_read`. A few API functions ( `gurobi_feasrelax` and `gurobi_relax`) also return models.

Note that all matrix named components within the `model` variable can be dense or sparse. Sparse matrices should be built using either `sparseMatrix` from the Matrix package, or `simple_triplet_matrix` from the slam package.

The following is an enumeration of all of the named components of the `model` argument that Gurobi will take into account when optimizing the model:

**Commonly used named components:**

- **A**: The linear constraint matrix.

  - **obj** *(optional)*: The linear objective vector (the c vector in the problem statement). When present, you must specify one value for each column of `A`. When absent, each variable has a default objective coefficient of 0.

  - **sense** *(optional)*: The senses of the linear constraints. Allowed values are `'='`, `<`, or `'>`. You must specify one value for each row of `A`, or a single value to specify that all constraints have the same sense. When absent, all senses default to `<`.

  - **rhs** *(optional)*: The right-hand side vector for the linear constraints (b in the problem statement). You must specify one value for each row of `A`. When absent, the right-hand side vector defaults to the zero vector.

  - **lb** *(optional)*: The lower bound vector. When present, you must specify one value for each column of `A`. When absent, each variable has a default lower bound of 0.

  - **ub** *(optional)*: The upper bound vector. When present, you must specify one value for each column of `A`. When absent, the variables have infinite upper bounds.

  - **vtype** *(optional)*: The variable types. This vector is used to capture variable integrality constraints. Allowed values are `'C'` (continuous), `'B'` (binary), `'I'` (integer), `'S'` (semi-continuous), or `'N'` (semi-integer). Binary variables must be either 0 or 1. Integer variables can take any integer value between the specified lower and upper bounds. Semi-continuous variables can take any value between the specified lower and upper bounds, or a value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds, or a value of zero. When present, you must specify one value for each column of `A`, or a single value to...
specify that all variables have the same type. When absent, each variable is treated as being continuous. Refer to this section for more information on variable types.

**modellsense (optional):** The optimization sense. Allowed values are ‘min’ (minimize) or ‘max’ (maximize). When absent, the default optimization sense is minimization.

**modelname (optional):** The name of the model. The name appears in the Gurobi log, and when writing a model to a file.

**objcon (optional):** The constant offset in the objective function (alpha in the problem statement).

**varnames (optional):** The variable names vector. A character vector. When present, each element of this vector defines the name of a variable. You must specify a name for each column of A.

**constrnames (optional):** The constraint names vector. A character vector. When present, each element of the vector defines the name of a constraint. You must specify a name for each row of A.

**Quadratic objective and constraint named components:**

**Q (optional):** The quadratic objective matrix. When present, Q must be a square matrix whose row and column counts are equal to the number of columns in A.

**quadcon (optional):** The quadratic constraints. A list of lists. When present, each element in quadcon defines a single quadratic constraint: $x^TQc x + q^T x \leq beta$.

The Qc matrix must be a square matrix whose row and column counts are equal to the number of columns of A. It is stored in `model$quadcon[[i]]$Qc`.

The optional q vector defines the linear terms in the constraint. It can be a dense vector specifying a value for each column of A or a sparse vector (should be built using `sparseVector` from the `Matrix` package). It is stored in `model$quadcon[[i]]$q`.

The scalar beta is stored in `model$quadcon[[i]]$rhs`. It defines the right-hand side value for the constraint.

The optional sense string defines the sense of the quadratic constraint. Allowed values are ‘<’, ‘=’, or ‘>’. If not present, the default sense is ‘<’. It is stored in `model$quadcon[[i]]$sense`.

The optional name string defines the name of the quadratic constraint. It is stored in `model$quadcon[[i]]$name`.

**SOS constraint named components:**

**sos (optional):** The Special Ordered Set (SOS) constraints. A list of lists. When present, each entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The type of SOS constraint i is specified via `model$sos[[i]]$type`. A type 1 SOS constraint is a set of variables where at most one variable in the set may take a value other than zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set may take non-zero values. If two take non-zeros values, they must be contiguous in the ordered set. The members of an SOS constraint are specified by placing their indices
in vector `model$sos[[i]]$index`. Weights associated with SOS members are provided in vector `model$sos[[i]]$weight`. Please refer to this section for details on SOS constraints.

**Multi-objective named components:**

`multiobj (optional)`: Multi-objective specification for the model. A list of lists. When present, each entry in `multiobj` defines a single objective of a multi-objective problem. Please refer to the Multiple Objectives section for more details on multi-objective optimization. Each objective `i` may have the following named components:

- **objn**: Specified via `model$multiobj[[i]]$objn`. This is the `i`-th objective vector.
- **objcon (optional)**: Specified via `model$multiobj[[i]]$objcon`. If provided, this is the `i`-th objective constant. The default value is 0.
- **priority (optional)**: Specified via `model$multiobj[[i]]$priority`. If provided, this value is the hierarchical priority for this objective. The default value is 0.
- **weight (optional)**: Specified via `model$multiobj[[i]]$weight`. If provided, this value is the multiplier used when aggregating objectives. The default value is 1.0.
- **reltol (optional)**: Specified via `model$multiobj[[i]]$reltol`. If provided, this value specifies the relative objective degradation when doing hierarchical multi-objective optimization. The default value is 0.
- **abstol (optional)**: Specified via `model$multiobj[[i]]$abstol`. If provided, this value specifies the absolute objective degradation when doing hierarchical multi-objective optimization. The default value is 0.
- **name (optional)**: Specified via `model$multiobj[[i]]$name`. If provided, this string specifies the name of the `i`-th objective function.

Note that when multiple objectives are present, the `result$objval` named component that is returned in the result of an optimization call will be a vector of the same length as `model$multiobj`.

A multi-objective model can’t have other objectives. Thus, combining `model$multiobj` with any of `model$obj`, `model$objcon`, `model$pwlobj`, or `model$Q` is an error.

**General constraint named components:**

The list of lists described below are used to add *general constraints* to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types: variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and SOS constraints. These are typically treated directly by the underlying solver (although not always), and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as *general (function) constraints*. These are typically not treated directly by the solver. Rather, they are transformed by presolve into constraints (and variables) chosen from among the fundamental types listed above. In some cases, the resulting constraint or constraints are mathematically equivalent to the original; in others, they are approximations. If such constraints appear in your model, but if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

- **MAX (genconmax)**: set a decision variable equal to the maximum value from among a set of decision variables
- **MIN (genconmin)**: set a decision variable equal to the minimum value from among a set of decision variables
- **ABS (genconabs)**: set a decision variable equal to the absolute value of some other decision variable
- **AND (genconand)**: set a binary variable equal to one if and only if all of a set of binary decision variables are equal to one
- **OR (genconor)**: set a binary variable equal to one if and only if at least one variable out of a set of binary decision variables is equal to one
- **INDICATOR (genconind)**: whenever a given binary variable takes a certain value, then the given linear constraint must be satisfied
- **Piecewise-linear constraints (genconpwl)**: set a variable equal to the piecewise-linear function defined by a set of points using some other variable
- **Polynomial (genconpoly)**: set a variable equal to the polynomial function defined by some other variable
- **Natural exponential (genconexp)**: set a variable equal to the natural exponential function by some other variable
- **Exponential (genconexpa)**: set a variable equal to the exponential function by some other variable
- **Natural logarithm (genconlog)**: set a variable equal to the natural logarithmic function by some other variable
- **Logarithm (genconloga)**: set a variable equal to the logarithmic function by some other variable
- **Power (genconpow)**: set a variable equal to the power function by some other variable
- **SIN (genconsin)**: set a variable equal to the sine function by some other variable
- **COS (genconcos)**: set a variable equal to the cosine function by some other variable
- **TAN (gencontan)**: set a variable equal to the tangent function by some other variable

Please refer to this section for additional details on general constraints.

**genconmax (optional)**: A list of lists. When present, each entry in genconmax defines a MAX general constraint of the form
\[ x[\text{resvar}] = \max \{ \text{con}, x[j] : j \in \text{vars} \} \]

Each entry may have the following named components:

**resvar**: Specified via `model$genconmax[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.

**vars**: Specified via `model$genconmax[[i]]$vars`, it is a vector of indices of variables in the right-hand side of the constraint.

**con** (optional): Specified via `model$genconmax[[i]]$con`. When present, specifies the constant on the left-hand side. Default value is \(-\infty\).

**name** (optional): Specified via `model$genconmax[[i]]$name`. When present, specifies the name of the \(i\)-th MAX general constraint.

**genconmin** (optional): A list of lists. When present, each entry in `genconmax` defines a MIN general constraint of the form

\[ x[\text{resvar}] = \min \{ \text{con}, x[j] : j \in \text{vars} \} \]

Each entry may have the following named components:

**resvar**: Specified via `model$genconmin[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.

**vars**: Specified via `model$genconmin[[i]]$vars`, it is a vector of indices of variables in the right-hand side of the constraint.

**con** (optional): Specified via `model$genconmin[[i]]$con`. When present, specifies the constant on the left-hand side. Default value is \(\infty\).

**name** (optional): Specified via `model$genconmin[[i]]$name`. When present, specifies the name of the \(i\)-th MIN general constraint.

**genconabs** (optional): A list of lists. When present, each entry in `genconmax` defines an ABS general constraint of the form

\[ x[\text{resvar}] = |x[\text{argvar}]| \]

Each entry may have the following named components:

**resvar**: Specified via `model$genconabs[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.

**argvar**: Specified via `model$genconabs[[i]]$argvar`. Index of the variable in the right-hand side of the constraint.

**name** (optional): Specified via `model$genconabs[[i]]$name`. When present, specifies the name of the \(i\)-th ABS general constraint.

**genconand** (optional): A list of lists. When present, each entry in `genconmax` defines an AND general constraint of the form

\[ x[\text{resvar}] = \text{con} \land x[j] : j \in \text{vars} \]

Each entry may have the following named components:

**resvar**: Specified via `model$genconabs[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.

**argvar**: Specified via `model$genconabs[[i]]$argvar`. Index of the variable in the right-hand side of the constraint.

**name** (optional): Specified via `model$genconabs[[i]]$name`. When present, specifies the name of the \(i\)-th AND general constraint.
\[ x[\text{resvar}] = \text{and}\{x[i] : i \in \text{vars}\} \]

Each entry may have the following named components:

- **resvar**: Specified via `model$genconand[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.
- **vars**: Specified via `model$genconand[[i]]$vars`, it is a vector of indices of variables in the right-hand side of the constraint.
- **name (optional)**: Specified via `model$genconand[[i]]$name`. When present, specifies the name of the \(i\)-th AND general constraint.

**genconor (optional)**: A list of lists. When present, each entry in `genconor` defines an OR general constraint of the form

\[ x[\text{resvar}] = \text{or}\{x[i] : i \in \text{vars}\} \]

Each entry may have the following named components:

- **resvar**: Specified via `model$genconor[[i]]$resvar`. Index of the variable in the left-hand side of the constraint.
- **vars**: Specified via `model$genconor[[i]]$vars`, it is a vector of indices of variables in the right-hand side of the constraint.
- **name (optional)**: Specified via `model$genconor[[i]]$name`. When present, specifies the name of the \(i\)-th OR general constraint.

**genconind (optional)**: A list of lists. When present, each entry in `genconind` defines an INDICATOR general constraint of the form

\[ x[\text{binvar}] = \text{binval} \Rightarrow \sum (x[[j]] \cdot a[[j]]) \text{ sense rhs} \]

This constraint states that when the binary variable \(x[\text{binvar}]\) takes the value \text{binval} then the linear constraint \(\sum (x[\text{vars}[[j]]] \cdot \text{val}[[j]])\) sense rhs must hold. Note that **sense** is one of ‘=’, ‘<’, or ‘>’ for equality (=), less than or equal (\(\leq\)) or greater than or equal (\(\geq\)) constraints. Each entry may have the following named components:

- **binvar**: Specified via `model$genconind[[i]]$binvar`. Index of the implicating binary variable.
- **binval**: Specified via `model$genconind[[i]]$binval`. Value for the binary variable that forces the following linear constraint to be satisfied. It can be either 0 or 1.
- **a**: Specified via `model$genconind[[i]]$a`. Vector of coefficients of variables participating in the implied linear constraint. You can specify a value for \(a\) for each column of \(A\) (dense vector) or pass a sparse vector (should be built using `sparseVector` from the `Matrix` package).
- **sense**: Specified via `model$genconind[[i]]$sense`. Sense of the implied linear constraint. Must be one of ‘=’, ‘<’, or ‘>’.
rhs: Specified via `model$genconind[[i]]$rhs`. Right-hand side value of the implied linear constraint.

name (optional): Specified via `model$genconind[[i]]$name`. When present, specifies the name of the $i$-th INDICATOR general constraint.

genconpwl (optional): A list of lists. When present, each entry in `genconpwl` defines a piecewise-linear constraint of the form

$$x[yvar] = f(x[xvar])$$

The breakpoints for $f$ are provided as arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Each entry may have the following named components:

xvar: Specified via `model$genconpwl[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model$genconpwl[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.

xpts: Specified via `model$genconpwl[[i]]$xpts`. Specifies the $x$ values for the points that define the piecewise-linear function. Must be in non-decreasing order.

ypts: Specified via `model$genconpwl[[i]]$ypts`. Specifies the $y$ values for the points that define the piecewise-linear function.

name (optional): Specified via `model$genconpwl[[i]]$name`. When present, specifies the name of the $i$-th piecewise-linear general constraint.

genconpoly (optional): A list of lists. When present, each entry in `genconpoly` defines a polynomial function constraint of the form

$$x[yvar] = p_0 x[xvar]^d + p_1 x[xvar]^{d-1} + ... + p_{d-1} x[xvar] + p_d$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via `model$genconpoly[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model$genconpoly[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.

p: Specified via `model$genconpoly[[i]]$p`. Specifies the coefficients for the polynomial function (starting with the coefficient for the highest power). If $x^d$ is the highest power term, a dense vector of length $d + 1$ is returned.

name (optional): Specified via `model$genconpoly[[i]]$name`. When present, specifies the name of the $i$-th polynomial function constraint.
funcpieces (optional): Specified via `model$genconpoly[[i]]$funcpieces`. When present, specifies the FuncPieces attribute of the \(i\)-th polynomial function constraint.

funcpiecelength (optional): Specified via `model$genconpoly[[i]]$funcpiecelength`. When present, specifies the FuncPieceLength attribute of the \(i\)-th polynomial function constraint.

funcpieceerror (optional): Specified via `model$genconpoly[[i]]$funcpieceerror`. When present, specifies the FuncPieceError attribute of the \(i\)-th polynomial function constraint.

funcpieceratio (optional): Specified via `model$genconpoly[[i]]$funcpieceratio`. When present, specifies the FuncPieceRatio attribute of the \(i\)-th polynomial function constraint.

genconexp (optional): A list of lists. When present, each entry in `genconexp` defines the natural exponential function constraint of the form

\[
x[yvar] = \exp(x[xvar])
\]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via `model$genconexp[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model$genconexp[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via `model$genconexp[[i]]$name`. When present, specifies the name of the \(i\)-th natural exponential function constraint.

funcpieces (optional): Specified via `model$genconexp[[i]]$funcpieces`. When present, specifies the FuncPieces attribute of the \(i\)-th natural exponential function constraint.

funcpiecelength (optional): Specified via `model$genconexp[[i]]$funcpiecelength`. When present, specifies the FuncPieceLength attribute of the \(i\)-th natural exponential function constraint.

funcpieceerror (optional): Specified via `model$genconexp[[i]]$funcpieceerror`. When present, specifies the FuncPieceError attribute of the \(i\)-th natural exponential function constraint.

funcpieceratio (optional): Specified via `model$genconexp[[i]]$funcpieceratio`. When present, specifies the FuncPieceRatio attribute of the \(i\)-th natural exponential function constraint.

genconexpa (optional): A list of lists. When present, each entry in `genconexpa` defines an exponential function constraint of the form

\[
x[yvar] = a^{x[xvar]}
\]
A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via model$genconexpa[[i]]$xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model$genconexpa[[i]]$yvar. Index of the variable in the left-hand side of the constraint.

a: Specified via model$genconexpa[[i]]$a. Specifies the base of the exponential function $a > 0$.

name (optional): Specified via model$genconexpa[[i]]$name. When present, specifies the name of the $i$-th exponential function constraint.

funcpieces (optional): Specified via model$genconexpa[[i]]$funcpieces. When present, specifies the FuncPieces attribute of the $i$-th exponential function constraint.

funcpiecelength (optional): Specified via model$genconexpa[[i]]$funcpiecelength. When present, specifies the FuncPieceLength attribute of the $i$-th exponential function constraint.

funcpieceerror (optional): Specified via model$genconexpa[[i]]$funcpieceerror. When present, specifies the FuncPieceError attribute of the $i$-th exponential function constraint.

funcpieceratio (optional): Specified via model$genconexpa[[i]]$funcpieceratio. When present, specifies the FuncPieceRatio attribute of the $i$-th exponential function constraint.

genconlog (optional): A list of lists. When present, each entry in genconlog defines the natural logarithmic function constraint of the form

$$x[yvar] = \log(x[xvar])$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via model$genconlog[[i]]$xvar. Index of the variable in the right-hand side of the constraint.

yvar: Specified via model$genconlog[[i]]$yvar. Index of the variable in the left-hand side of the constraint.

name (optional): Specified via model$genconlog[[i]]$name. When present, specifies the name of the $i$-th natural logarithmic function constraint.
funcpieces (optional): Specified via `model$genconlog[[i]]$funcpieces`. When present, specifies the `FuncPieces` attribute of the $i$-th natural logarithmic function constraint.

funcpiecelength (optional): Specified via `model$genconlog[[i]]$funcpiecelength`. When present, specifies the `FuncPieceLength` attribute of the $i$-th natural logarithmic function constraint.

funcpieceerror (optional): Specified via `model$genconlog[[i]]$funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the $i$-th natural logarithmic function constraint.

funcpieceratio (optional): Specified via `model$genconlog[[i]]$funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the $i$-th natural logarithmic function constraint.

genconloga (optional): A list of lists. When present, each entry in `genconloga` defines a logarithmic function constraint of the form

$$x[yvar] = \log(x[xvar]) \ \log(a)$$

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): `FuncPieces`, `FuncPieceError`, `FuncPieceLength`, and `FuncPieceRatio`. For details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via `model$genconloga[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.

yvar: Specified via `model$genconloga[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.

a: Specified via `model$genconloga[[i]]$a`. Specifies the base of the logarithmic function $a > 0$.

name (optional): Specified via `model$genconloga[[i]]$name`. When present, specifies the name of the $i$-th logarithmic function constraint.

funcpieces (optional): Specified via `model$genconloga[[i]]$funcpieces`. When present, specifies the `FuncPieces` attribute of the $i$-th logarithmic function constraint.

funcpiecelength (optional): Specified via `model$genconloga[[i]]$funcpiecelength`. When present, specifies the `FuncPieceLength` attribute of the $i$-th logarithmic function constraint.

funcpieceerror (optional): Specified via `model$genconloga[[i]]$funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the $i$-th logarithmic function constraint.

funcpieceratio (optional): Specified via `model$genconloga[[i]]$funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the $i$-th logarithmic function constraint.
genconpow (optional): A list of lists. When present, each entry in genconpow defines a power function constraint of the form

\[ x[yvar] = x[xvar]^a \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

- **xvar**: Specified via `model$genconpow[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.
- **yvar**: Specified via `model$genconpow[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.
- **a**: Specified via `model$genconpow[[i]]$a`. Specifies the exponent of the power function.
- **name (optional)**: Specified via `model$genconpow[[i]]$name`. When present, specifies the name of the \( i \)-th power function constraint.
- **funcpieces (optional)**: Specified via `model$genconpow[[i]]$funcpieces`. When present, specifies the FuncPieces attribute of the \( i \)-th power function constraint.
- **funcpiecelength (optional)**: Specified via `model$genconpow[[i]]$funcpiecelength`. When present, specifies the FuncPieceLength attribute of the \( i \)-th power function constraint.
- **funcpieceerror (optional)**: Specified via `model$genconpow[[i]]$funcpieceerror`. When present, specifies the FuncPieceError attribute of the \( i \)-th power function constraint.
- **funcpieceratio (optional)**: Specified via `model$genconpow[[i]]$funcpieceratio`. When present, specifies the FuncPieceRatio attribute of the \( i \)-th power function constraint.

genconsin (optional): A list of lists. When present, each entry in genconsin defines the sine function constraint of the form

\[ x[yvar] = \sin(x[xvar]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details, consult the General Constraint discussion.

Each entry may have the following named components:

- **xvar**: Specified via `model$genconsin[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.
- **yvar**: Specified via `model$genconsin[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.
- **name (optional)**: Specified via `model$genconsin[[i]]$name`. When present, specifies the name of the \( i \)-th sine function constraint.
\textbf{funcpieces (optional):} Specified via \texttt{model$genconsin[[i]]$funcpieces}. When present, specifies the \texttt{FuncPieces} attribute of the $i$-th sine function constraint.

\textbf{funcpiecelength (optional):} Specified via \texttt{model$genconsin[[i]]$funcpiecelength}. When present, specifies the \texttt{FuncPieceLength} attribute of the $i$-th sine function constraint.

\textbf{funcpieceerror (optional):} Specified via \texttt{model$genconsin[[i]]$funcpieceerror}. When present, specifies the \texttt{FuncPieceError} attribute of the $i$-th sine function constraint.

\textbf{funcpieceratio (optional):} Specified via \texttt{model$genconsin[[i]]$funcpieceratio}. When present, specifies the \texttt{FuncPieceRatio} attribute of the $i$-th sine function constraint.

\textbf{genconcos (optional):} A list of lists. When present, each entry in \texttt{genconcos} defines the cosine function constraint of the form

\[ x[yvar] = \cos(x[xvar]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.

Each entry may have the following named components:

\textbf{xvar:} Specified via \texttt{model$genconcos[[i]]$xvar}. Index of the variable in the right-hand side of the constraint.

\textbf{yvar:} Specified via \texttt{model$genconcos[[i]]$yvar}. Index of the variable in the left-hand side of the constraint.

\textbf{name (optional):} Specified via \texttt{model$genconcos[[i]]$name}. When present, specifies the name of the $i$-th cosine function constraint.

\textbf{funcpieces (optional):} Specified via \texttt{model$genconcos[[i]]$funcpieces}. When present, specifies the \texttt{FuncPieces} attribute of the $i$-th cosine function constraint.

\textbf{funcpiecelength (optional):} Specified via \texttt{model$genconcos[[i]]$funcpiecelength}. When present, specifies the \texttt{FuncPieceLength} attribute of the $i$-th cosine function constraint.

\textbf{funcpieceerror (optional):} Specified via \texttt{model$genconcos[[i]]$funcpieceerror}. When present, specifies the \texttt{FuncPieceError} attribute of the $i$-th cosine function constraint.

\textbf{funcpieceratio (optional):} Specified via \texttt{model$genconcos[[i]]$funcpieceratio}. When present, specifies the \texttt{FuncPieceRatio} attribute of the $i$-th cosine function constraint.

\textbf{gencontan (optional):} A list of lists. When present, each entry in \texttt{gencontan} defines the tangent function constraint of the form

\[ x[yvar] = \tan(x[xvar]) \]

A piecewise-linear approximation of the function is added to the model. The details of the approximation are controlled using the following four attributes (or using the parameters with the same names): \texttt{FuncPieces}, \texttt{FuncPieceError}, \texttt{FuncPiecesLength}, and \texttt{FuncPieceRatio}. For details, consult the General Constraint discussion.

Each entry may have the following named components:
**xvar**: Specified via `model$gencontan[[i]]$xvar`. Index of the variable in the right-hand side of the constraint.

**yvar**: Specified via `model$gencontan[[i]]$yvar`. Index of the variable in the left-hand side of the constraint.

**name (optional)**: Specified via `model$gencontancos[[i]]$name`. When present, specifies the name of the i-th tangent function constraint.

**funcpieces (optional)**: Specified via `model$gencontan[[i]]$funcpieces`. When present, specifies the `FuncPieces` attribute of the i-th tangent function constraint.

**funcpiecelength (optional)**: Specified via `model$gencontan[[i]]$funcpiecelength`. When present, specifies the `FuncPieceLength` attribute of the i-th tangent function constraint.

**funcpieceerror (optional)**: Specified via `model$gencontan[[i]]$funcpieceerror`. When present, specifies the `FuncPieceError` attribute of the i-th tangent function constraint.

**funcpieceratio (optional)**: Specified via `model$gencontan[[i]]$funcpieceratio`. When present, specifies the `FuncPieceRatio` attribute of the i-th tangent function constraint.

**Advanced named components:**

**pwlobj (optional)**: The piecewise-linear objective functions. A list of lists. When present, each entry in `pwlobj` defines a piecewise-linear objective function for a single variable. The index of the variable whose objective function is being defined is stored in `model$pwlobj[[i]]$var`. The x values for the points that define the piecewise-linear function are stored in `model$pwlobj[[i]]$x`. The values in the x vector must be in non-decreasing order. The y values for the points that define the piecewise-linear function are stored in `model$pwlobj[[i]]$y`.

**vbasis (optional)**: The variable basis status vector. Used to provide an advanced starting point for the simplex algorithm. You would generally never concern yourself with the contents of this vector, but would instead simply pass it from the result of a previous optimization run to the input of a subsequent run. When present, you must specify one value for each column of A.

**cbasis (optional)**: The constraint basis status vector. Used to provide an advanced starting point for the simplex algorithm. Consult the `vbasis` description for details. When present, you must specify one value for each row of A.

**varhintval (optional)**: A set of user hints. If you know that a variable is likely to take a particular value in high quality solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide information about your level of confidence in a hint with the `varhintpri` named component. If present, you must specify one value for each column of A. Use a value of NA for variables where no such hint is known. For more details, please refer to the VarHintVal attribute documentation.

**varhintpri (optional)**: Priorities on user hints. After providing variable hints through the `varhintval` list, you can optionally also provide hint priorities to give an indication of your level of confidence in your hints. If present, you must specify a value for each column of A. For more details, please refer to the VarHintPri attribute documentation.
branchpriority (optional): Variable branching priority. If present, the value of this attribute is used as the primary criteria for selecting a fractional variable for branching during the MIP search. Variables with larger values always take priority over those with smaller values. Ties are broken using the standard branch variable selection criteria. If present, you must specify one value for each column of $A$.

pstart (optional): The current simplex start vector. If you set $pstart$ values for every variable in the model and $dstart$ values for every constraint, then simplex will use those values to compute a warm start basis. For more details, please refer to the PStart attribute documentation.

dstart (optional): The current simplex start vector. If you set $dstart$ values for every linear constraint in the model and $pstart$ values for every variable, then simplex will use those values to compute a warm start basis. For more details, please refer to the DStart attribute documentation.

lazy (optional): Determines whether a linear constraint is treated as a lazy constraint. If present, you must specify one value for each row of $A$. For more details, please refer to the Lazy attribute documentation.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution from this vector. When present, you must specify a start value for each variable. Note that you can set the start value for a variable to NA, which instructs the MIP solver to try to fill in a value for that variable.

partition (optional): The MIP variable partition number, which is used by the MIP solution improvement heuristic. If present, you must specify one value for each variable of $A$. For more details, please refer to the Partition attribute documentation.

If any of the mandatory components listed above are missing, the gurobi() function will return an error.

Below is an example that demonstrates the construction of a simple optimization model:

```r
model <- list()
model$A <- matrix(c(1,2,3,1,1), nrow=2, byrow=T)
model$obj <- c(1,1,1)
model$modelsense <- 'max'
model$rhs <- c(4,1)
model$sense <- c('<', '>')

You can also build A as a sparse matrix, using either sparseMatrix or simple_triplet_matrix:

```
Note that the Gurobi R interface allows you to specify a scalar value for most of the array-valued components. The specified value will be expanded to an array of the appropriate size, with each component of the array equal to the scalar (e.g., `model$obj <- 1` would be equivalent to `model$obj <- c(1,1,1)` in the example).

**The params argument**

As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to control many of the details of the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters before beginning the optimization.

Parameter changes are specified using a `list` variable having multiple named components, which is passed as an argument to the appropriate Gurobi function (e.g., `gurobi`). The name of each named component must be the name of a Gurobi parameter, and the associated value should be the desired value of that parameter. You can find a complete list of the available Gurobi parameters [here](#).

To create a list that would set the Gurobi Method parameter to 2 and the ResultFile parameter to `model.mps`, you would do the following:

```r
params <- list()
params$Method <- 2
params$ResultFile <- 'model.mps'
```

We should say a bit more about the ResultFile parameter. If this parameter is set, the optimization model that is eventually passed to Gurobi will also be output to the specified file. The filename suffix should be one of `.mps`, `.lp`, `.rew`, or `.rlp`, to indicate the desired file format (see the file format section for details on Gurobi file formats).

**The env argument**

The optional `env` argument is also a `list`. It allows you to solve your problem on a Gurobi Compute Server or the Gurobi Instant Cloud.

**Using a Compute Server License**

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are organized into clusters. By providing the name of any node within the cluster, your job will automatically be sent to the least heavily loaded node in the cluster. If all nodes are at capacity, your job will be placed in a queue, and will proceed once capacity becomes available. You can find additional information about Gurobi Compute Server in the Gurobi Remote Services Reference Manual.

The following is an enumeration of all of the named components of the `env` argument that Gurobi will take into account.

- `computeserver`: A Compute Server. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., `server1:61000`).
password (optional): User password on the Compute Server cluster. Obtain this from your Compute Server administrator.

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

router (optional): The router for the Compute Server cluster. A router can be used to improve the robustness of a Compute Server deployment. You can refer to the router using either its name or its IP address. A typical Remote Services deployment won’t use a router, so you typically won’t need to set this.

CStlsinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use an env argument to connect to a Compute Server:

```r
env <- list()
eenv$computeserver <- 'server1.mycompany.com:61000'
eenv$priority <- 5
```

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the cloud. If an appropriate machine is already running, the job will run on that machine. It will automatically launch a new machine otherwise. Note that launching a new machine can take a few minutes. You can find additional information about the Gurobi Instant Cloud service [here](#).

The following is an enumeration of all of the named components of the env argument that Gurobi will take into account.

accessid: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your secretkey, this allows you to launch Instant Cloud instances and submit jobs to them.

secretkey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the Gurobi Instant Cloud website. When used in combination with your accessid, this allows you to launch Instant Cloud instances and submit jobs to them. Note that you should keep your secret key private.

pool (optional): The machine pool. Machine pools allow you to create fixed configurations on the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and then launch and share machines from client programs without having to restate configuration information each time you launch a machine. If not provided, your job will be launched in the default pool associated with your cloud license.
priority (optional): The priority of the job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

Here is an example of how to use an env argument to launch a Gurobi Instant Cloud instance:

```r
env <- list()
env$accessid <- '3d1ec99d7-fa94-4b7a-b3fa'
env$secretkey <- 'ae6L23alJe3+fas'
```

Note that when creating an environment variable, you need to choose to use either Compute Server or Instant Cloud. Populating named components for both will result in an error.
8.2 Solving a Model

\texttt{gurobi()}

| \texttt{gurobi} ( model, params=NULL, env=NULL ) |

This function optimizes the given model. The algorithm used for the optimization depends on the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion it will return a \texttt{list} variable containing solution information.

Please consult \texttt{this section} for a discussion of some of the practical issues associated with solving a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:

- \texttt{model}: The model \texttt{list} must contain a valid Gurobi model. See the \texttt{model} argument section for more information.
- \texttt{params}: The \texttt{params} \texttt{list}, when provided, contains a list of modified Gurobi parameters. See the \texttt{params} argument section for more information.
- \texttt{env}: The \texttt{env \texttt{list}}, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the \texttt{env} argument section for more information.

Example usage:

```r
result <- gurobi(model, params)
if (result$status == 'OPTIMAL') {
 print(result$objval)
 print(result$x)
} else {
 cat('Optimization returned status:', formatC(result$status), '
')
}
```

Return value:

The optimization result

The \texttt{gurobi} function returns a \texttt{list}, with the various results of the optimization stored in its named components. The specific results that are available depend on the type of model that was solved, the parameters used, and the status of the optimization. The following is a list of named components that might be available in the returned result. We will discuss the circumstances under which each will be available after presenting the list.

Model named components:

- \texttt{status}: The status of the optimization, returned as a string. The desired result is \texttt{OPTIMAL}', which indicates that an optimal solution to the model was found. Other status are possible, for example if the model has no feasible solution or if you set a Gurobi parameter that leads to early solver termination. See the \texttt{Status Code} section for further information on the Gurobi status codes.
- \texttt{objval}: The objective value of the computed solution. Note that for multi-objective models \texttt{result$objval} will be a vector, where \texttt{result$objval[[i]]} stores the value for \texttt{model$multiobj[[i]]}.  

---

663
**objbound**: Best available bound on solution (lower bound for minimization, upper bound for maximization).

**objboundc**: The best unrounded bound on the optimal objective. In contrast to **objbound**, this attribute does not take advantage of objective integrality information to round to a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5, **ObjBound** will return 2.0 while **ObjBoundC** will return 1.5.

**mipgap**: Current relative MIP optimality gap; computed as $|ObjBound - ObjVal| / |ObjVal|$ (where **ObjBound** and **ObjVal** are the MIP objective bound and incumbent solution objective, respectively). Returns **GRB_INFINITY** when an incumbent solution has not yet been found, when no objective bound is available, or when the current incumbent objective is 0. This is only available for mixed-integer problems.

**runtime**: The elapsed wall-clock time (in seconds) for the optimization.

**itercount**: Number of simplex iterations performed.

**baritercount**: Number of barrier iterations performed.

**nodecount**: Number of branch-and-cut nodes explored.

**farkasproof**: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to **FarkasProof** for details.

**Variable named components:**

**x**: The computed solution. This vector contains one entry for each column of $A$.

**rc**: Variable reduced costs for the computed solution. This vector contains one entry for each column of $A$.

**vbasis**: Variable basis status values for the computed optimal basis. You generally should not concern yourself with the contents of this vector. If you wish to use an advanced start later, you would simply copy the **vbasis** and **cbasis** named components into the corresponding named components for the next model. This vector contains one entry for each column of $A$.

**unbdray**: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a new solution that is also feasible but improves the objective. Only available if the model is found to be unbounded. This vector contains one entry for each column of $A$.

**Linear constraint named components:**

**slack**: The constraint slack for the computed solution. This vector contains one entry for each row of $A$.

**pi**: Dual values for the computed solution (also known as shadow prices). This vector contains one entry for each row of $A$.

**cbasis**: Constraint basis status values for the computed optimal basis. This vector contains one entry for each row of $A$.

**farkasdual**: Farkas infeasibility proof. Only available if the model was found to be infeasible. Please refer to **FarkasDual** for details.
**Quadratic constraint named components:**

- **qcs slack**: The quadratic constraint slack in the current solution. This vector contains one entry for each quadratic constraint.

- **qcpi**: The dual values associated with the quadratic constraints. This vector contains one entry for each quadratic constraint.

**Solution Pool named components:**

- **pool**: When multiple solutions are found during the optimization call, these solutions are returned in this named component. A list of lists. When present, each list has the following named components:

  - **objval**: Stores the objective value of the \( i \)-th solution in \( \text{result.pool}[[i]]\text{.objval} \). Note that when the model is a multi-objective model, instead of a single value, \( \text{result.pool}[[i]]\text{.objval}[j] \) stores the value of the \( j \)-th objective function for the \( i \)-th solution.

  - **xn**: Stores the \( i \)-th solution in \( \text{result.pool}[[i]]\text{.xn} \). This vector contains one entry for each column of \( A \).

Note that to query the number of solutions stored, you can query the length of \( \text{result.pool} \).

- **poolobjbound**: For single-objective MIP optimization problems, this value gives a bound on the best possible objective of an undiscovered solution. The difference between this value and **objbound** is that the former gives an objective bound for undiscovered solutions, while the latter gives a bound for any solution.

**What is Available When**

The **status** named component will be present in all cases. It indicates whether Gurobi was able to find a proven optimal solution to the model. In cases where a solution to the model was found, optimal or otherwise, the **objval** and **x** named components will be present.

For linear and quadratic programs, if a solution is available, then the **pi** and **rc** named components will also be present. For models with quadratic constraints, if the parameter **qcpdual** is set to 1, the named component **qcpi** will be present. If the final solution is a basic solution (computed by simplex), then **vbasis** and **cbasis** will be present. If the model is an unbounded linear program and the **InfUnbdInfo** parameter is set to 1, the named component **unbdray** will be present. Finally, if the model is an infeasible linear program and the **InfUnbdInfo** parameter is set to 1, the named components **farkasdual** and **farkasproof** will be set.

For mixed integer problems, no dual information (i.e. **pi**, **slack**, **rc**, **vbasis**, **cbasis**, **qcs slack**, **qcpi**, **ubdray** or **farkasdual**) is ever available. When multiple solutions are found, the **pool** and **poolobjbound** named components will be present. Depending on the **status** named component value, the named components **nodecount**, **objbound**, **objbundc** and **mipgap** will be available.

For continuous and mixed-integer models, under normal execution, the named components **runtime**, **itercount** and **baritercount** will be available.
gurobi_iis()

\texttt{gurobi\_iis ( model, params=NULL, env=NULL )}

Compute an Irreducible Inconsistent Subsystem (IIS).
An IIS is a subset of the constraints and variable bounds with the following properties:

- the subsystem represented by the IIS is infeasible, and
- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

You can obtain information about the outcome of the IIS computation from the returned IIS result (described below). Note that this method can be used to compute IISs for both continuous and MIP models.

\textbf{Arguments:}

- \texttt{model}: The model list must contain a valid Gurobi model. See the \texttt{model} argument section for more information.
- \texttt{params}: The params list, when provided, contains a list of modified Gurobi parameters. See the \texttt{params} argument section for more information.
- \texttt{env}: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the \texttt{env} argument section for more information.

\textbf{Example usage:}

\begin{verbatim}
model <- gurobi_read('examples/data/klein1.mps')
iis <- gurobi_iis(model)
\end{verbatim}

\textbf{Return value:}

The \texttt{gurobi\_iis()} function returns a list, with various results stored in its named components. The specific results that are available depend on the type of model.

The returned list will always contain the following named components:

- \texttt{minimal}: A logical scalar that indicates whether the computed IIS is minimal. It will normally be true, but it may be false if the IIS computation was stopped early (due to a time limit or a user interrupt).
- \texttt{Arows}: A logical vector that indicates whether a linear constraint appears in the computed IIS.
- \texttt{lb}: A logical vector that indicates whether a lower bound appears in the computed IIS.
- \texttt{ub}: A logical vector that indicates whether an upper bound appears in the computed IIS.

If your model contains general constraints, the returned list will also contain the following named components:
genconmax: A logical vector that indicates whether a general MAX constraint appears in the computed IIS.

genconmin: A logical vector that indicates whether a general MIN constraint appears in the computed IIS.

genconand: A logical vector that indicates whether a general AND constraint appears in the computed IIS.

genconor: A logical vector that indicates whether a general OR constraint appears in the computed IIS.

genconabs: A logical vector that indicates whether a general ABS constraint appears in the computed IIS.

genconind: A logical vector that indicates whether a general INDICATOR constraint appears in the computed IIS.

genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint appears in the computed IIS.

genconpoly: A logical vector that indicates whether a polynomial function constraint appears in the computed IIS.

genconexp: A logical vector that indicates whether a natural exponential function constraint appears in the computed IIS.

genconexpa: A logical vector that indicates whether an exponential function constraint appears in the computed IIS.

genconlog: A logical vector that indicates whether a natural logarithmic function constraint appears in the computed IIS.

genconloga: A logical vector that indicates whether a logarithmic function constraint appears in the computed IIS.

genconpow: A logical vector that indicates whether a power function constraint appears in the computed IIS.

genconsin: A logical vector that indicates whether a SIN function constraint appears in the computed IIS.

genconcos: A logical vector that indicates whether a COS function constraint appears in the computed IIS.

gencontan: A logical vector that indicates whether a TAN function constraint appears in the computed IIS.

If your model contains SOS constraints, the returned list will also contain the following named component:

sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS.
If your model contains quadratic constraints, the returned list will also contain the following named component:

quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed IIS.

**gurobi_feasrelax()**

```r
gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params=NULL, env=NULL)
```

This function computes a feasibility relaxation for the input `model` argument. The feasibility relaxation is a model that, when solved, minimizes the amount by which the solution violates the bounds and linear constraints of the original model. You must provide a penalty to associate with relaxing each individual bound or constraint (through the `penalties` argument). These penalties are interpreted in different ways, depending on the value of the `relaxobjtype` argument.

**Arguments:**

- **model**: The model list must contain a valid Gurobi model. See the `model` argument section for more information.
- **relaxobjtype**: The approach used to impose penalties on violations.
  - If you specify `relaxobjtype=0`, the objective for the feasibility relaxation is to minimize the sum of the weighted magnitudes of the bound and constraint violations.
  - If you specify `relaxobjtype=1`, the objective for the feasibility relaxation is to minimize the weighted sum of the squares of the bound and constraint violations.
  - If you specify `relaxobjtype=2`, the objective for the feasibility relaxation is to minimize the weighted count of bound and constraint violations.
  - In all cases, the weights are taken from `penalties$lb`, `penalties$ub` and `penalties$rhs`. You can provide the special penalty value `Inf` to indicate that the corresponding bound or constraint cannot be relaxed.
- **minrelax**: The `minrelax` argument is a boolean that controls the type of feasibility relaxation that is created. If `minrelax=False`, optimizing the returned model gives a solution that minimizes the cost of the violation. If `minrelax=True`, optimizing the returned model finds a solution that minimizes the original objective, but only from among those solutions that minimize the cost of the violation. Note that `gurobi_feasrelax` must solve an optimization problem to find the minimum possible relaxation when `minrelax=True`, which can be quite expensive.
- **penalties**: The `penalties` argument is a list of lists, having the following optional named components (default: all `Inf`):
  - `lb` Penalty for violating each lower bound.
  - `ub` Penalty for violating each upper bound.
  - `rhs` Penalty for violating each constraint.

To give an example, if a constraint with `penalties.rhs` value `p` is violated by 2.0, it would contribute `2*p` to the feasibility relaxation objective for `relaxobjtype=0`, `2*2*p` for `relaxobjtype=1`, and `p` for `relaxobjtype=2`.

- **env**: The `env` list, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the `env` argument section for more information.
Return value:
A list containing two named components:
result$model, a list variable, as described in the model argument section.
result$feasobj, a scalar. If minrelax==true this is the relaxation problem objective value, 0.0 otherwise.
Example usage:

```r
penalties <- list()
model <- gurobi_read('stein9.mps')
penalties$lb <- rep(1,length(model$lb))
penalties$ub <- rep(1,length(model$ub))
penalties$rhs <- rep(1,length(model$rhs))
feasrelaxresult <- gurobi_feasrelax(model, 0, False, penalties)
```

gurobi_relax()

| gurobi_relax ( model, env=NULL ) |

Create the relaxation of a MIP model. Transforms integer variables into continuous variables, and removes SOS and general constraints.

**Arguments:**
- model: The model list must contain a valid Gurobi model. See the model argument section for more information.
- env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Return value:**
A model list variable, as described in the model parameter section.

**Example usage:**

```r
model <- gurobi_read('stein9.mps')
relaxed <- gurobi_relax(model)
```
8.3 Input/Output

gurobi_read()

| gurobi_read ( filename, env=NULL ) |

Reads a model from a file.

**Arguments:**
- **filename**: Name of the file to read. Note that the type of the file is encoded in the file name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, .ilp, or .opb (see the file formats section for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.
- **env**: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Return value:**
A model list variable, as described in the model section.

**Example usage:**
```r
model <- gurobi_read('stein9.mps')
result <- gurobi(model)
```

gurobi_write()

| gurobi_write ( model, filename, env=NULL ) |

Writes a model to a file.

**Arguments:**
- **model**: The model list must contain a valid Gurobi model. See the model argument section for more information.
- **filename**: Name of the file to write. Note that the type of the file is encoded in the file name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate the desired file format (see the file formats section for details on Gurobi file formats). The files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.
- **env**: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi Instant Cloud. See the env argument section for more information.

**Example usage:**
```r
model <- list()
model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T)
model$obj <- c(1,1,2)
model$modelsense <- 'max'
model$rhs <- c(4,1)
model$sense <- c('<', '>')
gurobi_write(model, 'mymodel.mps');
gurobi_write(model, 'mymodel.lp');
gurobi_write(model, 'mymodel.mps.bz2');
```
8.4 Installing the R package

To use our R interface, you’ll need to install the Gurobi package in your local R installation. The R command for doing this is:

```
install.packages('<R-package-file>', repos=NULL)
```

The Gurobi R package file can be found in the `<installdir>/R` directory of your Gurobi installation (the default `<installdir>` for Gurobi 9.0.1 is `/opt/gurobi901/linux64` for Linux, `c:\gurobi901\win64` for 64-bit Windows, and `/Library/gurobi901/mac64` for Mac). You should browse the `<installdir>/R` directory to find the exact name of the file for your platform (the Linux package is in file `gurobi_9.0-1_R_3.6.1.tar.gz`, the Windows package is in file `gurobi_9.0-1.zip`, and the Mac package is in file `gurobi_9.0-1_R_3.6.1.tgz`).

Depending on your local R environment you might need to install the R package `slam`. To do this, you should issue the following command within R:

```
install.packages('slam')
```

You will need to be careful to make sure that the R binary and the Gurobi package you install both use the same instruction set. For example, if you are using the 64-bit version of R, you’ll need to install the 64-bit version of Gurobi, and the 64-bit Gurobi R package. This is particularly important on Windows systems, where the error messages that result from instruction set mismatches can be quite cryptic.

To run one of the R examples provided with the Gurobi distribution, you can use the `source` command in R. For example, if you are running R from the Gurobi R examples directory, you can say:

```
> source('mip.R')
```

If the Gurobi package was successfully installed, you should see the following output:

```
[1] 'Solution:'
[1] 3
[1] 1 0 1
```
The lowest-level building blocks for Gurobi models are variables, constraints, and objectives. While each has a clean mathematical definition, linear and integer programming aren’t performed in exact arithmetic, so computed results can sometimes deviate from these clean definitions. This section discusses the use of and restrictions on these basic building blocks.

9.1 Variables

Decision variables capture the results of the optimization. In a feasible solution, the computed values for the decision variables satisfy all of the model constraints. Some of these constraints are associated with individual variables (e.g., variable bounds), while others capture relationships between variables. We’ll first consider the different types of decision variables that can be added to a Gurobi model, and the implicit and explicit constraints associated with these variable types.

Before starting, we should point out one important thing about the variables in a mathematical programming model: their computed solution values will only satisfy bounds to tolerances, meaning that a variable may violate its stated bounds. Mathematical programming is fundamentally built on top of linear algebra and in particular on the numerical solution of systems of linear equations. These linear systems are solved using finite-precision arithmetic, which means that small errors are unavoidable. For some models, large errors are unavoidable too; we’ll return to that topic later in this section.

The available variables types are continuous, general integer, binary, semi-continuous, and semi-integer.

Continuous Variables

The simplest and least constrained of the available variable types is the continuous variable. This variable can take any value between its lower and upper bound. In mathematical programming, the convention is that variables are non-negative unless stated otherwise, so if you don’t explicitly provide bounds for a variable, you should assume that the lower bound is 0 and the upper bound is infinite.

The Gurobi APIs provides a symbolic constant to allow you to indicate that a bound is infinite (GRB_INFINITY in C and C++, GRB.INFINITY in C#, Java, and Python). A variable can have an infinite upper bound, an infinite lower bound (negative infinity), or both. A variable with infinite upper and lower bounds is referred to as a free variable. Any bound larger than 1e30 is treated as infinite.

As noted earlier, variables may violate their bounds by tolerances. In the case of variable bounds, the relevant tolerance value is the FeasibilityTol. You can reduce the value of this tolerance parameter, but due to numerical errors it may not be possible to achieve your desired accuracy.

General Integer Variables

General integer variables are more constrained than continuous variables. In addition to respecting the specified lower and upper bounds, integer variables also take integral values.
Due to the limitations of finite-precision arithmetic, integer variables will often take values that aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the IntFeasTol parameter. You can tighten this parameter to reduce the magnitude of these integrality violations, but the cost of solving the optimization problem may increase significantly as a result.

The fact that modern computers represent integer values using 32-bit values places some restrictions on the range of an integral variable. Specifically, the largest and smallest bounds that can be placed on an integer variable are +/- 2,000,000,000. Furthermore, integer variables with infinite bounds actually have these values as their implicit bounds. A solution is not considered feasible unless all integer variables take values that satisfy these bounds.

### Binary Variables

Binary variables are the most constrained variable type that can be added to your model. A binary variable takes a value of either 0 or 1.

Again, due to the limitations of finite-precision arithmetic, binary variables will often take values that aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the IntFeasTol parameter.

### Semi-Continuous and Semi-Integer Variables

You can also add semi-continuous or semi-integer variables to your model. A semi-continuous variable has the property that it takes a value of 0, or a value between the specified lower and upper bounds. A semi-integer variable adds the additional restriction that the variable also take an integral value.

Again, these variables may violate these restrictions up to tolerances. In this case, the relevant tolerance is IntFeasTol (even for semi-continuous variables).

### 9.2 Constraints

A constraint in Gurobi captures a restriction on the values that a set of variables may take. The simplest example is a linear constraint, which states that a linear expression on a set of variables take a value that is either less-than-or-equal, greater-than-or-equal, or equal to another linear expression. Recall that Gurobi works in finite-precision arithmetic, so constraints are only satisfied to tolerances. Tolerances can be tightened to reduce such violations, but there are limits to how small the violations can be -- errors are inherent in floating-point arithmetic.

The available constraint types are linear, SOS, quadratic (both convex and non-convex), and general.

### Linear Constraints

A linear constraint allows you to restrict the value of a linear expression. For example, you may require that any feasible solution satisfies the constraint $3x + 4y \leq 5z$. Note that the matrix-oriented Gurobi API’s (C, MATLAB, and R) require the right-hand side of a linear constraint to be a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow arbitrary linear expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol (although it may not in cases of numerical ill-conditioning -- we’ll discuss this shortly).

Gurobi supports a limited set of comparators. Specifically, you can constrain an expression to be less-than-or-equal, greater-than-or-equal, or equal another. We do not support strict less-than,
strict greater-than, or not-equal comparators. While these other comparators may seem appropriate for mathematical programming, we exclude them to avoid potential confusion related to numerical tolerances. Consider a simple example of a strict inequality constraint on a pair of continuous variables: $x > y$. How large would $x - y$ need to be in order to satisfy the constraint? Rather than trying to embed a subtle and potentially confusing strategy for handling such constraints into the solver, we’ve chosen not to support them instead.

**SOS Constraints**

A Special-Ordered Set, or SOS constraint, is a highly specialized constraint that places restrictions on the values that variables in a given list can take. There are two types of SOS constraints. In an SOS constraint of type 1 (an SOS1 constraint), at most one variable in the specified list is allowed to take a non-zero value. In an SOS constraint of type 2 (an SOS2 constraint), at most two variables in the specified, ordered list are allowed to take a non-zero value, and those non-zero variables must be contiguous in the list. The variables in an SOS constraint can be continuous, integer, or binary.

Again, tolerances play an important role in SOS constraints. Specifically, variables that take values less than IntFeasTol (in absolute value) are considered to be zero for the purposes of determining whether an SOS constraint is satisfied.

An SOS constraint is described using a list of variables and a list of corresponding weights. While the weights have historically had intuitive meanings associated with them, we simply use them to order the list of variables. The weights should be unique. This is especially important for an SOS2 constraint, which relies on the notion of contiguous variables. Since the variables in the SOS are ordered by weight, contiguity becomes ambiguous when multiple variables have the same weight.

It is often more efficient to capture SOS structure using linear constraints rather than SOS constraints. The optimizer will often perform this conversion automatically. This is controlled with two parameters: PreSOS1BigM and PreSOS2BigM. The conversion is done by adding constraints of the form $x < b$, where $x$ is the variable that participates in the SOS constraint, $b$ is a binary variable, and $M$ is an upper bound on the value of variable $x$. Large values of $M$ can lead to numerical issues, so these parameters control the maximum value of $M$ that can be introduced by this conversion. SOS constraints that would require a larger value aren’t converted.

**Quadratic Constraints**

A quadratic constraint allows you to restrict the value of a quadratic expression. For example, you may require that any feasible solution satisfy the constraint $3x^2 + 4y^2 + 5z \leq 10$. Note that the matrix-oriented Gurobi API’s (C, MATLAB, and R) require the right-hand side of a quadratic constraint to be a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow arbitrary quadratic expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol. Quadratic constraints are often much more challenging to satisfy than linear constraints, so tightening the parameter may increase runtimes dramatically.

Gurobi can handle both convex and non-convex quadratic constraints. However, there are some subtle and important differences in how the different constraint types are handled. The default algorithms in Gurobi only accept a few forms of quadratic constraints that are known to have convex feasible regions. Constraints of the following forms are always accepted:

- $x^T Q x + q^T x \leq b$, where $Q$ is Positive Semi-Definite (PSD)
• \(x^T x \leq y^2\), where \(x\) is a vector of variables, and \(y\) is a non-negative variable (a Second-Order Cone constraint)

• \(x^T x \leq yz\), where \(x\) is a vector of variables, and \(y\) and \(z\) are non-negative variables (a rotated Second-Order Cone constraint)

To be more precise, a constraint will be accepted if presolve is able to transform it into one of these forms. Note that if the quadratic terms each contain at least one binary variable, then presolve will always be able to transform it.

If you add a constraint that can’t be transformed into one of these forms, then with default settings you will get an error (GRB_ERROR_Q_NOT_PSD) when you try to solve the model. Quadratic equality constraints are always non-convex; they will give a GRB_ERROR_QCP_EQUALITY_CONSTRAINT error with default settings.

Why distinguish between quadratic constraints in this form and other types of quadratic constraints? Solving models with non-convex quadratic constraints is typically much more expensive. To avoid accidentally solving a much harder problem than may have been intended, Gurobi rejects such constrains by default. If you set the NonConvex parameter to 2, however, then Gurobi will accept arbitrary quadratic constraints and attempt to solve the resulting model.

Note that other non-convex quadratic solvers often only find locally optimal solutions. The algorithms in Gurobi explore the entire search space, so they provide a globally valid lower bound on the optimal objective value, and given enough time they will find a globally optimal solution (subject to tolerances).

We would like to note a subtle point here regarding terminology. A quadratic constraint that involves only products of disjoint pairs of variables is often called a bilinear constraint, and a model that contains bilinear constraints is often called a bilinear program. Bilinear constraints are a special case of non-convex quadratic constraints, and the algorithms Gurobi uses to handle the latter are also well suited to solving bilinear programming problems.

General Constraints

The previously-described constraints are typically handled directly by the underlying optimization algorithms (but not always). Gurobi includes an additional set of constraints, which we collectively refer to as general constraints. General constraints are mostly a convenience feature, designed to allow you to define certain variable relationships easily without having to immerse yourself in the often esoteric details of how to model these relationships in terms of the more fundamental constraints of MIP. Capturing a single one of these general constraints can often require a large set of linear and SOS constraints, plus a number of auxiliary decision variables. By supporting them directly in the Gurobi API, we simplify the modeling process by performing the transformation to a corresponding MIP formulation automatically and transparently during the solution process.

What sorts of variable relationships can be captured with general constraints? We think of them as belonging to two types: function constraints and simple constraints. Function constraints allow you to state a relationship \(y = f(x)\), where \(x\) and \(y\) are Gurobi decision variables and \(f()\) is chosen from a predefined list of functions. Gurobi performs a piecewise-linear approximation of that function within the domain of \(x\). Simple general constraints allow you to state common but more direct relationships between decision variables. The translation that goes on under the hood for these is much simpler, and the result is an exact representation of the original constraint (not an approximation).
Simple General Constraints

Gurobi supports the following simple general constraints, each with its own syntax and semantics:

- **MAX constraint:** The constraint \( r = \max\{x_1, \ldots, x_k, c\} \) states that the resultant variable \( r \) should be equal to the maximum of the operand variables \( x_1, \ldots, x_k \) and the constant \( c \). For example, a solution \((r = 3, x_1 = 2, x_2 = 3, x_3 = 0)\) would be feasible for the constraint \( r = \max\{x_1, x_2, x_3, 1.7\} \) because 3 is indeed the maximum of 2, 3, 0, and 1.7.

- **MIN constraint:** Similar to a MAX constraint, the constraint \( r = \min\{x_1, \ldots, x_k, c\} \) states that the resultant variable \( r \) should be equal to the minimum of the operand variables \( x_1, \ldots, x_k \) and the constant \( c \).

- **ABS constraint:** The constraint \( r = \|x\| \) states that the resultant variable \( r \) should be equal to the absolute value of the operand variable \( x \). For example, a solution \((r = 3, x = -3)\) would be feasible for the constraint \( r = \|x\| \).

- **AND constraint:** The constraint \( r = \text{and}\{x_1, \ldots, x_k\} \) states that the binary resultant variable \( r \) should be equal to 1 if and only if all of the binary operand variables \( x_1, \ldots, x_k \) are equal to 1. For example, a solution \((r = 1, x_1 = 1, x_2 = 1, x_3 = 1)\) would be feasible for the constraint \( r = \text{and}\{x_1, x_2, x_3\} \). Note that declaring an AND constraint implicitly declares all involved variables to be of binary type.

- **OR constraint:** Similar to an AND constraint, the constraint \( r = \text{or}\{x_1, \ldots, x_k\} \) states that the binary resultant variable \( r \) should be equal to 1 if and only if at least one of the binary operand variables \( x_1, \ldots, x_k \) is equal to 1. Note that declaring an OR constraint implicitly declares all involved variables to be of binary type.

- **INDICATOR constraints:** An indicator constraint \( y = f \rightarrow a^T x \leq b \) states that if the binary indicator variable \( y \) has the value \( f \in \{0, 1\} \) in a given solution, then the linear constraint \( a^T x \leq b \) has to be satisfied. On the other hand, if \( y \neq f \) (i.e., \( y = 1 - f \)) then the linear constraint may be violated. Note that the sense of the linear constraint can also be \( = \) or \( \geq \); refer to this earlier section for a more detailed description of linear constraints. Note also that declaring an INDICATOR constraint implicitly declares the indicator variable to be of binary type.

- **Piecewise-linear constraints:** A piecewise-linear constraint \( y = f(x) \) states that the point \((x, y)\) must lie on the piecewise-linear function \( f() \) defined by a set of points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\). Refer to the description of piecewise-linear objectives for details of how piecewise-linear functions are defined.

Note that adding any of these constraints to an otherwise continuous model will transform it into a MIP.

As stated above, each general constraint has an equivalent MIP formulation that consists of linear and SOS constraints, and possibly auxiliary variables. Thus, you could always model such constraints yourself without using a Gurobi general constraint. For example, the MAX constraint \( r = \max\{x_1, \ldots, x_k, c\} \) can be modeled as follows:
\[ \begin{align*}
  r & = x_j + s_j \quad \text{for all } j = 1, \ldots, k \\
  r & = c + s_{k+1} \\
  z_1 + \ldots + z_{k+1} & = 1 \\
  \text{SOS1}(s_j, z_j) & \quad \text{for all } j = 1, \ldots, k + 1 \\
  s_j & \geq 0 \quad \text{for all } j = 1, \ldots, k + 1 \\
  z_j & \in \{0, 1\} \quad \text{for all } j = 1, \ldots, k + 1
\end{align*} \]

The first two constraints state that \( r \geq \max\{x_1, \ldots, x_k, c\} \), i.e., that the resultant variable \( r \) has to be at least as large as each of the operand variables \( x_j \) and the constant \( c \). This can be modeled using inequalities, but we turned them into equations by introducing explicit continuous slack variables \( s_j \geq 0 \), which we will reuse below.

Those slack variables and the remaining constraints model \( r \leq \max\{x_1, \ldots, x_k, c\} \), which is more complicated. In addition to the explicit slacks, this requires the introduction of binary auxiliary variables \( z_j \in \{0, 1\} \). The SOS1 constraints state that at most one of the two variables \( s_j \) and \( z_j \) can be non-zero, which models the implication \( z_j = 1 \rightarrow s_j = 0 \). Due to the third constraint, one \( z_j \) will be equal to 1 and thus at least one \( s_j \) will be zero. Hence, \( r = x_j \) for at least one \( j \) due to the first constraint, or \( r = c \) due to the second constraint.

Tolerances play a role in general constraints, although as you might expect, the exact role depends on the constraint type. Generally, violations in the resultant will be smaller than the feasibility tolerance, and integrality violations in integer resultants will also satisfy the integrality tolerance.

By most measures, general constraints are just a means of concisely capturing relationships between variables while removing the burden of creating an equivalent MIP formulation. However, general constraints have another potential advantage: Gurobi might be able to simplify the MIP formulation if it can prove during presolve that the simplified version suffices for the correctness of the model. For this reason, Gurobi might be able to produce a smaller or tighter representation of the general constraint than you would get from the most general formulation. For example, it might be the case that \( r \leq \max\{x_1, \ldots, x_k, c\} \) is already implied by the other constraints in the model, so that a simple set of inequalities

\[ \begin{align*}
  r & \geq x_j \quad \text{for all } j = 1, \ldots, k \\
  r & \geq c
\end{align*} \]

to describe \( r \geq \max\{x_1, \ldots, x_k, c\} \) suffices to model the relevant part of the MAX constraint.

**Function Constraints**

Gurobi supports the following function constraints, each with somewhat different syntax and semantics (\( x \) and \( y \) below are Gurobi decision variables, and other terms are constants provided as input when the constraint is added to the model):

- **Polynomial**: \( y = p_0 x^n + p_1 x^{n-1} + \ldots + p_n x + p_{n+1} \)
- **Natural exponential**: \( y = \exp(x) \) or \( y = e^x \)
- **Exponential**: \( y = a^x \), where \( a > 0 \) is the base for the exponential function
- **Natural logarithm**: \( y = \log_e(x) \) or \( y = \ln(x) \)
- **Logarithm**: \( y = \log_a(x) \), where \( a > 0 \) is the base for the logarithmic function
• **Power:** \( y = x^a \), where \( a \geq 0 \)

• **Sine:** \( y = \sin(x) \)

• **Cosine:** \( y = \cos(x) \)

• **Tangent:** \( y = \tan(x) \)

As noted earlier, Gurobi will automatically add a piecewise-linear approximation of the function to the model. You face a fundamental cost-versus-accuracy tradeoff when performing such an approximation, though: adding more pieces produces smaller approximation errors, but also increases the cost of solving the problem. The tradeoff can be complex. Gurobi provides a set of three attributes that help to navigate this tradeoff: `FuncPieces`, `FuncPieceLength`, `FuncPieceError`. They are used as follows:

• If you would like to choose the number of pieces to use for the approximation, set the `FuncPieces` attribute to the desired value. All pieces will have equal width. This approach allows you to control the size of the approximation.

• If you would like to choose the width of each piece, set the `FuncPieces` attribute to a special value of 1 and set the `FuncPieceLength` attribute equal to the desired width of each piece. This approach provides some control over both the size and the error of the approximation. While this may appear to be a minor variation of the first option, note that presolve may tighten the domain of \( x \), often substantially, which can make it difficult to predict the relationship between the width of each piece and the number of pieces.

• If you would like to set the maximum error you are willing to tolerate in the approximation, set the `FuncPieces` attribute to a special value of -1 and set the `FuncPieceError` attribute equal to the maximum absolute approximation you are willing to tolerate. Gurobi will choose pieces, typically of different sizes, to achieve that error bound. Note that the number of pieces required may be quite large if you set a tight error tolerance. You can control the maximum relative error rather than the absolute error by setting the `FuncPieces` attribute to -2 instead of -1.

These are attributes on the general constraints, so you can choose different values for each individual constraint.

The other relevant attribute is `FuncPieceRatio`, which controls whether the approximation is an underestimate of the function (0.0), an overestimate (1.0), or somewhere in between (any value strictly between 0.0 and 1.0). You can also choose the special value of -1, which will choose points that are on the original function.

Consider the following simple example:
The goal is to find an approximation of the polynomial $y = x^2$. We’ve set \texttt{FuncPieces} to 1 and \texttt{FuncPieceLength} to 1.0, so we’re performing an approximation with fixed-width pieces of width 1.0. The domain of $x$ is $[0, 2]$, so the approximation has two pieces. The figure shows 6 points: $P_{u1}(0, 0), P_{u2}(1, 1), P_{u3}(2, 4)$, and $P_{l1}(0, -0.25), P_{l2}(1, 0.75), P_{l3}(2, 3.75)$. If \texttt{FuncPieceRatio} is set to 0.0, the approximation would be built from the points below the function ($P_{l1}, P_{l2},$ and $P_{l3}$). Similarly, if it is set to 1.0, the approximation would be built from the points above the function ($P_{u1}, P_{u2},$ and $P_{u3}$). A value of 0.6 would use weighted combinations of the points: 0.6 times $P_{ui}$ plus 0.4 times $P_{li}$. In this case, the line segments would be built from the points $(0, -0.1), (1, 0.9)$, and $(2, 3.9)$. If \texttt{FuncPieceRatio} is set to $-1$, meaning that the approximation would be built from points that are on the original function, in this case the upper points ($P_{u1}, P_{u2},$ and $P_{u3}$) fit the bill. This will always be the case for a convex function.

Recall that you can set \texttt{FuncPieces} to $-1$ to control the maximum absolute error. In this case, choosing a \texttt{FuncPieceError} value of 0.25 would give the piecewise approximation shown in the figure, since the distance between the upper and lower curves is always 0.25. A smaller error value would of course lead to more pieces. We should add that piece widths will typically be non-uniform when limiting the maximum approximation error. The approximation algorithms we use try to limit the number of pieces needed to meet the error targets, which often requires more refinement in some portions of the domain than in others.

Note that the approximations are guaranteed to be under- and over-estimates in all cases except for polynomials of degree greater than 5. Finding the roots of higher-degree polynomials, which would be required to guarantee this property, is quite difficult.

If you wish to experiment with different approaches to approximating a set of functions, it is
often convenient to be able to change the approach for all functions at once. We provide a set of parameters with the same names as the attributes to make it easier to do this: FuncPieces, FuncPieceLength, FuncPieceError, and FuncPieceRatio. If you set the FuncPieces attribute on a function constraint to 0, then the approximation approach for that constraint will be determined by the parameter settings instead.

For some of the supported functions, modest \( x \) values can lead to enormous \( y \) values (and vice-versa). This can cause numerical issues when solving the resulting piecewise-linear MIP model. To avoid such issues, we limit the range of any \( x \) or \( y \) that participates in a function constraint to \([-1e+6, 1e+6]\). The parameter FuncMaxVal allows you to change these limits, but we recommend that you proceed with caution.

We should point out that PWL approximations can sometimes cause unexpected results, including sub-optimal solutions or even infeasible conclusions on feasible models. Consider a simple example with two constraints: \( y = 2x - 1 \) and \( y = x^2 \). Clearly \( (x, y) = (1, 1) \) is a feasible solution, but a piecewise-linear approximation could introduce breakpoints at \( x = 0.9 \) and \( x = 1.1 \). The resulting approximation gives a \( y \) value of 1.01 at \( x = 1 \), which is sufficiently far from the actual function value that Gurobi will not consider that a valid solution and declare the model infeasible, since there are no other solutions to the constraints. Reducing the maximum approximation error (by setting FuncPieces to -1 and FuncPieceError to a much smaller value) would help, but this isn’t always the best way to address the problem, since tighter error tolerances can substantially increase the number of pieces in the approximation and thus the cost. We recommend the following approach when you encounter unexpected results. For inequalities, you should ask for an approximation that always overestimates or underestimates the function (depending on the sense of the constraint), to ensure that your approximation will always satisfy the constraint. The FuncPieceRatio parameter allows you to do this. For equalities, if you have a sense of where your solution is likely to lie, one option for managing the size of the approximation is to introduce additional variables to capture your function in different ranges, and then perform approximations with different levels of accuracy on these different pieces.

While users could perform piecewise-linear approximations themselves, there are several advantages to asking Gurobi to do it instead. First, Gurobi can often reduce the domains of variables, by using bound strengthening in presolve, or by exploiting repetition in periodic functions like sine or cosine. Smaller domains means fewer pieces to achieve the same accuracy. Gurobi also provides many options to make experimentation easier (for error control, piece length, etc.). These options can be quite difficult to implement and maintain.

### 9.3 Objectives

Every optimization model has an objective function, which is the function on the decision variables that you wish to minimize or maximize. The objective is meant to capture your goals in solving the problem. Given a set of feasible solutions, the objective tells the solver which is preferred.

Most optimization problems have multiple optimal solutions, plus many solutions whose objectives are within a small gap from the optimal value. The solution that is returned by Gurobi depends on the type of problem you are solving. The simple rule is that Gurobi returns a single optimal solution for continuous models (LP, QP, and QCP), and a sequence of improving solutions for discrete models (MIP, MIQP, and MIQCP).

The Gurobi algorithms work on solving a model until they find a solution that is optimal to
within the specified tolerances. For the simplex algorithms (including barrier with crossover), the relevant tolerance is the `OptimalityTol`. For the barrier algorithm (without crossover), the relevant tolerances are the `BarConvTol` or `BarQCPCovTol` (depending on the problem type). You can relax these tolerances, but note that it is rare for this to significantly improve solution times. The simplex and barrier algorithms both return a single optimal solution.

For discrete models, while you can ask the MIP solver to find a solution with the best possible objective value, it is more common to stop when the solution objective is within a specified gap from the optimal value. This optimality gap is controlled by the `MIPGap` parameter, and the default value is 0.01%.

The MIP solver typically finds multiple sub-optimal solutions on the way to eventually finding an optimal solution. These intermediate solutions can be queried once the optimization is complete (using the `Xn` attribute). You can use the Solution Pool feature to take a more systematic approach to finding multiple solutions. This feature allows you to indicate how many solutions you would like, to specify the largest gap to the optimal value you are willing to accept, etc.

We should add that it is possible to specify a pure feasibility problem, where the sole goal is to find a solution that satisfies the constraints. You can think of a feasibility problem as an optimization problem with a constant objective function.

The available objective types are linear, piecewise-linear, quadratic (both convex and non-convex), and multi-objective. While the property of having multiple objectives may appear to be orthogonal to the types of the objectives, Gurobi only supports multi-objective models where all objectives are linear.

**Linear Objectives**

The simplest and most common objective function is linear - minimizing or maximizing a linear function on the decision variables (e.g., $3x + 4y + 2$). Linear objectives can be specified in a few ways. The first is by providing an objective term when the decision variable is added to the model (typically through the `addVar` method). The second is by setting the `Obj` attribute on the variable. The third and most convenient approach, available in the object-oriented interfaces, is through the `setObjective` method (in C++, Java, .NET, or Python). This method accepts a linear expression object as its argument.

A model with a linear objective, only linear constraints, and only continuous variables is a Linear Program (LP). It can be solved using the simplex or barrier algorithms.

**Piecewise-Linear Objectives**

A useful variant of a linear objective is a piecewise-linear objective, where the objective for a single variable is captured in a set of linear pieces. For example, suppose we want to define the objective value $f(x)$ for variable $x$ as follows:
The vertices of the function occur at the points \((1,1)\), \((3,2)\) and \((5,4)\), so we define \(f(1) = 1\), \(f(3) = 2\) and \(f(5) = 4\). Other objective values are linearly interpolated between neighboring points. The first pair and last pair of points each define a ray, so values outside the specified \(x\) values are extrapolated from these points. Thus, in our example, \(f(-1) = 0\) and \(f(6) = 5\).

More formally, a piecewise-linear function is defined by a set of \(n\) points:

\[
x = [x_1, \ldots, x_n], \quad y = [y_1, \ldots, y_n]
\]

These define the following piecewise-linear function:

\[
f(v) = \begin{cases} 
  y_1 + \frac{y_2-y_1}{x_2-x_1}(v-x_1), & \text{if } v \leq x_1, \\
  y_i + \frac{y_{i+1}-y_i}{x_{i+1}-x_i}(v-x_i), & \text{if } v \geq x_i \text{ and } v \leq x_{i+1}, \\
  y_n + \frac{y_{n-1}-y_n}{x_n-x_{n-1}}(v-x_n), & \text{if } v \geq x_n.
\end{cases}
\]

We also allow special cases, such as jumps and single points, which are quite useful to define the fixed charges or the penalties. A jump at \(x = x_i\) means that the left piece and the right piece don’t intersect at \(x = x_i\), i.e. we have \((x_{i-1}, y_{i-1}), (x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2})\) with \(x_i = x_{i+1}\) and \(y_i \neq y_{i+1}\). So for the left piece, i.e. \(x_{i-1} \leq x < x_i\), the line segment between points \((x_{i-1}, y_{i-1})\) and \((x_i, y_i)\) defines \(y\), for the right piece, i.e. \(x_i \leq x < x_{i+2}\), the line segment between points \((x_{i+1}, y_{i+1})\) and \((x_{i+2}, y_{i+2})\) defines \(y\). Since we must allow some tolerance for numeric computation, it means that at \(x = x_i\), \(y\) can take the value of either \(y_i\) or \(y_{i+1}\). A single point at \(x = x_i\) means that both left and right pieces extend to \(x = x_i\), but both have different \(y\) values than \(y_i\). It can be described by the five points \((x_{i-2}, y_{i-2}), (x_{i-1}, y_{i-1}), (x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2})\) with \(x_{i-1} = x_i = x_{i+1}\) and \(y_i \neq y_{i-1}\) and \(y_i \neq y_{i+1}\). Note that \(y_{i-1}\) and \(y_{i+1}\) can be equal or different. Because of the tolerance, it means that at \(x = x_i\), \(y\) can take the value of \(y_{i-1}\), \(y_i\) or \(y_{i+1}\). Here below is an example with a jump and a single point.
The above piecewise function for variable $x$ are defined by 7 points $(-1, 0), (1, 1), (1, 2), (3, 2), (3, 0), (3, 2)$ and $(5, 4)$. It has a jump at $x = 1$ from $(1, 1)$ to $(1, 2)$ and a single point $(3, 0)$. Note that both left and right points have the same $x$ coordinate and for this example the two points are the same.

Note that a piecewise-linear objective can change the type of a model. Specifically, including a non-convex piecewise-linear objective function in a continuous model will transform that model into a MIP. This can significantly increase the cost of solving the model.

How do you determine whether your piecewise-linear objective is convex? A convex function has the property that you can’t obtain a better objective value by interpolating between two points on the function. In the figure below, you will note that all convex combinations of points on the piecewise-linear function are in the shaded region.

Stated another way, successive pieces will have non-decreasing slopes in a convex piecewise-linear objective (assuming you are minimizing).

In contrast, in a non-convex piecewise-linear function you can get a better value by interpolating between points. In the figure below, the value of $f(1)$ for the piecewise-linear function is worse than the value obtained by interpolation.
Piecewise-linear objectives are defined on variables using a special method (in C, C++, Java, .NET, or Python). Each variable can have its own piecewise-linear objective function, and each function requires a separate call to this method.

A variable can’t have both a linear and a piecewise-linear objective term. Setting a piecewise-linear objective for a variable will set the Obj attribute on that variable to 0. Similarly, setting the Obj attribute will delete the piecewise-linear objective on that variable.

We should point out that it is fairly easy to specify a piecewise-linear function on a variable using a few extra variables and simple linear objective terms. The advantages of using the piecewise-linear API methods are twofold. The first is convenience - specifying the function directly leads to simpler and more readable code. The second is that Gurobi includes a piecewise-linear simplex algorithm. If you provide a model that contains only linear constraints, only continuous variables, and only linear or convex piecewise-linear objective terms, then this specialized simplex algorithm will be used to solve the model. If your piecewise-linear function contains a large number of segments, the specialized algorithm will be much faster than the standard simplex solver.

Quadratic Objectives

Your optimization objective can also contain quadratic terms (e.g., $3x^2 + 4y^2 + 2xy + 2x + 3$). You specify quadratic objectives in the object-oriented interfaces by building quadratic expressions and then calling setObjective (C++, Java, .NET, or Python). In C, you input your quadratic terms using GRBaddqpterms.

There are four distinct algorithms that could be used to solve a model with a quadratic objective. The appropriate one depends on a few specific properties of the objective and the rest of the model.

- **Continuous QP** If your quadratic objective is convex and your model only contains linear constraints and continuous variables, then your model is a quadratic program (QP) and can be solved using either the simplex or barrier algorithms. QP simplex will return an optimal basic solution. Gurobi does not have a QP crossover, so QP barrier will return an interior solution.

- **Discrete QP with Convex Relaxation** If your quadratic objective is convex but the model contains discrete elements (integer variables, SOS constraints, general constraints, etc.), then
your model is a mixed integer quadratic program (MIQP) and is solved using the MIP solver. Since MIP relies heavily on simplex bases, the root relaxation must be solved using the primal or dual simplex algorithm.

- **Discrete QP with Non-Convex Relaxation** If your quadratic objective is not convex, then the model will be solved using the MIP solver, even if your model has no explicit discrete elements. However, in this release you need to take action for that to happen. Specifically, you need to set the NonConvex parameter to 2. With default settings, a non-convex quadratic objective leads to a **GRB_ERROR_Q_NOT_PSD** error.

These properties are checked on the presolved model. As is always the case, presolve will try to simplify the model. In this context, it will try to transform a non-convex MIQP into an equivalent convex MIQP. This simplification will always succeed if each quadratic term contains at least one binary variable.

How can you determine whether your quadratic objective is convex? As was noted earlier, the crucial property for convexity is that interpolation between any two points on the function never puts you below the function (assuming minimization). In this figure, all points on a line segment between any two points on the parabola are always in the shaded region.

![Diagram showing convexity](image)

How does this translate to multiple variables? For a quadratic function to be convex, the associated Q matrix must be Positive Semi-Definite (PSD).

**Multiple Objectives**

You can also specify multiple (linear) objectives for your model, and Gurobi provides tools that allow you explore the tradeoffs between them. Refer to the Multiple Objectives section for additional details.
9.4 Tolerances and Ill Conditioning -- A Caveat

As noted at several places in this section, finite-precision arithmetic limits the precision of the solutions Gurobi computes. This limitation is managed through numerical tolerances in most cases; we treat a solution as satisfying a constraint if the violation is smaller than the corresponding tolerance. The default tolerances are chosen to be sufficiently large so that numerical errors aren’t an issue for most models.

Unfortunately, some models suffer from severe ill conditioning, which can greatly complicate the search for a solution. This can show itself in a few ways. Ill conditioning can severely hurt performance, and it can lead to solutions whose constraint violations are larger than the tolerances.

Ill conditioning is a measure of the amount of error that can result when solving linear systems of equations. As noted earlier, linear and mixed-integer programming are built on top of linear solves, so errors in solving linear systems directly lead to errors in LP and MIP solutions. Serious problems arise when the error in solving a linear system is comparable to the desired tolerance. If you want to solve a linear programming problem to the default feasibility tolerance of $1e^{-6}$, for example, and if your linear system solves produce errors that are also roughly $1e^{-6}$, then you have no way of knowing whether your current solution is truly feasible. This can lead to oscillations, as your solution bounces between feasible and infeasible due to nothing more than numerical error, which can make it extremely difficult to achieve forward progress towards an optimal solution.

When solving linear and quadratic programming problems, we recommend that you check final primal and dual constraint violations. Duality theory states that, if your solution is primal feasible, dual feasible, and complementary, then you have an optimal solution. Complementarity is automatically enforced by the simplex method, so achieving primal and dual feasibility (to tolerances) assures that the solution is optimal (to tolerances).

When solving a MIP model (which includes any model that contains discrete or non-convex features, such as non-convex objectives, general constraints, semi-continuous variables, etc.), there is unfortunately no simple method available to check the optimality of the result. While we work hard to identify and manage the negative effects of ill conditioning, we are unable to provide a mathematical proof that the solution returned is truly optimal.

For additional information on numerical issues, please refer to the Gurobi Guidelines for Numerical Issues Section of this manual.
A Gurobi environment is a central data structure that is used to create models, to define license and computing setups like Compute Server or Instant Cloud, and to control algorithmic behaviour. All this is achieved by setting Parameters, of which there are two categories.

10.1 Algorithmic parameters

Common examples of the first category are the Method parameter, it controls which algorithm should be used to solve continuous (relaxations) of the problem at hand; or the TimeLimit parameter, it indicates a maximum running time for the next optimization call. This class of parameters can be set (and modified) at any point between optimization calls. Please see the Parameter Examples section for further details.

10.2 Startup parameters

The second category manages how you are going to use the solver. For example, you might want to solve all your models using a Gurobi Instant Cloud Manager, or a Gurobi Remote Service or use a Token Server, if you are using a floating license, or if you want to use Batch Optimization, etc.

In all these situations, you have to specify a set of parameters before you actually create the environment, and once the environment is set up, these parameters can not be modified again.

Setting Parameters in the License File

The most common (and simplest) way to achieve this is to specify all startup parameters in your Gurobi license file (usually named gurobi.lic, or specified via the environment variable GRB_LICENSE_FILE). These parameters are taken into account automatically whenever an environment is created.

Setting Parameters in Empty Environments

Another means for setting startup parameters is to use an empty environment. Empty environments are Gurobi environments that can only be used to set parameters, but for nothing else.

The first step is to construct the empty environment. This is done using GRBemptyenv in C, or through one of the provided GRBEnv constructors in the object-oriented interfaces. You then set parameters on this environment using the standard parameter API. Finally, you start the environment, using the GRBstartenv in C, or using the env.start() method in the object-oriented interfaces.

Empty Environment Examples

To give a simple example, if you want your Python program to offload the optimization computation to a Compute Server named server1, you could say:
import gurobipy as gp
from gurobipy import GRB

# Set up environment
env = gp.Env(empty=True)
env.setParam('ComputeServer', 'server1:61000')
env.setParam('ServerPassword', 'passwd')
env.start()

# Load model and optimize
model = gp.read('misc07.mps', env=env)
model.optimize()

An equivalent Java program would look like this:

import gurobi.*;
...

// Set up environment
GRBenv env = new GRBEnv(true);
env.set(GRB.StringParam.ComputeServer, "server1:61000");
env.set(GRB.StringParam.ServerPassword, "passwd");
env.start();

// Load model and optimize
GRBModel model = new GRBModel(env, "misc07.mps);
model.optimize()

An equivalent C program would look like this:

#include "gurobi_c.h"
int main(void) {
    GRBenv *env = NULL;
    GRBmodel *model = NULL;
    int error = 0;

    /* Set up environment */
    error = GRBemptyenv(&env);
    if (error) goto QUIT;
    error = GRBsetstrparam(GRB_STR_PAR_COMPUTESERVER, "server1:61000");
    if (error) goto QUIT;
    error = GRBsetstrparam(GRB_STR_PAR_SERVERPASSWORD, "passwd");
    if (error) goto QUIT;
    error = GRBstartenv(env);
    if (error) goto QUIT;

    /* Load model and optimize */
    error = GRBreadmodel(env, "misc07.mps", &model);
    if (error) goto QUIT;
    error = GRBoptimize(model);
    if (error) goto QUIT;

    Releasing shared resources

    In most of the previous examples, an environment is using a shared resource (e.g., a token license, a remote machine, etc.), and as long as the environment persists in memory, these resources remain locked, and unavailable to other users.
To give back these shared resources you need to dispose of any model associated with the environment, and then you need to dispose of the environment itself.

The actual steps depend on the API you are using:

C: Call GRBfreemodel() for each model, then call GRBfreeenv() for the Gurobi environment. For the previous example, it would look like:

```c
QUIT:
 /* Clean up model and environment */
 GRBfreemodel(model);
 GRBfreeenv(env);
 return error;
```

C++: If you use pointers to GRBModel and GRBEnv objects, delete all GRBModel objects, then delete the GRBEnv object.

Java: Call GRBModel.dispose() on all GRBModel objects, then call GRBEnv.dispose() on the GRBEnv object. For the previous example, it would look like:

```java
// Clean up model and environment
model.dispose()
env.dispose()
```

.NET: Call GRBModel.Dispose() on all GRBModel objects, then call GRBEnv.Dispose() on the GRBEnv object.

Python: Call Model.dispose() on all Model objects, Env.dispose() on all Env objects (if used), then call disposeDefaultEnv(). For the previous example, it would look like:

```python
Clean up model and environment
model.dispose()
env.dispose()
gp.disposeDefaultEnv()
```
The primary mechanism for querying and modifying properties of a Gurobi model is through the attribute interface. A variety of different attributes are available. Some are only populated at certain times (e.g., those related to the solution of a model), while others are available at all times (e.g., the number of variables in the model). Attributes can be associated with variables (e.g., lower bounds), constraints (e.g., the right-hand side), SOSs (e.g., IIS membership), or with the model as a whole (e.g., the objective value for the current solution).

The following tables list the full set of Gurobi attributes. The attributes have been grouped by type: model attributes take scalar values, while variable, linear constraint, SOS constraint, quadratic constraint, and general constraint attributes contain one entry per variable or constraint in the model. The APIs provide methods to query attribute values for individual constraints or variables, or to query their values for arrays of constraints or variables (refer to our Attribute Examples section for examples). Array queries are generally more efficient.

Note that the attributes that provide solution quality information have been split off into a separate table at the end of this section. These attributes are also associated with the model as a whole.

Some solution attributes require information that is only computed by certain Gurobi algorithms. Such cases are noted in the detailed attribute descriptions that follow. For example, the VBasis and CBasis attributes can only be queried when a simplex basis is available (a basis is available when a continuous model has been solved using primal simplex, dual simplex, or barrier with crossover). Sensitivity information (SAObjLow, SAObjUp, etc.) is also only available for basic solutions.
Model attributes:
These attributes provide information about the overall model (as opposed to information about individual variables or constraints in the model).

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumVars</td>
<td>Number of variables</td>
</tr>
<tr>
<td>NumConstrs</td>
<td>Number of linear constraints</td>
</tr>
<tr>
<td>NumSOS</td>
<td>Number of SOS constraints</td>
</tr>
<tr>
<td>NumQConstrs</td>
<td>Number of quadratic constraints</td>
</tr>
<tr>
<td>NumGenConstrs</td>
<td>Number of general constraints</td>
</tr>
<tr>
<td>NumNZs</td>
<td>Number of non-zero coefficients in the constraint matrix</td>
</tr>
<tr>
<td>DNumNZs</td>
<td>Number of non-zero coefficients in the constraint matrix (in double format)</td>
</tr>
<tr>
<td>NumQNzs</td>
<td>Number of non-zero quadratic objective terms</td>
</tr>
<tr>
<td>NumQCNzs</td>
<td>Number of non-zero terms in quadratic constraints</td>
</tr>
<tr>
<td>NumIntVars</td>
<td>Number of integer variables</td>
</tr>
<tr>
<td>NumBinVars</td>
<td>Number of binary variables</td>
</tr>
<tr>
<td>NumPWLObjVars</td>
<td>Number of variables with piecewise-linear objective functions</td>
</tr>
<tr>
<td>ModelName</td>
<td>Model name</td>
</tr>
<tr>
<td>ModelSense</td>
<td>Model sense (minimization or maximization)</td>
</tr>
<tr>
<td>ObjCon</td>
<td>Constant offset for objective function</td>
</tr>
<tr>
<td>ObjVal</td>
<td>Objective value for current solution</td>
</tr>
<tr>
<td>ObjBound</td>
<td>Best available objective bound (lower bound for minimization, upper bound</td>
</tr>
<tr>
<td></td>
<td>for maximization)</td>
</tr>
<tr>
<td>ObjBoundC</td>
<td>Best available objective bound, without rounding (lower bound for minimization, upper bound for maximization)</td>
</tr>
<tr>
<td>PoolObjBound</td>
<td>Bound on best objective for solutions not in pool (lower bound for minimization, upper bound for maximization)</td>
</tr>
<tr>
<td>PoolObjVal</td>
<td>Objective value of alternatives solutions stored during the optimization</td>
</tr>
<tr>
<td></td>
<td>process</td>
</tr>
<tr>
<td>MIPGap</td>
<td>Current relative MIP optimality gap</td>
</tr>
<tr>
<td>Runtime</td>
<td>Runtime for most recent optimization</td>
</tr>
<tr>
<td>Status</td>
<td>Current optimization status</td>
</tr>
<tr>
<td>SolCount</td>
<td>Number of stored solutions</td>
</tr>
<tr>
<td>IterCount</td>
<td>Number of simplex iterations performed in most recent optimization</td>
</tr>
<tr>
<td>BarIterCount</td>
<td>Number of barrier iterations performed in most recent optimization</td>
</tr>
<tr>
<td>NodeCount</td>
<td>Number of branch-and-cut nodes explored in most recent optimization</td>
</tr>
<tr>
<td>IsMIP</td>
<td>Indicates whether the model is a MIP</td>
</tr>
<tr>
<td>IsQP</td>
<td>Indicates whether the model is a QP/MIQP</td>
</tr>
<tr>
<td>IsQCP</td>
<td>Indicates whether the model is a QCP/MIQCP</td>
</tr>
<tr>
<td>IsMultiObj</td>
<td>Indicates whether the model has multiple objectives</td>
</tr>
<tr>
<td>IISMinimal</td>
<td>Indicates whether the current IIS is minimal</td>
</tr>
<tr>
<td>MaxCoeff</td>
<td>Maximum constraint matrix coefficient (in absolute value)</td>
</tr>
<tr>
<td>MinCoeff</td>
<td>Minimum (non-zero) constraint matrix coefficient (in absolute value)</td>
</tr>
<tr>
<td>MaxBound</td>
<td>Maximum finite variable bound</td>
</tr>
<tr>
<td>MinBound</td>
<td>Minimum finite variable bound</td>
</tr>
<tr>
<td>MaxObjCoeff</td>
<td>Maximum linear objective coefficient (in absolute value)</td>
</tr>
</tbody>
</table>
MinObjCoeff | Minimum (non-zero) linear objective coefficient (in absolute value)
MaxRHS | Maximum constraint right-hand side (in absolute value)
MinRHS | Minimum (non-zero) constraint right-hand side (in absolute value)
MaxQCCoeff | Maximum quadratic constraint matrix coefficient of quadratic part (in absolute value)
MinQCCoeff | Minimum (non-zero) quadratic constraint matrix coefficient of quadratic part (in absolute value)
MaxQCLCoeff | Maximum quadratic constraint matrix coefficient in linear part (in absolute value)
MinQCLCoeff | Minimum (non-zero) quadratic constraint matrix coefficient in linear part (in absolute value)
MaxQCRHS | Maximum quadratic constraint right-hand side (in absolute value)
MinQCRHS | Minimum (non-zero) quadratic constraint right-hand side (in absolute value)
MaxQObjCoeff | Maximum quadratic objective coefficient (in absolute value)
MinQObjCoeff | Minimum (non-zero) quadratic objective coefficient (in absolute value)
Kappa | Estimated basis condition number
KappaExact | Exact basis condition number
FarkasProof | Magnitude of infeasibility violation in Farkas infeasibility proof
TuneResultCount | Number of improved parameter sets found by tuning tool
NumStart | Number of MIP starts
LicenseExpiration | License expiration date
Server | For Compute Server, name of server

Variable attributes:
These attributes provide information that is associated with specific variables.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Lower bound</td>
</tr>
<tr>
<td>UB</td>
<td>Upper bound</td>
</tr>
<tr>
<td>Obj</td>
<td>Linear objective coefficient</td>
</tr>
<tr>
<td>VType</td>
<td>Variable type (continuous, binary, integer, etc.)</td>
</tr>
<tr>
<td>VarName</td>
<td>Variable name</td>
</tr>
<tr>
<td>VTag</td>
<td>Variable tag</td>
</tr>
<tr>
<td>X</td>
<td>Value in the current solution</td>
</tr>
<tr>
<td>Xn</td>
<td>Value in a sub-optimal MIP solution</td>
</tr>
<tr>
<td>RC</td>
<td>Reduced cost</td>
</tr>
<tr>
<td>BarX</td>
<td>Value in the best barrier iterate (before crossover)</td>
</tr>
<tr>
<td>Start</td>
<td>MIP start value (for constructing an initial MIP solution)</td>
</tr>
<tr>
<td>VarHintVal</td>
<td>MIP hint value</td>
</tr>
<tr>
<td>VarHintPri</td>
<td>MIP hint priority</td>
</tr>
<tr>
<td>BranchPriority</td>
<td>Branching priority</td>
</tr>
<tr>
<td>Partition</td>
<td>Variable partition</td>
</tr>
<tr>
<td>VBasis</td>
<td>Basis status</td>
</tr>
<tr>
<td>PStart</td>
<td>Simplex start vector</td>
</tr>
<tr>
<td>IISLB</td>
<td>Indicates whether the lower bound participates in the IIS</td>
</tr>
<tr>
<td>IISUB</td>
<td>Indicates whether the upper bound participates in the IIS</td>
</tr>
</tbody>
</table>
PWLObjCvx Indicates whether the variable has a convex piecewise-linear objective
SAObjLow Objective coefficient sensitivity information
SAObjUp Objective coefficient sensitivity information
SALBLow Lower bound sensitivity information
SALBUp Lower bound sensitivity information
SAUBLow Upper bound sensitivity information
SAUBUp Upper bound sensitivity information
UnbdRay Unbounded ray

Linear constraint attributes:
These attributes provide information that is associated with specific linear constraints.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense</td>
<td>Constraint sense (’,&lt;’, ’&gt;’, or ’=’)</td>
</tr>
<tr>
<td>RHS</td>
<td>Right-hand side value</td>
</tr>
<tr>
<td>ConstrName</td>
<td>Constraint name</td>
</tr>
<tr>
<td>CTag</td>
<td>Constraint tag</td>
</tr>
<tr>
<td>Pi</td>
<td>Dual value (also known as the shadow price)</td>
</tr>
<tr>
<td>Slack</td>
<td>Slack in the current solution</td>
</tr>
<tr>
<td>CBasis</td>
<td>Basis status</td>
</tr>
<tr>
<td>DStart</td>
<td>Simplex start vector</td>
</tr>
<tr>
<td>Lazy</td>
<td>Determines whether a constraint is treated as a lazy constraint</td>
</tr>
<tr>
<td>IISSConstr</td>
<td>Indicates whether the constraint participates in the IIS</td>
</tr>
<tr>
<td>SARHSLow</td>
<td>Right-hand side sensitivity information</td>
</tr>
<tr>
<td>SARHSUp</td>
<td>Right-hand side sensitivity information</td>
</tr>
<tr>
<td>FarkasDual</td>
<td>Farkas infeasibility proof</td>
</tr>
</tbody>
</table>

SOS attributes:
These attributes provide information that is associated with specific Special-Ordered Set (SOS) constraints.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IISSSOS</td>
<td>Indicates whether the SOS constraint participates in the IIS</td>
</tr>
</tbody>
</table>

Quadratic constraint attributes:
These attributes provide information that is associated with specific quadratic constraints.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCSDense</td>
<td>Constraint sense (’,&lt;’, ’&gt;’, or ’=’)</td>
</tr>
<tr>
<td>QCName</td>
<td>Quadratic constraint name</td>
</tr>
<tr>
<td>QCPi</td>
<td>Dual value</td>
</tr>
<tr>
<td>QCStats</td>
<td>Slack in the current solution</td>
</tr>
<tr>
<td>QCTag</td>
<td>Quadratic constraint tag</td>
</tr>
<tr>
<td>IISQConstr</td>
<td>Indicates whether the quadratic constraint participates in the IIS</td>
</tr>
</tbody>
</table>
General constraint attributes:
These attributes provide information that is associated with specific general constraints. Those starting with "Func" are only for function constraints.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FuncPieceError</td>
<td>Error allowed for PWL translation</td>
</tr>
<tr>
<td>FuncPieceLength</td>
<td>Piece length for PWL translation</td>
</tr>
<tr>
<td>FuncPieceRatio</td>
<td>Controls whether to under- or over-estimate function values in PWL approximation</td>
</tr>
<tr>
<td>FuncPieces</td>
<td>Sets strategy for PWL function approximation</td>
</tr>
<tr>
<td>GenConstrType</td>
<td>Type of general constraint</td>
</tr>
<tr>
<td>GenConstrName</td>
<td>General constraint name</td>
</tr>
<tr>
<td>IISGenConstr</td>
<td>Indicates whether the general constraint participates in the IIS</td>
</tr>
</tbody>
</table>

Solution quality attributes:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoundVio</td>
<td>Maximum (unscaled) bound violation</td>
</tr>
<tr>
<td>BoundSVio</td>
<td>Maximum (scaled) bound violation</td>
</tr>
<tr>
<td>BoundVioIndex</td>
<td>Index of variable with the largest (unscaled) bound violation</td>
</tr>
<tr>
<td>BoundSVioIndex</td>
<td>Index of variable with the largest (scaled) bound violation</td>
</tr>
<tr>
<td>BoundVioSum</td>
<td>Sum of (unscaled) bound violations</td>
</tr>
<tr>
<td>BoundSVioSum</td>
<td>Sum of (scaled) bound violations</td>
</tr>
<tr>
<td>ConstrVio</td>
<td>Maximum (unscaled) constraint violation</td>
</tr>
<tr>
<td>ConstrSVio</td>
<td>Maximum (scaled) constraint violation</td>
</tr>
<tr>
<td>ConstrVioIndex</td>
<td>Index of constraint with the largest (unscaled) violation</td>
</tr>
<tr>
<td>ConstrSVioIndex</td>
<td>Index of constraint with the largest (scaled) violation</td>
</tr>
<tr>
<td>ConstrVioSum</td>
<td>Sum of (unscaled) constraint violations</td>
</tr>
<tr>
<td>ConstrSVioSum</td>
<td>Sum of (scaled) constraint violations</td>
</tr>
<tr>
<td>ConstrResidual</td>
<td>Maximum (unscaled) primal constraint error</td>
</tr>
<tr>
<td>ConstrSResidual</td>
<td>Maximum (scaled) primal constraint error</td>
</tr>
<tr>
<td>ConstrResidualIndex</td>
<td>Index of constraint with the largest (unscaled) primal constraint error</td>
</tr>
<tr>
<td>ConstrSResidualIndex</td>
<td>Index of constraint with the largest (scaled) primal constraint error</td>
</tr>
<tr>
<td>ConstrResidualSum</td>
<td>Sum of (unscaled) primal constraint errors</td>
</tr>
<tr>
<td>ConstrSResidualSum</td>
<td>Sum of (scaled) primal constraint errors</td>
</tr>
<tr>
<td>DualVio</td>
<td>Maximum (unscaled) reduced cost violation</td>
</tr>
<tr>
<td>DualSVio</td>
<td>Maximum (scaled) reduced cost violation</td>
</tr>
<tr>
<td>DualVioIndex</td>
<td>Index of variable with the largest (unscaled) reduced cost violation</td>
</tr>
<tr>
<td>DualSVioIndex</td>
<td>Index of variable with the largest (scaled) reduced cost violation</td>
</tr>
<tr>
<td>DualVioSum</td>
<td>Sum of (unscaled) reduced cost violations</td>
</tr>
<tr>
<td>DualSVioSum</td>
<td>Sum of (scaled) reduced cost violations</td>
</tr>
<tr>
<td>DualResidual</td>
<td>Maximum (unscaled) dual constraint error</td>
</tr>
<tr>
<td>DualSResidual</td>
<td>Maximum (scaled) dual constraint error</td>
</tr>
<tr>
<td>DualResidualIndex</td>
<td>Index of variable with the largest (unscaled) dual constraint error</td>
</tr>
<tr>
<td>DualSResidualIndex</td>
<td>Index of variable with the largest (scaled) dual constraint error</td>
</tr>
<tr>
<td>DualResidualSum</td>
<td>Sum of (unscaled) dual constraint errors</td>
</tr>
<tr>
<td>DualSResidualSum</td>
<td>Sum of (scaled) dual constraint errors</td>
</tr>
</tbody>
</table>
ComplVio  Maximum complementarity violation
ComplVioIndex  Index of variable with the largest complementarity violation
ComplVioSum  Sum of complementarity violations
IntVio  Maximum integrality violation
IntVioIndex  Index of variable with the largest integrality violation
IntVioSum  Sum of integrality violations

**Multi-objective attributes:**

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObjN</td>
<td>Objectives of multi-objectives</td>
</tr>
<tr>
<td>ObjNCon</td>
<td>Constant terms of multi-objectives</td>
</tr>
<tr>
<td>ObjNPriority</td>
<td>Priorities of multi-objectives</td>
</tr>
<tr>
<td>ObjNWeight</td>
<td>Weights of multi-objectives</td>
</tr>
<tr>
<td>ObjNRelTol</td>
<td>Relative tolerances of multi-objectives</td>
</tr>
<tr>
<td>ObjNAbsTol</td>
<td>Absolute tolerances of multi-objectives</td>
</tr>
<tr>
<td>ObjNVal</td>
<td>Objective value of multi-objectives solutions</td>
</tr>
<tr>
<td>ObjNName</td>
<td>Names of multi-objectives</td>
</tr>
<tr>
<td>NumObj</td>
<td>Number of multi-objectives</td>
</tr>
</tbody>
</table>
Multi-scenario attributes:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScenNLB</td>
<td>Lower bound changes of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNUB</td>
<td>Upper bound changes of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNObj</td>
<td>Objective coefficient changes of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNRHS</td>
<td>Right-hand side changes of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNName</td>
<td>Name of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNObjBound</td>
<td>Objective bound of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNObjVal</td>
<td>Objective value for current solution of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>ScenNX</td>
<td>Value in the current solution of current scenario in multi-scenario model</td>
</tr>
<tr>
<td>NumScenarios</td>
<td>Number of scenarios</td>
</tr>
</tbody>
</table>

Batch attributes:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatchErrorCode</td>
<td>Last error code received from the Cluster Manager</td>
</tr>
<tr>
<td>BatchErrorMessage</td>
<td>Last error message received from the Cluster Manager</td>
</tr>
<tr>
<td>BatchID</td>
<td>ID of the remote batch</td>
</tr>
<tr>
<td>BatchStatus</td>
<td>Status of the batch</td>
</tr>
</tbody>
</table>

11.1 Model Attributes

These are model attributes, meaning that they are associated with the overall model (as opposed to being associated with a particular variable or constraint of the model). You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section). For the object-oriented interfaces, model attributes are retrieved by invoking the get method on the model object itself. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOTAVAILABLE error code. The object-oriented interfaces will throw an exception.

**NumConstrs**

Type: int
Modifiable: No

The number of linear constraints in the model.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumVars**

Type: int
Modifiable: No

The number of decision variables in the model.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**NumSOS**

**Type:** int  
**Modifiable:** No

The number of Special Ordered Set (SOS) constraints in the model.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumQConstrs**

**Type:** int  
**Modifiable:** No

The number of quadratic constraints in the model.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumGenConstrs**

**Type:** int  
**Modifiable:** No

The number of general constraints in the model.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumNZs**

**Type:** int  
**Modifiable:** No

The number of non-zero coefficients in the linear constraints of the model. For models with more than 2 billion non-zero coefficients use DNumNZs.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DNumNZs**

**Type:** double  
**Modifiable:** No

The number of non-zero coefficients in the linear constraints of the model. This attribute is provided in double precision format to accurately count the number of non-zeros in models that contain more than 2 billion non-zero coefficients.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumQNZs**

**Type:** int  
**Modifiable:** No

The number of terms in the lower triangle of the Q matrix in the quadratic objective.  
For examples of how to query or modify attributes, refer to our Attribute Examples.
NumQCNZs

Type: int
Modifiable: No
The number of non-zero coefficients in the quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumIntVars

Type: int
Modifiable: No
The number of integer variables in the model. This includes both binary variables and general integer variables.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumBinVars

Type: int
Modifiable: No
The number of binary variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumPWLObjVars

Type: int
Modifiable: No
The number of variables in the model with piecewise-linear objective functions. You can query the function for a specific variable using the appropriate getPWLObj method for your language (in C, C++, C#, Java, and Python).
For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelName

Type: string
Modifiable: Yes
The name of the model. The name has no effect on Gurobi algorithms. It is output in the Gurobi log file when a model is solved, and when a model is written to a file.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelSense

Type: int
Modifiable: Yes
Optimization sense. The default 1 value indicates that the objective is to minimize the objective. Setting this attribute to -1 changes the sense to maximization.
For examples of how to query or modify attributes, refer to our Attribute Examples.
**ObjCon**

*Type:* double  
*Modifiable:* Yes  
A constant value that is added into the model objective. The default value is 0.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjVal**

*Type:* double  
*Modifiable:* No  
The objective value for the current solution. If the model was solved to optimality, then this attribute gives the optimal objective value.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjBound**

*Type:* double  
*Modifiable:* No  
The best known bound on the optimal objective. When solving a MIP model, the algorithm maintains both a lower bound and an upper bound on the optimal objective value. For a minimization model, the upper bound is the objective of the best known feasible solution, while the lower bound gives a bound on the best possible objective.  
In contrast to ObjBoundC, this attribute takes advantage of objective integrality information to round to a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjBoundC**

*Type:* double  
*Modifiable:* No  
The best known bound on the optimal objective. When solving a MIP model, the algorithm maintains both a lower bound and an upper bound on the optimal objective value. For a minimization model, the upper bound is the objective of the best known feasible solution, while the lower bound gives a bound on the best possible objective.  
In contrast to ObjBound, this attribute does not take advantage of objective integrality information to round to a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**PoolObjBound**

*Type:* double  
*Modifiable:* No  
Bound on the objective of undiscovered MIP solutions. The MIP solver stores solutions that it finds during the MIP search, but it only provides quality guarantees for those whose objective is
at least as good as PoolObjBound. Specifically, further exploration of the MIP search tree will not find solutions whose objective is better than PoolObjBound.

The difference between PoolObjBound and ObjBound is that the former gives an objective bound for undiscovered solutions, while the latter gives a bound for any solution.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**PoolObjVal**

*Type:* double  
*Modifiable:* No

This attribute is used to query the objective value of the $k$-th solution stored in the pool of feasible solutions found so far for the problem. You set $k$ using the SolutionNumber parameter.

The number of stored solutions can be queried using the SolCount attribute.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**MIPGap**

*Type:* double  
*Modifiable:* No

Current relative MIP optimality gap; computed as $|ObjBound - ObjVal|/|ObjVal|$ (where ObjBound and ObjVal are the MIP objective bound and incumbent solution objective, respectively.) Returns GRB_INFINITY when an incumbent solution has not yet been found, when no objective bound is available, or when the current incumbent objective is 0.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**Runtime**

*Type:* double  
*Modifiable:* No

Runtime for the most recent optimization (in seconds). Note that all times reported by the Gurobi Optimizer are wall-clock times.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**Status**

*Type:* int  
*Modifiable:* No

Current optimization status for the model. Status values are described in the Status Code section.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**SolCount**

*Type:* int  
*Modifiable:* No

Number of stored solutions from the most recent optimization.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**IterCount**

**Type:** double  
**Modifiable:** No  
Number of simplex iterations performed during the most recent optimization.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**BarIterCount**

**Type:** int  
**Modifiable:** No  
Number of barrier iterations performed during the most recent optimization.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NodeCount**

**Type:** double  
**Modifiable:** No  
Number of branch-and-cut nodes explored in the most recent optimization.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IsMIP**

**Type:** int  
**Modifiable:** No  
Indicates whether the model is a MIP. Note that any discrete elements make the model a MIP. Discrete elements include binary, integer, semi-continuous, semi-integer variables, SOS constraints, and general constraints. In addition, models having multiple objectives or multiple scenarios are considered as MIP models, even when all variables are continuous and all constraints are linear.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IsQP**

**Type:** int  
**Modifiable:** No  
Indicates whether the model is a quadratic programming problem. Note that a model with both a quadratic objective and quadratic constraints is classified as a QCP, not a QP.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IsQCP**

**Type:** int  
**Modifiable:** No  
Indicates whether the model has quadratic constraints.  
For examples of how to query or modify attributes, refer to our Attribute Examples.
IsMultiObj

Type: int
Modifiable: No

Indicates whether the model has multiple objectives.

Note that the case where the model has a single objective (NumObj = 1) is slightly ambiguous. If you used setObjectiveN to set your objective, or if you set any of the multi-objective attributes (e.g., ObjNPriority), then the model is considered to be a multi-objective model. Otherwise, it is not.

To reset a multi-objective model back to a single objective model, you should set the NumObj attribute to 0, call model update, and then set a new single objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISMinimal

Type: int
Modifiable: No

Indicates whether the current Irreducible Inconsistent Subsystem (IIS) is minimal. This attribute is only available after you have computed an IIS on an infeasible model. It will normally take value 1, but it may take value 0 if the IIS computation was stopped early (e.g., due to a time limit or user interrupt).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxCoeff

Type: double
Modifiable: No

Maximum matrix coefficient (in absolute value) in the linear constraint matrix.

For examples of how to query or modify attributes, refer to our Attribute Examples.

MinCoeff

Type: double
Modifiable: No

Minimum non-zero matrix coefficient (in absolute value) in the linear constraint matrix.

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxBound

Type: double
Modifiable: No

Maximum (finite) variable bound.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**MinBound**

**Type:** double  
**Modifiable:** No  
Minimum (non-zero) variable bound.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MaxObjCoeff**

**Type:** double  
**Modifiable:** No  
Maximum linear objective coefficient (in absolute value).  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MinObjCoeff**

**Type:** double  
**Modifiable:** No  
Minimum (non-zero) linear objective coefficient (in absolute value).  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MaxRHS**

**Type:** double  
**Modifiable:** No  
Maximum (finite) linear constraint right-hand side value (in absolute value).  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MinRHS**

**Type:** double  
**Modifiable:** No  
Minimum (non-zero) linear constraint right-hand side value (in absolute value).  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MaxQCCoeff**

**Type:** double  
**Modifiable:** No  
Maximum coefficient in the quadratic part of all quadratic constraint matrices (in absolute value).  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**MinQCCoeff**

**Type:** double  
**Modifiable:** No
Minimum (non-zero) coefficient in the quadratic part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCLCoeff

Type: double
Modifiable: No
Maximum coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCLCoeff

Type: double
Modifiable: No
Minimum (non-zero) coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCRHS

Type: double
Modifiable: No
Maximum (finite) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCRHS

Type: double
Modifiable: No
Minimum (non-zero) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQObjCoeff

Type: double
Modifiable: No
Maximum coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQObjCoeff

Type: double
Modifiable: No
Minimum (non-zero) coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.
Kappa

Type: double
Modifiable: No
Estimated condition number for the current LP basis matrix. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

KappaExact

Type: double
Modifiable: No
Exact condition number for the current LP basis matrix. Only available for basic solutions.
The exact condition number is much more expensive to compute than the estimate that you get
from the Kappa attribute. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasProof

Type: double
Modifiable: No
Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the
given problem. Specifically, they can be used to form the following inequality from the original
constraints that is trivially infeasible:

\[
\bar{a}x = \lambda^tAx \leq \lambda^tb = -\beta + \sum_{j: \bar{a}_j < 0} \bar{a}_jU_j + \sum_{j: \bar{a}_j > 0} \bar{a}_jL_j,
\]

where \( \beta > 0 \), \( L_j \) is the lower bound of variable \( x_j \), \( U_j \) is the upper bound of variable \( x_j \), \( \lambda_i \geq 0 \) if
the \( i \)-th constraint has a \( \leq \) sense, \( \lambda_i \leq 0 \) if the \( i \)-th constraint has a \( \geq \) sense, \( \bar{a}_j \geq 0 \) if \( U_j = \infty \), and
\( \bar{a}_j \leq 0 \) if \( L_j = -\infty \). This constraint can not be satisfied for any \( \beta > 0 \). The FarkasProof attribute
provides \( \beta \), and the FarkasDual attributes provide \( \lambda \) multipliers for the original constraints.
This attribute is only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

TuneResultCount

Type: int
Modifiable: No
After the tuning tool has been run, this attribute reports the number of parameter sets that
were stored. This value will be zero if no improving parameter sets were found, and its upper
bound is determined by the TuneResults parameter.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumStart

Type: int
Modifiable: Yes
Number of MIP starts in the model. Decreasing this attribute will discard existing MIP starts. Increasing it will create new MIP starts (initialized to undefined).

You can use the StartNumber parameter to query or modify start values for different MIP starts, or to append a new one. The value of StartNumber should always be less than NumStart.

For examples of how to query or modify attributes, refer to our Attribute Examples.

LicenseExpiration

Type: int
Modifiable: No

License expiration date. The format is YYYYMMDD, so for example if the license currently in use expired on July 20, 2018, the result would be 20180720. If the license has no expiration date, the result will be 99999999.

This attribute is available for node licenses and for clients of a Gurobi Compute Server. Unfortunately, this attribute isn’t available for clients of a Gurobi Token Server.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Server

Type: string
Modifiable: No

If you are running on a Compute Server, this attribute provides the name of the Compute Server where the current job is running.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.2 Variable Attributes

These are variable attributes, meaning that they are associated with specific variables in the model. You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section). For the object-oriented interfaces, variable attributes are retrieved by invoking the get method on a variable object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

LB

Type: double
Modifiable: Yes

Variable lower bound. Note that any value less than -1e20 is treated as negative infinity.

For examples of how to query or modify attributes, refer to our Attribute Examples.

UB

Type: double
Modifiable: Yes
Variable upper bound. Note that any value greater than $1e20$ is treated as infinite. For examples of how to query or modify attributes, refer to our Attribute Examples.

**Obj**

**Type:** double  
**Modifiable:** Yes  
Linear objective coefficient. In our object-oriented interfaces, you typically use the `setObjective` method to set the objective, but this attribute provides an alternative for setting or modifying linear objective terms.

Note that this attribute interacts with our piecewise-linear objective feature. If you set a piecewise-linear objective function for a variable, that will automatically set the `Obj` attribute to zero. Similarly, if you set the `Obj` attribute for a variable, that will automatically delete any previously specified piecewise-linear objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**VarName**

**Type:** string  
**Modifiable:** Yes  
Variable name.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**VTag**

**Type:** string  
**Modifiable:** Yes  
Tag for variables.

If you will be retrieving the solution to your model in JSON format, you should define a tag for every variable that you plan to retrieve solution information for. Each variable tag must be unique, and only tagged variables will appear in the JSON solution string. Tags must consist of printable US-ASCII characters. Using extended characters or escaped characters will result in an error. The maximum supported length for a tag is 10240 characters.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**VType**

**Type:** char  
**Modifiable:** Yes  
Variable type (‘C’ for continuous, ‘B’ for binary, ‘I’ for integer, ‘S’ for semi-continuous, or ‘N’ for semi-integer). Binary variables must be either 0 or 1. Integer variables can take any integer value between the specified lower and upper bounds. Semi-continuous variables can take any value between the specified lower and upper bounds, or a value of zero. Semi-integer variables can take any integer value between the specified lower and upper bounds, or a value of zero.

Refer to this section for more information on variable types.

For examples of how to query or modify attributes, refer to our Attribute Examples.
X
Type: double
Modifiable: No
Variable value in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Xn
Type: double
Modifiable: No
The variable value in a sub-optimal MIP solution. Use parameter SolutionNumber to indicate which alternate solution to retrieve. Solutions are sorted in order of worsening objective value. Thus, when SolutionNumber is 1, Xn returns the second-best solution found. When SolutionNumber is equal to its default value of 0, querying attribute Xn is equivalent to querying attribute X.

The number of sub-optimal solutions found during the MIP search will depend on the values of a few parameters. The most important of these are PoolSolutions, PoolSearchMode, and PoolGap. Please consult the section on Solution Pools for a more detailed discussion of this topic.

For examples of how to query or modify attributes, refer to our Attribute Examples.

RC
Type: double
Modifiable: No
The reduced cost in the current solution. Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BarX
Type: double
Modifiable: No
The variable value in the best barrier iterate (before crossover). Only available when the barrier algorithm was selected.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Start
Type: double
Modifiable: Yes
The current MIP start vector. The MIP solver will attempt to build an initial solution from this vector when it is available. Note that the start can be partially populated -- the MIP solver will attempt to fill in values for missing start values. If you wish to leave the start value for a variable undefined, you can either avoid setting the Start attribute for that variable, or you can set it to a special undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and Python).
If the Gurobi MIP solver log indicates that your MIP start didn’t produce a new incumbent solution, note that there can be multiple explanations. One possibility is that your MIP start is infeasible. Another, more common possibility is that one of the Gurobi heuristics found a solution that is as good as the solution produced by the MIP start, so the MIP start solution was cut off. Finally, if you specified a partial MIP start, it is possible that the limited MIP exploration done on this partial start was insufficient to find a new incumbent solution. You can try setting the StartNodeLimit parameter to a larger value if you want Gurobi to work harder to try to complete the partial start.

If you solve a sequence of models, where one is built by modifying the previous one, and if you don’t provide a MIP start, then Gurobi will try to construct one automatically from the solution of the previous model. If you don’t want it to try this, you should reset the model before starting the subsequent solve. If you provided a MIP start but would prefer to use the previous solution as the start instead, you should clear your start (by setting the Start attribute to undefined for all variables).

If you have multiple start vectors, you can provide them to Gurobi by using the Start attribute in combination with the NumStart attribute and the StartNumber parameter. Specifically, use the NumStart attribute to indicate how many start vectors you will supply. Then set the StartNumber parameter to a value between 0 and NumStart-1 to indicate which start you are supplying. For each value of StartNumber, populate the Start attribute to supply that start. Gurobi will use all of the provided starts. As an alternative, you can append new MIP start vectors to your model by setting the StartNumber parameter to -1. In this case, whenever you read a MIP start, or use a function to set a MIP start value for a set of variables, a new MIP start will be created, the parameter NumStart will be increased, and any unspecified variable will be left as undefined.

If you want to diagnose an infeasible MIP start, you can try fixing the variables in the model to their values in your MIP start (by setting their lower and upper bound attributes). If the resulting MIP model is infeasible, you can then compute an IIS on this model to get additional information that should help to identify the cause of the infeasibility.

Only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintVal

Type: double
Modifiable: Yes

A set of user hints. If you know that a variable is likely to take a particular value in high quality solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide information about your level of confidence in a hint with the VarHintPri attribute.

The Gurobi MIP solver will use these variable hints in a number of different ways. Hints will affect the heuristics that Gurobi uses to find feasible solutions, and the branching decisions that Gurobi makes to explore the MIP search tree. In general, high quality hints should produce high quality MIP solutions faster. In contrast, low quality hints will lead to some wasted effort, but shouldn’t lead to dramatic performance degradations.

Variables hints and MIP starts are similar in concept, but they behave in very different ways. If you specify a MIP start, the Gurobi MIP solver will try to build a single feasible solution from the provided set of variable values. If you know a solution, you should use a MIP start to provide it to the solver. In contrast, variable hints provide guidance to the MIP solver that affects the entire
solution process. If you have a general sense of the likely values for variables, you should provide them through variable hints.

If you wish to leave the hint value for a variable undefined, you can either avoid setting the `VarHintVal` attribute for that variable, or you can set it to a special undefined value (`GRB.UNDEFINED` in C and C++, `GRB.UNDEFINED` in Java, .NET, and Python, `NA` in R or `nan` in Matlab).

Note that deleting variables from your model will cause several attributes to be discarded (variable hints and branch priorities). If you’d like them to persist, your program will need to repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**VarHintPri**

- **Type:** int
- **Modifiable:** Yes

Priorities on user hints. After providing variable hints through the `VarHintVal` attribute, you can optionally also provide hint priorities to give an indication of your level of confidence in your hints.

Hint priorities are relative. If you are more confident in the hint value for one variable than for another, you simply need to set a larger priority value for the more solid hint. The default hint priority for a variable is 0.

Please refer to the `VarHintVal` discussion for more details on the role of variable hints.

Only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**BranchPriority**

- **Type:** int
- **Modifiable:** Yes

Variable branching priority. The value of this attribute is used as the primary criterion for selecting a fractional variable for branching during the MIP search. Variables with larger values always take priority over those with smaller values. Ties are broken using the standard branch variable selection criteria. The default variable branch priority value is zero.

Note that deleting variables from your model will cause several attributes to be discarded (variable hints and branch priorities). If you’d like them to persist, your program will need to repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**Partition**

- **Type:** int
- **Modifiable:** Yes

Variable partition. The MIP solver can perform a solution improvement heuristic using user-provided partition information. The provided partition number can be positive, which indicates that the variable should be included when the correspondingly numbered sub-MIP is solved, 0
which indicates that the variable should be included in every sub-MIP, or -1 which indicates that
the variable should not be included in any sub-MIP. Variables that are not included in the sub-MIP
are fixed to their values in the current incumbent solution. By default, all variables start with a
value of -1.

To give an example, imagine you are solving a model with 400 variables and you set the partition
attribute to -1 for variables 0-99, 0 for variables 100-199, 1 for variables 200-299, and 2 for variables
300-399. The heuristic would solve two sub-MIP models: sub-MIP 1 would fix variables 0-99 and
300-399 to their values in the incumbent and solve for the rest, while sub-MIP 2 would fix variables
0-99 and 200-299.

Use the PartitionPlace parameter to control where the partition heuristic runs.
Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**VBasis**

*Type:* int  
*Modifiable:* Yes

The status of a given variable in the current basis. Possible values are 0 (basic), -1 (non-basic
at lower bound), -2 (non-basic at upper bound), and -3 (super-basic). Note that, if you wish to
specify an advanced starting basis, you must set basis status information for all constraints and
variables in the model. Only available for basic solutions.

Note that if you provide a valid starting extreme point, either through `PStart`, `DStart`, or
through `VBasis`, `CBasis`, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**PStart**

*Type:* double  
*Modifiable:* Yes

The current simplex start vector. If you set `PStart` values for every variable in the model and
`DStart` values for every constraint, then simplex will use those values to compute a warm start
basis. If you’d like to retract a previously specified start, set any `PStart` value to `GRB_UNDEFINED`.

Note that any model modifications made after setting `PStart` (adding variables or constraints,
changing coefficients, etc.) will discard the start. You should only set this attribute after you are
done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program using
a simplex basis (using `VBasis` and `CBasis`). The `PStart` attribute should only be used in situations
where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using
the `Start` attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.

Note that if you provide a valid starting extreme point, either through `PStart`, `DStart`, or
through `VBasis`, `CBasis`, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.
IISLB

Type: int
Modifiable: No
For an infeasible model, indicates whether the lower bound participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISUB

Type: int
Modifiable: No
For an infeasible model, indicates whether the upper bound participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

PWLObjCvx

Type: int
Modifiable: No
Indicates whether a variable has a convex piecewise-linear objective. Returns 0 if the piecewise-linear objective function on the variable is non-convex. Returns 1 if the function is convex, or if the objective function on the variable is linear.
This attribute is useful for isolating the particular variable that caused a continuous model with a piecewise-linear objective function to become a MIP.
For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjLow

Type: double
Modifiable: No
Objective coefficient sensitivity information: smallest objective value at which the current optimal basis would remain optimal. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjUp

Type: double
Modifiable: No
Objective coefficient sensitivity information: largest objective value at which the current optimal basis would remain optimal. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBLow

Type: double
Modifiable: No

Lower bound sensitivity information: smallest lower bound value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBUp

Type: double
Modifiable: No
Lower bound sensitivity information: largest lower bound value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBLow

Type: double
Modifiable: No
Upper bound sensitivity information: smallest upper bound value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBUp

Type: double
Modifiable: No
Upper bound sensitivity information: largest upper bound value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

UnbdRay

Type: double
Modifiable: No
Unbounded ray (for unbounded linear models only). Provides a vector that, when added to any feasible solution, yields a new solution that is also feasible but improves the objective. Only available when parameter InfUnbdInfo is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.3 Linear Constraint Attributes

These are linear constraint attributes, meaning that they are associated with specific linear constraints in the model. You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section. For the object-oriented interfaces, linear constraint attributes are retrieved by invoking the get method on a constraint object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.
Sense

Type: char
Modifiable: Yes

Constraint sense (‘<’, ‘>’, or ‘=’).
For examples of how to query or modify attributes, refer to our Attribute Examples.

RHS

Type: double
Modifiable: Yes

Constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrName

Type: string
Modifiable: Yes

Constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

CTag

Type: string
Modifiable: Yes

Tag for constraints.
If you will be retrieving the solution to your model in JSON format, you should define a tag for every constraint that you plan to retrieve solution information for. Each constraint tag must be unique, and only tagged constraints will appear in the JSON solution string. Tags must consist of printable US-ASCII characters. Using extended characters or escaped characters will result in an error. The maximum supported length for a tag is 10240 characters.

Note that constraint tags are only allowed for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Pi

Type: double
Modifiable: No

The constraint dual value in the current solution (also known as the shadow price).

Given a linear programming problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \geq b \\
& \quad x \geq 0
\end{align*}
\]

and a corresponding dual problem
\[
\begin{align*}
\text{maximize} & \quad b'y \\
\text{subject to} & \quad A'y \leq c \\
& \quad y \geq 0
\end{align*}
\]

the \( \Pi \) attribute returns \( y \).

Of course, not all models fit this canonical form. In general, dual values have the following properties:

- Dual values for \( \geq \) constraints are \( \geq 0 \).
- Dual values for \( \leq \) constraints are \( \leq 0 \).
- Dual values for \( = \) constraints are unconstrained.

For models with a maximization sense, the senses of the dual values are reversed: the dual is \( \geq 0 \) for a \( \leq \) constraint and \( \leq 0 \) for a \( \geq \) constraint.

Only available for continuous models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**Slack**

**Type:** double  
**Modifiable:** No  
The constraint slack in the current solution.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**CBasis**

**Type:** int  
**Modifiable:** Yes  
The status of a given linear constraint in the current basis. Possible values are 0 (basic) or -1 (non-basic). A constraint is basic when its slack variable is in the simplex basis. Note that, if you wish to specify an advanced starting basis, you must set basis status information for all constraints and variables in the model. Only available for basic solutions.

Note that if you provide a valid starting extreme point, either through \( \text{PStart} \), \( \text{DStart} \), or through \( \text{VBasis} \), \( \text{CBasis} \), then LP presolve will be disabled. For models where presolve greatly reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**DStart**

**Type:** double  
**Modifiable:** Yes  
The current simplex start vector. If you set \( \text{DStart} \) values for every linear constraint in the model and \( \text{PStart} \) values for every variable, then simplex will use those values to compute a warm start basis. If you’d like to retract a previously specified start, set any \( \text{DStart} \) value to \( \text{GRB_UNDEFINED} \).
Note that any model modifications made after setting `DStart` (adding variables or constraints, changing coefficients, etc.) will discard the start. You should only set this attribute after you are done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program from a simplex basis (using `VBasis` and `CBasis`). The `DStart` attribute should only be used in situations where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using the `Start` attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.

Note that if you provide a valid starting extreme point, either through `PStart`, `DStart`, or through `VBasis`, `CBasis`, then LP presolve will be disabled. For models where presolve greatly reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**Lazy**

**Type:** int  
**Modifiable:** Yes  

Determines whether a linear constraint is treated as a *lazy constraint*. At the beginning of the MIP solution process, any constraint whose `Lazy` attribute is set to 1, 2, or 3 (the default value is 0) is removed from the model and placed in the lazy constraint pool. Lazy constraints remain inactive until a feasible solution is found, at which point the solution is checked against the lazy constraint pool. If the solution violates any lazy constraints, the solution is discarded and one or more of the violated lazy constraints are pulled into the active model.

Larger values for this attribute cause the constraint to be pulled into the model more aggressively. With a value of 1, the constraint can be used to cut off a feasible solution, but it won’t necessarily be pulled in if another lazy constraint also cuts off the solution. With a value of 2, all lazy constraints that are violated by a feasible solution will be pulled into the model. With a value of 3, lazy constraints that cut off the relaxation solution at the root node are also pulled in.

Note that deleting constraints from your model will cause this attribute to be discarded. If you’d like it to persist, your program will need to repopulate it after deleting the constraints and making a subsequent model update call.

Note that only linear constraints can be marked lazy. Marking other types of constraints (such as quadratic, SOS, or general constraints) as `Lazy` may result in an error, or may be ignored. This attribute only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**IISConstr**

**Type:** int  
**Modifiable:** No  

For an infeasible model, indicates whether the linear constraint participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.
SARHSLow

Type: double
Modifiable: No
Right-hand side sensitivity information: smallest right-hand side value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSUp

Type: double
Modifiable: No
Right-hand side sensitivity information: largest right-hand side value at which the current optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasDual

Type: double
Modifiable: No
Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the given problem. Specifically, they can be used to form the following inequality from the original constraints that is trivially infeasible:

$$\bar{a}x = \lambda^tAx \leq \lambda^t \mathbf{b} = -\beta + \sum_{j: \bar{a}_j < 0} \bar{a}_j U_j + \sum_{j: \bar{a}_j > 0} \bar{a}_j L_j,$$

where $\beta > 0$, $L_j$ is the lower bound of variable $x_j$, $U_j$ is the upper bound of variable $x_j$, $\lambda_i \geq 0$ if the $i$-th constraint has a $\leq$ sense, $\lambda_i \leq 0$ if the $i$-th constraint has a $\geq$ sense, $\bar{a}_j \geq 0$ if $U_j = \infty$, and $\bar{a}_j \leq 0$ if $L_j = -\infty$. This constraint can not be satisfied for any $\beta > 0$. The FarkasProof attribute provides $\beta$, and the FarkasDual attributes provide $\lambda$ multipliers for the original constraints.

This attribute is only available when parameter InfUnbdInfo is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.4 SOS Attributes

These are SOS attributes, meaning that they are associated with specific special-ordered set constraints in the model. You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section. For the object-oriented interfaces, SOS attributes are retrieved by invoking the get method on an SOS object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.
IISSOS

Type: int
Modifiable: No

For an infeasible model, indicates whether the SOS constraint participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.5 Quadratic Constraint Attributes

These are quadratic constraint attributes, meaning that they are associated with specific quadratic constraints in the model. You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section. For the object-oriented interfaces, quadratic constraint attributes are retrieved by invoking the get method on a constraint object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

QCSense

Type: char
Modifiable: Yes

Quadratic constraint sense (’<’, ’>’, or ’=’).

For examples of how to query or modify attributes, refer to our Attribute Examples.

QCRHS

Type: double
Modifiable: Yes

Quadratic constraint right-hand side.

For examples of how to query or modify attributes, refer to our Attribute Examples.

QCName

Type: string
Modifiable: Yes

Quadratic constraint name.

For examples of how to query or modify attributes, refer to our Attribute Examples.

QCPi

Type: double
Modifiable: No

The constraint dual value in the current solution. Note that quadratic constraint dual values are only available when the QCPDual parameter is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.
QCSlack

Type: double
Modifiable: No

The constraint slack in the current solution.

For examples of how to query or modify attributes, refer to our Attribute Examples.

QCTag

Type: string
Modifiable: Yes

Tag for quadratic constraints.

If you will be retrieving the solution to your model in JSON format, you should define a tag for every quadratic constraint that you plan to retrieve solution information for. Each quadratic constraint tag must be unique, and only tagged quadratic constraints will appear in the JSON solution string. Tags must consist of printable US-ASCII characters. Using extended characters or escaped characters will result in an error. The maximum supported length for a tag is 10240 characters.

Note that quadratic constraint tags are only allowed for continuous models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISQConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the quadratic constraint participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.6 General Constraint Attributes

These are general constraint attributes, meaning that they are associated with specific general constraints in the model. If the attribute name contains string 'GenConstr', then it is for all types of general constraints. If it starts with string "Func", then it is only for function constraints.

You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section). For the object-oriented interfaces, general constraint attributes are retrieved by invoking the get method on a constraint object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

FuncPieceError

Type: double
Modifiable: Yes
If the `FuncPieces` attribute is set to value −1 or −2, this attribute provides the maximum allowed error (absolute for −1, relative for −2) in the piecewise-linear approximation. For examples of how to query or modify attributes, refer to our Attribute Examples.

**FuncPieceLength**

**Type:** double  
**Modifiable:** Yes  
If the `FuncPieces` attribute is set to value 1, this attribute provides the length of each piece of the piecewise-linear approximation.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**FuncPieceRatio**

**Type:** double  
**Modifiable:** Yes  
This attribute controls whether the piecewise-linear approximation of a function constraint is an underestimate of the function, an overestimate, or somewhere in between. A value of 0.0 will always underestimate, while a value of 1.0 will always overestimate. A value in between will interpolate between the underestimate and the overestimate. A special value of -1 chooses points that are on the original function.  
See the discussion of function constraints for more information.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**FuncPieces**

**Type:** int  
**Modifiable:** Yes  
This attribute sets the strategy used for performing a piecewise-linear approximation of a function constraint. There are a few options:

- **FuncPieces = 0:** Ignore the attribute settings for this function constraint and use the parameter settings (FuncPieces, etc.) instead.
- **FuncPieces ≥ 2:** Sets the number of pieces; pieces are equal width.
- **FuncPieces = 1:** Uses a fixed width for each piece; the actual width is provided in the FuncPieceLength attribute.
- **FuncPieces = -1:** Bounds the absolute error of the approximation; the error bound is provided in the FuncPieceError attribute.
- **FuncPieces = -2:** Bounds the relative error of the approximation; the error bound is provided in the FuncPieceError attribute.

See the discussion of function constraints for more information.  
For examples of how to query or modify attributes, refer to our Attribute Examples.
GenConstrType

Type: int
Modifiable: No
General constraint type.

The language APIs contain enums that allows you to map the integer constraint type to a more meaningful name. In C, you’ll find GRB_GENCONSTR_MAX, GRB_GENCONSTR_MIN, etc. In the OO interfaces, you’ll find GRB.GENCONSTR_MAX, GRB.GENCONSTR_MIN, etc.

For examples of how to query or modify attributes, refer to our Attribute Examples.

GenConstrName

Type: string
Modifiable: Yes
General constraint name.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISGenConstr

Type: int
Modifiable: No
For an infeasible model, indicates whether the general constraint participates in the computed Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.7 Quality Attributes

These are solution quality attributes. They are associated with the overall model. You should use one of the various get routines to retrieve the value of an attribute. These are described at the beginning of this section). For the object-oriented interfaces, quality attributes are retrieved by invoking the get method on a constraint object. For attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented interfaces will throw an exception.

BoundVio

Type: double
Modifiable: No
Maximum (unscaled) bound violation.
Available for all model types.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**BoundSVio**

- **Type:** `double`
- **Modifiable:** No
  
  Maximum (scaled) bound violation.
  
  Only available for continuous models.
  
  For examples of how to query or modify attributes, refer to our Attribute Examples.

**BoundVioIndex**

- **Type:** `int`
- **Modifiable:** No
  
  Index of variable with the largest (unscaled) bound violation.
  
  Available for all model types.
  
  For examples of how to query or modify attributes, refer to our Attribute Examples.

**BoundSVioIndex**

- **Type:** `int`
- **Modifiable:** No
  
  Index of variable with the largest (scaled) bound violation.
  
  Only available for continuous models.
  
  For examples of how to query or modify attributes, refer to our Attribute Examples.

**BoundVioSum**

- **Type:** `double`
- **Modifiable:** No
  
  Sum of (unscaled) bound violations.
  
  Available for all model types.
  
  For examples of how to query or modify attributes, refer to our Attribute Examples.

**BoundSVioSum**

- **Type:** `double`
- **Modifiable:** No
  
  Sum of (scaled) bound violations.
  
  Only available for continuous models.
  
  For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrVio**

- **Type:** `double`
- **Modifiable:** No
  
  Reporting constraint violations for the simplex solver is actually more complex than it may appear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces explicit non-negative slack variables inside the algorithm. Thus, for example, \( a^T x \leq b \) becomes
\(a^T x + s = b\). In this formulation, constraint errors can show up in two places: (i) as bound violations on the computed slack variable values, and (ii) as differences between \(a^T x + s\) and \(b\). We report the former as ConstrVio and the latter as ConstrResidual.

For MIP models, the maximum violation of the constraints, including linear, quadratic, SOS and general constraints, is reported in ConstrVio.

Available for all model types.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrSVio**

*Type:* double  
*Modifiable:* No  
Maximum (scaled) slack bound violation.

Only available for continuous models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrViolIndex**

*Type:* int  
*Modifiable:* No  
Index of linear constraint with the largest (unscaled) slack bound violation for continuous linear models solved by simplex.

For MIP or other situations, it is for all the constraints. The constraint order is linear, quadratic, SOS and general. Assume there are \(l\) linear, \(q\) quadratic, \(s\) SOS and \(g\) general constraints and the index \(i\) is between \(l + q + s\) and \(l + q + s + g\), then the general constraint with index \(i - l - q - s\) has the biggest violation.

Available for all model types.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrSVioIndex**

*Type:* int  
*Modifiable:* No  
Index of linear constraint with the largest (scaled) slack bound violation.

Only available for continuous models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrVioSum**

*Type:* double  
*Modifiable:* No  
Sum of (unscaled) slack bound violations.

Available for all model types.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**ConstrSVioSum**

Type: double  
Modifiable: No  
Sum of (scaled) slack bound violations.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrResidual**

Type: double  
Modifiable: No  
Reporting constraint violations for the simplex solver is actually more complex than it may appear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces explicit non-negative slack variables inside the algorithm. Thus, for example, \( a^T x \leq b \) becomes \( a^T x + s = b \). In this formulation, constraint errors can show up in two places: (i) as bound violations on the computed slack variable values, and (ii) as differences between \( a^T x + s \) and \( b \). We report the former as ConstrVio and the latter as ConstrResidual.  
Only available for continuous models. For MIP models, constraint violations are reported in ConstrVio.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrSResidual**

Type: double  
Modifiable: No  
Maximum (scaled) primal constraint error.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrResidualIndex**

Type: int  
Modifiable: No  
Index of linear constraint with the largest (unscaled) constraint error.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrSResidualIndex**

Type: int  
Modifiable: No  
Index of linear constraint with the largest (scaled) constraint error.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.
**ConstrResidualSum**

Type: double  
Modifiable: No  
Sum of (unscaled) linear constraint violations.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ConstrSResidualSum**

Type: double  
Modifiable: No  
Sum of (scaled) linear constraint violations.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualVio**

Type: double  
Modifiable: No  
Reporting dual constraint violations for the simplex solver is actually more complex than it may appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces explicit non-negative reduced-cost variables inside the algorithm. Thus, \( a^T y \geq c \) becomes \( a^T y - z = c \) (where \( y \) is the dual vector and \( z \) is the reduced cost). In this formulation, errors can show up in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as differences between \( a^T y - z \) and \( c \). We report the former as DualVio and the latter as DualResidual.  
DualVio reports the maximum (unscaled) reduced-cost bound violation.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSVio**

Type: double  
Modifiable: No  
Maximum (scaled) reduced cost violation.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualVioIndex**

Type: int  
Modifiable: No  
Index of variable with the largest (unscaled) reduced cost violation. Note that the result may be larger than the number of variables in the model, which indicates that a constraint slack is the variable with the largest violation. Subtract the variable count from the result to get the index of the corresponding constraint.  
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSVioIndex**

**Type:** int  
**Modifiable:** No  
Index of variable with the largest (scaled) reduced cost violation. Note that the result may be larger than the number of variables in the model, which indicates that a constraint slack is the variable with the largest violation. Subtract the variable count from the result to get the index of the corresponding constraint.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualVioSum**

**Type:** double  
**Modifiable:** No  
Sum of (unscaled) reduced cost violations.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSVioSum**

**Type:** double  
**Modifiable:** No  
Sum of (scaled) reduced cost violations.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualResidual**

**Type:** double  
**Modifiable:** No  
Reporting dual constraint violations for the simplex solver is actually more complex than it may appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces explicit non-negative reduced-cost variables inside the algorithm. Thus, \( a^T y \geq c \) becomes \( a^T y - z = c \) (where \( y \) is the dual vector and \( z \) is the reduced cost). In this formulation, errors can show up in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as differences between \( a^T y - z \) and \( c \). We report the former as DualVio and the latter as DualResidual. DualResidual reports the maximum (unscaled) dual constraint error.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSResidual**

**Type:** double  
**Modifiable:** No  
726
Maximum (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualResidualIndex**

Type: int
Modifiable: No
Index of variable with the largest (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSResidualIndex**

Type: int
Modifiable: No
Index of variable with the largest (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualResidualSum**

Type: double
Modifiable: No
Sum of (unscaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**DualSResidualSum**

Type: double
Modifiable: No
Sum of (scaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ComplVio**

Type: double
Modifiable: No
Maximum complementarity violation. In an optimal solution, the product of the value of a variable and its reduced cost must be zero. This isn’t always strictly true for interior point solutions. This attribute returns the maximum complementarity violation for any variable.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.
**ComplVioIndex**

Type: int  
Modifiable: No  
Index of variable with the largest complementarity violation.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ComplVioSum**

Type: double  
Modifiable: No  
Sum of complementarity violation.  
Only available for continuous models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IntVio**

Type: double  
Modifiable: No  
A MIP solver won’t always assign strictly integral values to integer variables. This attribute returns the largest distance between the computed value of any integer variable and the nearest integer.  
Only available for MIP models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IntVioIndex**

Type: int  
Modifiable: No  
Index of variable with the largest integrality violation.  
Only available for MIP models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

**IntVioSum**

Type: double  
Modifiable: No  
Sum of integrality violations.  
Only available for MIP models.  
For examples of how to query or modify attributes, refer to our Attribute Examples.

### 11.8 Multi-objective Attributes

These are the attributes for setting and querying multiple objectives (refer to this section for additional information on multi-objective optimization).
**ObjN**

*Type:* double  
*Modifiable:* Yes  
When the model has multiple objectives, this attribute is used to query or modify objective coefficients for objective $n$. You set $n$ using the **ObjNumber** parameter. Note that when **ObjNumber** is equal to 0, **ObjN** is equivalent to **Obj**.

The number of objectives in the model can be queried (or modified) using the **NumObj** attribute.  
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNCon**

*Type:* double  
*Modifiable:* Yes  
When the model has multiple objectives, this attribute is used to query or modify the constant term for objective $n$. You set $n$ using the **ObjNumber** parameter. Note that when **ObjNumber** is equal to 0, **ObjNCon** is equivalent to **ObjCon**.

The number of objectives in the model can be queried (or modified) using the **NumObj** attribute.  
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNPriority**

*Type:* int  
*Modifiable:* Yes  
This attribute is used to query or modify the priority of objective $n$ when doing hierarchical multi-objective optimization. You set $n$ using the **ObjNumber** parameter.  
The default priority for an objective is 0.

The number of objectives in the model can be queried (or modified) using the **NumObj** attribute.  
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNWeight**

*Type:* double  
*Modifiable:* Yes  
This attribute is used to query or modify the weight of objective $n$ when doing blended multi-objective optimization. You set $n$ using the **ObjNumber** parameter.  
The default weight for an objective is 1.0.

The number of objectives in the model can be queried (or modified) using the **NumObj** attribute.  
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.
**ObjNRelTol**

*Type:* double  
*Modifiable:* Yes

This attribute is used to set the allowable degradation for objective \( n \) when doing hierarchical multi-objective optimization for MIP models. You set \( n \) using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the model one at a time, in priority order. If it achieves objective value \( z \) when it optimizes for this objective, then subsequent steps are allowed to degrade this value by at most \( \text{ObjNRelTol} \times |z| \).

Objective degradations are handled differently for multi-objective LP models. The allowable degradation is controlled strictly using the ObjNAbsTol.

The default relative tolerance for an objective is 0.

The number of objectives in the model can be queried (or modified) using the NumObj attribute. Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNAbsTol**

*Type:* double  
*Modifiable:* Yes

This attribute is used to set the allowable degradation for objective \( n \) when doing hierarchical multi-objective optimization. You set \( n \) using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the model one at a time, in priority order. If it achieves objective value \( z \) when it optimizes for this objective, then subsequent steps are allowed to degrade this value by at most \( \text{ObjNAbsTol} \).

Objective degradations are handled differently for multi-objective LP models. For LP models, solution quality for higher-priority objectives is maintained by fixing some variables to their values in previous optimal solutions. These fixings are decided using variable reduced costs. The value of the ObjNAbsTol parameter indicates the amount by which a fixed variable’s reduced cost is allowed to violate dual feasibility. The value of the related ObjNRelTol attribute is ignored.

The default absolute tolerance for an objective is 0.

The number of objectives in the model can be queried (or modified) using the NumObj attribute. Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNVal**

*Type:* double  
*Modifiable:* No

This attribute is used to query the objective value obtained for objective \( n \) by the \( k \)-th solution stored in the pool of feasible solutions found so far for the problem. You set \( n \) using the ObjNumber parameter, while you set \( k \) using the SolutionNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute; while the number of stored solutions can be queried using the SolCount attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ObjNName**

*Type:* string  
*Modifiable:* Yes  
When the model has multiple objectives, this attribute is used to query or modify the name for objective \( n \). You set \( n \) using the ObjNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute. Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumObj**

*Type:* int  
*Modifiable:* Yes  
Number of objectives in the model. If you modify this attribute, it will change the number of objectives in the model. Decreasing it will discard existing objectives. Increasing it will create new objectives (initialized to 0). Setting it to 0 will create a model with no objective (i.e., a feasibility model). If you want to switch from a multi-objective model to a single-objective model you also need to set NumObj to 0 and call model update before installing a new single objective.

You can use the ObjNumber parameter, in conjunction with multi-objective attributes (ObjN, ObjNName, etc.), to query or modify attributes for different objectives. The value of ObjNumber should always be less than NumObj.

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

### 11.9 Multi-Scenario Attributes

These are the attributes for setting and querying multiple scenarios (refer to this section for additional information on multi-scenario optimization).

**ScenNLB**

*Type:* double  
*Modifiable:* Yes  
When the model has multiple scenarios, this attribute is used to query or modify changes of the variable lower bounds in scenario \( n \) w.r.t. the base model. You set \( n \) using the ScenarioNumber parameter.

If an element of this array attribute is set to the `undefined` value (GRB.UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base model.
The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNUB**

**Type:** double  
**Modifiable:** Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the variable upper bounds in scenario $n$ w.r.t. the base model. You set $n$ using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNObj**

**Type:** double  
**Modifiable:** Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the variable objective coefficients in scenario $n$ w.r.t. the base model. You set $n$ using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNRHS**

**Type:** double  
**Modifiable:** Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the linear constraint right-hand sides in scenario $n$ w.r.t. the base model. You set $n$ using the ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in the scenario is identical to the one in the base model.
The number of scenarios in the model can be queried (or modified) using the `NumScenarios` attribute.

Please refer to the Multiple Scenarios discussion for more information.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNName**

- **Type:** string
- **Modifiable:** Yes

When the model has multiple scenarios, this attribute is used to query or modify the name for scenario \( n \). You set \( n \) using the `ScenarioNumber` parameter.

The number of scenarios in the model can be queried (or modified) using the `NumScenarios` attribute.

Please refer to the Multiple Scenarios discussion for more information.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNObjBound**

- **Type:** string
- **Modifiable:** No

When the model has multiple scenarios, this attribute is used to query the objective bound for scenario \( n \). You set \( n \) using the `ScenarioNumber` parameter.

The number of scenarios in the model can be queried (or modified) using the `NumScenarios` attribute.

Please refer to the Multiple Scenarios discussion for more information.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNObjVal**

- **Type:** string
- **Modifiable:** No

When the model has multiple scenarios, this attribute is used to query the objective value of the current solution for scenario \( n \). You set \( n \) using the `ScenarioNumber` parameter. If no solution is available, this returns `GRB_INFINITY` (for a minimization objective).

The number of scenarios in the model can be queried (or modified) using the `NumScenarios` attribute.

Please refer to the Multiple Scenarios discussion for more information.

For examples of how to query or modify attributes, refer to our Attribute Examples.

**ScenNX**

- **Type:** double
- **Modifiable:** No

When the model has multiple scenarios, this attribute is used to query the variable value in the current solution of scenario \( n \). You set \( n \) using the `ScenarioNumber` parameter.

The number of scenarios in the model can be queried (or modified) using the `NumScenarios` attribute.
Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

**NumScenarios**

**Type:** int  
**Modifiable:** Yes

Number of scenarios in the model. Modifying this attribute changes the number: decreasing it discards existing scenarios; increasing it creates new scenarios (initialized to have no changes w.r.t. the base model); setting it to 0 discards all scenarios so that the base model is no longer a multi-scenario model.

You can use the ScenarioNumber parameter, in conjunction with multi-scenario attributes (ScenNLB, ScenNUB, ScenNObj, ScenNRHS, ScenNName, etc.), to query or modify attributes for different scenarios. The value of ScenarioNumber should always be less than NumScenarios.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

### 11.10 Batch Attributes

**BatchErrorCode**

**Type:** int  
**Modifiable:** No

Retrieve the last error code received from the Cluster Manager associated with this batch. A non-zero value indicates that a problem occurred. Refer to the Error Code table for a list of possible return values. Details on the error can be obtained by querying BatchErrorMessage.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

**BatchErrorMessage**

**Type:** string  
**Modifiable:** No

Retrieve the last error message received from the Cluster Manager associated with this batch. The related error code can be queried through the BatchErrorCode attribute.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch object or when you explicitly update this cache (by calling the appropriate update function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

**BatchID**

**Type:** string  
**Modifiable:** No

The ID for the batch. Please refer to the Batch Optimization section for more details.
Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch object or when you explicitly update this cache (by calling the appropriate update function - `GRBUpdateBatch` for C, `update` for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

**BatchStatus**

Type: int  
Modifiable: No  

Current status for the batch request. Status values are described in the Status Code section.

Note that all Batch attributes are cached locally, and are only updated when you create a client-side batch object or when you explicitly update this cache (by calling the appropriate update function - `GRBUpdateBatch` for C, `update` for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

### 11.11 Attribute Examples

Gurobi attribute handling is designed to be orthogonal, meaning that you only need to use a small number of routines to work with a large number attributes. In particular:

- The names and meanings of the various Gurobi attributes remain constant across the different programming language API’s, although some decoration is required in each language.

- Given the type of an attribute (double, integer, etc.) and the programming language you wish to use it from, you simply need to identify the appropriate routine for that attribute type in that language in order to query or modify that attribute.

Consider the `LB` attribute, which captures the lower bound on a variable. You would refer to this attribute as follows in the different Gurobi APIs:

<table>
<thead>
<tr>
<th>Language</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td><code>GRB_DBL_ATTR_LB</code></td>
</tr>
<tr>
<td>C++</td>
<td><code>GRB_DoubleAttr_LB</code></td>
</tr>
<tr>
<td>Java</td>
<td><code>GRB.DoubleAttr.LB</code></td>
</tr>
<tr>
<td>.NET</td>
<td><code>GRB.DoubleAttr.LB</code>, or just <code>var.LB</code></td>
</tr>
<tr>
<td>Python</td>
<td><code>GRB.Attr.LB</code>, or just <code>var.lb</code></td>
</tr>
</tbody>
</table>

To query the value of this attribute for an individual variable in the different API’s, you would do the following:

<table>
<thead>
<tr>
<th>Language</th>
<th>Attribute Query Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td><code>GRBgetdblattrelement(model, GRB_DBL_ATTR_LB, var_index, &amp;value);</code></td>
</tr>
<tr>
<td>C++</td>
<td><code>var.get(GRB_DoubleAttr_LB)</code></td>
</tr>
<tr>
<td>Java</td>
<td><code>var.get(GRB.DoubleAttr.LB)</code></td>
</tr>
<tr>
<td>.NET</td>
<td><code>var.Get(GRB.DoubleAttr.LB)</code>, or just <code>var.LB</code></td>
</tr>
<tr>
<td>Python</td>
<td><code>var.getAttr(GRB.Attr.LB)</code>, or just <code>var.lb</code></td>
</tr>
</tbody>
</table>

Our APIs also include routines for querying attribute values for multiple variables or constraints at once, which is more efficient.
Attributes are referred to using a set of enum types in C++, Java, and .NET (one enum for double-valued attributes, one for int-valued attributes, etc.). In C and Python, the names listed above are simply constants that take string values. For example, `GRB_DBL_ATTR_LB` is defined in the C layer as:

```c
#define GRB_DBL_ATTR_LB "LB"
```

In C and Python, you have the option of using the strings directly when calling attribute methods. If you wish to do so, note that character case and underscores are ignored. Thus, `MIN_COEFF` and `MinCoeff` are equivalent.

One important point to note about attributes modification is that it is done in a lazy fashion. Modifications don’t actually affect the model until the next request to either update or optimize the model (`GRBupdatemodel` or `GRBoptimize` in C).

Refer to the following sections for more detailed examples of how to query or modify attributes from our various API’s:

- C
- C++
- C#
- Java
- Python
- Visual Basic

You can also also browse our Examples to get a better sense of how to use our attribute interface.

**C Attribute Examples**

Consider the case where you have a Gurobi model `m`. You can retrieve the number of variables in the model by querying the `NumVars` model attribute. This is an integer-valued, scalar attribute, so you use `GRBgetintattr`:

```c
int cols;
error = GRBgetintattr(m, GRB_INT_ATTR_NUMVARS, &cols);
```

You can also use the name of the attribute directly:

```c
int cols;
error = GRBgetintattr(m, "NumVars", &cols);
```

(Note that attribute capitalization doesn’t matter in the C interface, so you could also use "numVars" or "numvars").

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the `ObjVal` model attribute. This is a double-valued, scalar attribute, so you use `GRBgetdblattr`:

```c
double objval;
error = GRBgetdblattr(m, GRB_DBL_ATTR_OBJVAL, &objval);
```
If you’d like to query the value that a variable takes in the computed solution, you can query the \textit{X} variable attribute. This is a double-valued, vector attribute, so you have a few options for querying the associated values. You can retrieve the value for a single variable using \texttt{GRBgetdblattrelement}:

\begin{verbatim}
  double x0;
  error = GRBgetdblattrelement(m, GRB_DBL_ATTR_X, 0, &x0);
\end{verbatim}

(we query the solution value for variable 0 in this example). You can also query attribute values for multiple variables using \texttt{GRBgetdblattrarray} or \texttt{GRBgetdblattrlist}:

\begin{verbatim}
  double x[];
  error = GRBgetdblattrarray(m, GRB_DBL_ATTR_X, 0, cols, x);
\end{verbatim}

The former routine retrieves a contiguous set of values (\texttt{cols} values, starting from index 0 in our example). The latter allows you to provide a list of indices, and it returns the values for the corresponding entries.

For each attribute query routine, there’s an analogous \textit{set} routine. To set the upper bound of a variable, for example, you would use \texttt{GRBsetdblattrelement}:

\begin{verbatim}
  error = GRBsetdblattrelement(m, GRB_DBL_ATTR_UB, 0, 0.0);
\end{verbatim}

(In this example, we’ve set the upper bound for variable 0 to 0). You can set attribute values for multiple variables in a single call using \texttt{GRBsetdblattrarray} or \texttt{GRBsetdblattrlist}.

\section*{C++ Attribute Examples}

Consider the case where you have a Gurobi model \texttt{m}. You can retrieve the number of variables in the model by querying the \texttt{NumVars} model attribute using the \texttt{get} method:

\begin{verbatim}
  cols = m.get(GRB_IntAttr_NumVars);
\end{verbatim}

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the \texttt{ObjVal} model attribute:

\begin{verbatim}
  obj = m.get(GRB_DoubleAttr_ObjVal);
\end{verbatim}

If you’d like to query the value that a variable takes in the computed solution, you can query the \textit{X} attribute for the corresponding variable object:

\begin{verbatim}
  vars = m.getVars()
  for (int j = 0; j < cols; j++)
    xj = vars[j].get(GRB_DoubleAttr_X)
\end{verbatim}

You can also query the value of \textit{X} for multiple variables in a single \texttt{get} call on the model \texttt{m}:

\begin{verbatim}
  double xvals[] = m.get(GRB_DoubleAttr_X, m.GetVars()));
\end{verbatim}

For each attribute query method, there’s an analogous \textit{set} routine. To set the upper bound of a variable, for example:

\begin{verbatim}
  v = m.getVars()[0]
  v.set(GRB_DoubleAttr_UB, 0)
\end{verbatim}

(In this example, we’ve set the upper bound for the first variable in the model to 0).
**C# Attribute Examples**

Consider the case where you have a Gurobi model $m$. You can retrieve the number of variables in the model by querying the `NumVars` model attribute (which is implemented as a .NET property):

```csharp
 cols = m.NumVars;
```

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the `ObjVal` model attribute:

```csharp
 obj = m.ObjVal;
```

If you’d like to query the value that a variable takes in the computed solution, you can query the `X` attribute for the corresponding variable object:

```csharp
 vars = m.GetVars()
 for (int j = 0; j < cols; j++)
 xj = vars[j].X
```

You can also query the value of $X$ for multiple variables in a single call using the `Get` method on the model $m$:

```csharp
double[] xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()));
```

For each attribute query method, there’s an analogous `Set` routine. To set the upper bound of a variable, for example:

```csharp
 v = m.GetVars()[0]
 v.UB = 0
```

(In this example, we’ve set the upper bound for the first variable in the model to 0).

**Java Attribute Examples**

Consider the case where you have a Gurobi model $m$. You can retrieve the number of variables in the model by querying the `NumVars` model attribute using the `get` method:

```java
 cols = m.get(GRB.IntAttr.NumVars);
```

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the `ObjVal` model attribute:

```java
 obj = m.get(GRB.DoubleAttr.ObjVal);
```

If you’d like to query the value that a variable takes in the computed solution, you can query the `X` attribute for the corresponding variable object:

```java
 vars = m.getVars()
 for (int j = 0; j < cols; j++)
 xj = vars[j].get(GRB.DoubleAttr.X)
```

You can also query the value of $X$ for multiple variables in a single `get` call on the model $m$:
double[] xvals = m.get(GRB.DoubleAttr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of a variable, for example:

    v = m.getVars()[0]
    v.set(GRB.DoubleAttr.UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

**Python Attribute Examples**

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by querying the NumVars model attribute:

    print(m.numVars)

(Note that attribute capitalization doesn’t matter in the Python interface, so you could also query m.NumVars or m.numvars).

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the ObjVal model attribute:

    print(m.objVal)

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for the corresponding variable object:

    for v in m.getVars():
        print(v.x)

You can also query the value of X for multiple variables in a single getAttr call on the model m:

    print(m.getAttr(GRB.Attr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of a variable, for example:

    v = m.getVars()[0]
    v.ub = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

**Visual Basic Attribute Examples**

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in the model by querying the NumVars model attribute (which is implemented as a .NET property):

    cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by querying the ObjVal model attribute:
obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query the X attribute for the corresponding variable object:

```csharp
vars = m.GetVars()
For j As Integer = 0 To cols - 1
 xj = vars[j].X
```

You can also query the value of X for multiple variables in a single call using the Get method on the model m:

```csharp
xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))
```

For each attribute query method, there’s an analogous Set routine. To set the upper bound of a variable, for example:

```csharp
v = m.GetVars()[0]
v.UB = 0
```

(In this example, we’ve set the upper bound for the first variable in the model to 0).
Parameters control the operation of the Gurobi solvers. They must be modified before the optimization begins. While you should feel free to experiment with different parameter settings, we recommend that you leave parameters at their default settings unless you find a compelling reason not to. For a discussion of when you might want to change parameter values, refer to our Parameter Guidelines.

The various Gurobi APIs all provide routines for querying and modifying parameter values. Refer to our Parameter Examples for additional information.

Some of the parameters below are used to configure a client program for use with a Compute Server, a Gurobi Instant Cloud instance, or a token server. Refer to our discussion of empty environments for details.

**Available Gurobi Parameters**

**Termination:** These parameters affect the termination of the algorithms. If the algorithm exceeds any of these limits, it will terminate and report a non-optimal termination status (see the Status Code section for further details). Note that the algorithm won’t necessarily stop the moment it hits the specified limit. The termination check may occur well after the limit has been exceeded.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BarIterLimit</td>
<td>Barrier iteration limit</td>
</tr>
<tr>
<td>BestBdStop</td>
<td>Best objective bound to stop</td>
</tr>
<tr>
<td>BestObjStop</td>
<td>Best objective value to stop</td>
</tr>
<tr>
<td>Cutoff</td>
<td>Objective cutoff</td>
</tr>
<tr>
<td>IterationLimit</td>
<td>Simplex iteration limit</td>
</tr>
<tr>
<td>NodeLimit</td>
<td>MIP node limit</td>
</tr>
<tr>
<td>SolutionLimit</td>
<td>MIP feasible solution limit</td>
</tr>
<tr>
<td>TimeLimit</td>
<td>Time limit</td>
</tr>
</tbody>
</table>

**Tolerances:** These parameters control the allowable feasibility or optimality violations.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BarConvTol</td>
<td>Barrier convergence tolerance</td>
</tr>
<tr>
<td>BarQCPConvTol</td>
<td>Barrier QCP convergence tolerance</td>
</tr>
<tr>
<td>FeasibilityTol</td>
<td>Primal feasibility tolerance</td>
</tr>
<tr>
<td>IntFeasTol</td>
<td>Integer feasibility tolerance</td>
</tr>
<tr>
<td>MarkowitzTol</td>
<td>Threshold pivoting tolerance</td>
</tr>
<tr>
<td>MIPGap</td>
<td>Relative MIP optimality gap</td>
</tr>
<tr>
<td>MIPGapAbs</td>
<td>Absolute MIP optimality gap</td>
</tr>
<tr>
<td>OptimalityTol</td>
<td>Dual feasibility tolerance</td>
</tr>
</tbody>
</table>
PSDToI Positive semi-definite tolerance

**Simplex:** These parameters control the operation of the simplex algorithms.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfUnbdInfo</td>
<td>Generate additional info for infeasible/unbounded models</td>
</tr>
<tr>
<td>NormAdjust</td>
<td>Simplex pricing norm</td>
</tr>
<tr>
<td>ObjScale</td>
<td>Objective scaling</td>
</tr>
<tr>
<td>PerturbValue</td>
<td>Simplex perturbation magnitude</td>
</tr>
<tr>
<td>Quad</td>
<td>Quad precision computation in simplex</td>
</tr>
<tr>
<td>ScaleFlag</td>
<td>Model scaling</td>
</tr>
<tr>
<td>Sifting</td>
<td>Sifting within dual simplex</td>
</tr>
<tr>
<td>SiftMethod</td>
<td>LP method used to solve sifting sub-problems</td>
</tr>
<tr>
<td>SimplexPricing</td>
<td>Simplex variable pricing strategy</td>
</tr>
</tbody>
</table>

**Barrier:** These parameters control the operation of the barrier solver.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BarCorrectors</td>
<td>Central correction limit</td>
</tr>
<tr>
<td>BarHomogeneous</td>
<td>Barrier homogeneous algorithm</td>
</tr>
<tr>
<td>BarOrder</td>
<td>Barrier ordering algorithm</td>
</tr>
<tr>
<td>Crossover</td>
<td>Barrier crossover strategy</td>
</tr>
<tr>
<td>CrossoverBasis</td>
<td>Crossover initial basis construction strategy</td>
</tr>
<tr>
<td>QCPDual</td>
<td>Compute dual variables for QCP models</td>
</tr>
</tbody>
</table>

**MIP:** These parameters control the operation of the MIP algorithms.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BranchDir</td>
<td>Branch direction preference</td>
</tr>
<tr>
<td>ConcurrentJobs</td>
<td>Enables distributed concurrent solver</td>
</tr>
<tr>
<td>ConcurrentMIP</td>
<td>Enables concurrent MIP solver</td>
</tr>
<tr>
<td>ConcurrentSettings</td>
<td>Comma-separated list of .prm files - used to create concurrent environments</td>
</tr>
<tr>
<td>DegenMoves</td>
<td>Degenerate simplex moves</td>
</tr>
<tr>
<td>Disconnected</td>
<td>Disconnected component strategy</td>
</tr>
<tr>
<td>DistributedMIPJobs</td>
<td>Enables the distributed MIP solver</td>
</tr>
<tr>
<td>Heuristics</td>
<td>Turn MIP heuristics up or down</td>
</tr>
<tr>
<td>ImproveStartGap</td>
<td>Trigger solution improvement</td>
</tr>
<tr>
<td>ImproveStartNodes</td>
<td>Trigger solution improvement</td>
</tr>
<tr>
<td>ImproveStartTime</td>
<td>Trigger solution improvement</td>
</tr>
<tr>
<td>LazyConstraints</td>
<td>Programs that add lazy constraints must set this parameter</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MinRelNodes</td>
<td>Minimum relaxation heuristic control</td>
</tr>
<tr>
<td>MIPFocus</td>
<td>Set the focus of the MIP solver</td>
</tr>
<tr>
<td>MIQCPMethod</td>
<td>Method used to solve MIQCP models</td>
</tr>
<tr>
<td>NodefileDir</td>
<td>Directory for MIP node files</td>
</tr>
<tr>
<td>NodefileStart</td>
<td>Memory threshold for writing MIP tree nodes to disk</td>
</tr>
<tr>
<td>NodeMethod</td>
<td>Method used to solve MIP node relaxations</td>
</tr>
<tr>
<td>NonConvex</td>
<td>Control how to deal with non-convex quadratic programs</td>
</tr>
<tr>
<td>PartitionPlace</td>
<td>Controls when the partition heuristic runs</td>
</tr>
<tr>
<td>PumpPasses</td>
<td>Feasibility pump heuristic control</td>
</tr>
<tr>
<td>RINS</td>
<td>RINS heuristic</td>
</tr>
<tr>
<td>SolFiles</td>
<td>Location to store intermediate solution files</td>
</tr>
<tr>
<td>SolutionNumber</td>
<td>Sub-optimal MIP solution retrieval</td>
</tr>
<tr>
<td>StartNodeLimit</td>
<td>Node limit for MIP start sub-MIP</td>
</tr>
<tr>
<td>StartNumber</td>
<td>Set index of MIP start</td>
</tr>
<tr>
<td>SubMIPNodes</td>
<td>Nodes explored by sub-MIP heuristics</td>
</tr>
<tr>
<td>Symmetry</td>
<td>MIP symmetry detection</td>
</tr>
<tr>
<td>VarBranch</td>
<td>Branch variable selection strategy</td>
</tr>
<tr>
<td>ZeroObjNodes</td>
<td>Zero objective heuristic control</td>
</tr>
</tbody>
</table>
Presolve: These parameters control the operation of the presolve algorithms.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>AggFill</td>
<td>Allowed fill during presolve aggregation</td>
</tr>
<tr>
<td>Aggregate</td>
<td>Presolve aggregation control</td>
</tr>
<tr>
<td>DualReductions</td>
<td>Disables dual reductions in presolve</td>
</tr>
<tr>
<td>PreCrush</td>
<td>Allows presolve to translate constraints on the original</td>
</tr>
<tr>
<td></td>
<td>model to equivalent constraints on the presolved model</td>
</tr>
<tr>
<td>PreDepRow</td>
<td>Presolve dependent row reduction</td>
</tr>
<tr>
<td>PreDual</td>
<td>Presolve dualization</td>
</tr>
<tr>
<td>PreMIQCPForm</td>
<td>Format of presolved MIQCP model</td>
</tr>
<tr>
<td>PrePasses</td>
<td>Presolve pass limit</td>
</tr>
<tr>
<td>PreQLinearize</td>
<td>Presolve Q matrix linearization</td>
</tr>
<tr>
<td>Presolve</td>
<td>Presolve level</td>
</tr>
<tr>
<td>PreSOS1BigM</td>
<td>Controls SOS1 conversion to binary form</td>
</tr>
<tr>
<td>PreSOS2BigM</td>
<td>Controls SOS2 conversion to binary form</td>
</tr>
<tr>
<td>PreSparsify</td>
<td>Presolve sparsify reduction</td>
</tr>
</tbody>
</table>

Tuning: These parameters control the operation of the parameter tuning tool.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TuneCriterion</td>
<td>Specify tuning criterion</td>
</tr>
<tr>
<td>TuneJobs</td>
<td>Enables distributed tuning</td>
</tr>
<tr>
<td>TuneOutput</td>
<td>Tuning output level</td>
</tr>
<tr>
<td>TuneResults</td>
<td>Number of improved parameter sets returned</td>
</tr>
<tr>
<td>TuneTimeLimit</td>
<td>Time limit for tuning</td>
</tr>
<tr>
<td>TuneTrials</td>
<td>Perform multiple runs on each parameter set to limit the effect of random noise</td>
</tr>
</tbody>
</table>

Multiple Solutions: These parameters allow you to modify the behavior of the MIP search in order to find more than one solution to a MIP model.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoolGap</td>
<td>Gap for solutions in pool</td>
</tr>
<tr>
<td>PoolSearchMode</td>
<td>Choose the approach used to find additional solutions</td>
</tr>
<tr>
<td>PoolSolutions</td>
<td>Number of solutions to keep in pool</td>
</tr>
</tbody>
</table>

MIP Cuts: These parameters affect the generation of MIP cutting planes. In all cases, a value of -1 corresponds to an automatic setting, which allows the solver to determine the appropriate level of aggressiveness in the cut generation. Unless otherwise noted, settings of 0, 1, and 2 correspond to no cut generation, conservative cut generation, or aggressive cut generation, respectively. The Cuts parameter provides global cut control, affecting the generation of all cuts. This parameter also has a setting of 3, which corresponds to very aggressive cut generation. The other parameters override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to 0 would generate all cut types aggressively, except clique cuts which would not be generated at all).
<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQPCuts</td>
<td>BQP cut generation</td>
</tr>
<tr>
<td>Cuts</td>
<td>Global cut generation control</td>
</tr>
<tr>
<td>CliqueCuts</td>
<td>Clique cut generation</td>
</tr>
<tr>
<td>CoverCuts</td>
<td>Cover cut generation</td>
</tr>
<tr>
<td>CutAggPasses</td>
<td>Constraint aggregation passes performed during cut generation</td>
</tr>
<tr>
<td>CutPasses</td>
<td>Root cutting plane pass limit</td>
</tr>
<tr>
<td>FlowCoverCuts</td>
<td>Flow cover cut generation</td>
</tr>
<tr>
<td>FlowPathCuts</td>
<td>Flow path cut generation</td>
</tr>
<tr>
<td>GomoryPasses</td>
<td>Root Gomory cut pass limit</td>
</tr>
<tr>
<td>GUBCoverCuts</td>
<td>GUB cover cut generation</td>
</tr>
<tr>
<td>ImpliedCuts</td>
<td>Implied bound cut generation</td>
</tr>
<tr>
<td>InfProofCuts</td>
<td>Infeasibility proof cut generation</td>
</tr>
<tr>
<td>MIPSepCuts</td>
<td>MIP separation cut generation</td>
</tr>
<tr>
<td>MIRCuts</td>
<td>MIR cut generation</td>
</tr>
<tr>
<td>ModKCuts</td>
<td>Mod-k cut generation</td>
</tr>
<tr>
<td>NetworkCuts</td>
<td>Network cut generation</td>
</tr>
<tr>
<td>ProjImpliedCuts</td>
<td>Projected implied bound cut generation</td>
</tr>
<tr>
<td>RelaxLiftCuts</td>
<td>Relax-and-lift cut generation</td>
</tr>
<tr>
<td>RLTcuts</td>
<td>RLT cut generation</td>
</tr>
<tr>
<td>StrongCGCuts</td>
<td>Strong-CG cut generation</td>
</tr>
<tr>
<td>SubMIPCuts</td>
<td>Sub-MIP cut generation</td>
</tr>
<tr>
<td>ZeroHalfCuts</td>
<td>Zero-half cut generation</td>
</tr>
</tbody>
</table>

**Distributed algorithms:** Parameters that are used to control our distributed parallel algorithms (distributed MIP, distributed concurrent, and distributed tuning).

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>WorkerPassword</td>
<td>Password for distributed worker cluster</td>
</tr>
<tr>
<td>WorkerPool</td>
<td>Distributed worker cluster</td>
</tr>
</tbody>
</table>

**Cloud:** Parameters that are used to launch Gurobi Instant Cloud instances.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CloudAccessID</td>
<td>Access ID for Gurobi Instant Cloud</td>
</tr>
<tr>
<td>CloudHost</td>
<td>Host for the Gurobi Cloud entry point</td>
</tr>
<tr>
<td>CloudSecretKey</td>
<td>Secret Key for Gurobi Instant Cloud</td>
</tr>
<tr>
<td>CloudPool</td>
<td>Cloud pool to use for Gurobi Instant Cloud</td>
</tr>
</tbody>
</table>

**Compute Server:** Parameters that are used to configure and launch Gurobi Compute Server jobs. You will normally set these in your license file, but you have the option of setting them through these parameters instead (by first constructing an empty environment). Refer to the Gurobi Remote
Cluster Manager: Parameters that are used to configure and launch Gurobi Cluster Manager. You will normally set these in your license file, but you have the option of setting them through these parameters instead (by first constructing an empty environment). Refer to the Gurobi Remote Services Reference Manual for more information.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSAPIAccessID</td>
<td>Access ID for Gurobi Cluster Manager</td>
</tr>
<tr>
<td>CSAPISecret</td>
<td>Secret key for Gurobi Cluster Manager</td>
</tr>
<tr>
<td>CSAppName</td>
<td>Application name of the batches or jobs</td>
</tr>
<tr>
<td>CSAuthToken</td>
<td>Token used internally for authentication</td>
</tr>
<tr>
<td>CSBatchMode</td>
<td>Controls Batch-Mode optimization</td>
</tr>
<tr>
<td>CSClientLog</td>
<td>Turns logging on or off</td>
</tr>
<tr>
<td>CSMng</td>
<td>URL for the Cluster Manager</td>
</tr>
<tr>
<td>UserName</td>
<td>User name to use when connecting to the Cluster Manager</td>
</tr>
</tbody>
</table>

Token server: Parameters that are used to launch jobs that check out tokens from a token server. You will normally set these in your license file, but you have the option of setting them through these parameters instead (by first constructing an empty environment).

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerPassword</td>
<td>Client password for token server (or Remote Services cluster).</td>
</tr>
<tr>
<td>TokenServer</td>
<td>Name of your token server.</td>
</tr>
<tr>
<td>TSPort</td>
<td>Token server port number.</td>
</tr>
</tbody>
</table>

Other: Other parameters.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>DisplayInterval</td>
<td>Frequency at which log lines are printed</td>
</tr>
<tr>
<td>FeasRelaxBigM</td>
<td>Big-M value for feasibility relaxations</td>
</tr>
<tr>
<td>FuncPieceError</td>
<td>Error allowed for PWL translation of function constraint</td>
</tr>
<tr>
<td>FuncPieceLength</td>
<td>Piece length for PWL translation of function constraint</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>FuncPieceRatio</td>
<td>Controls whether to under- or over-estimate function values in PWL approximation</td>
</tr>
<tr>
<td>FuncPieces</td>
<td>Sets strategy for PWL function approximation</td>
</tr>
<tr>
<td>FuncMaxVal</td>
<td>Maximum value for x and y variables in function constraints</td>
</tr>
<tr>
<td>IgnoreNames</td>
<td>Indicates whether to ignore names provided by users</td>
</tr>
<tr>
<td>IISMethod</td>
<td>IIS method</td>
</tr>
<tr>
<td>InputFile</td>
<td>File to be read before optimization commences</td>
</tr>
<tr>
<td>JSONSolDetail</td>
<td>Controls the level of detail stored in generated JSON solution</td>
</tr>
<tr>
<td>LogFile</td>
<td>Log file name</td>
</tr>
<tr>
<td>LogToConsole</td>
<td>Console logging</td>
</tr>
<tr>
<td>Method</td>
<td>Algorithm used to solve continuous models</td>
</tr>
<tr>
<td>MultiObjMethod</td>
<td>Warm-start method to solve for subsequent objectives</td>
</tr>
<tr>
<td>MultiObjPre</td>
<td>Initial presolve on multi-objective models</td>
</tr>
<tr>
<td>NumericFocus</td>
<td>Set the numerical focus</td>
</tr>
<tr>
<td>ObjNumber</td>
<td>Set index of multi-objectives</td>
</tr>
<tr>
<td>OutputFlag</td>
<td>Solver output control</td>
</tr>
<tr>
<td>Record</td>
<td>Enable API call recording</td>
</tr>
<tr>
<td>ResultFile</td>
<td>Result file written upon completion of optimization</td>
</tr>
<tr>
<td>ScenarioNumber</td>
<td>Set index of scenario in multi-scenario models</td>
</tr>
<tr>
<td>Seed</td>
<td>Modify the random number seed</td>
</tr>
<tr>
<td>Threads</td>
<td>Number of parallel threads to use</td>
</tr>
<tr>
<td>UpdateMode</td>
<td>Change the behavior of lazy updates</td>
</tr>
</tbody>
</table>
12.1 Parameter Guidelines

This section provides a brief discussion of the roles of the various Gurobi parameters when solving continuous or MIP models, with some indication of their relative importance.

Note that you also have the option of using the Parameter Tuning Tool to tune parameters. We recommend that you browse this section, though, even if you use the tuning tool, so that you can get an understanding of the roles of the various parameters.

Continuous Models

If you wish to use Gurobi parameters to tune performance on continuous models, we offer the following guidelines.

Choosing the method for LP or QP

The most important parameter when solving an LP or QP is `Method`. The default setting (-1) uses the concurrent optimizer for an LP, and the parallel barrier solver for a QP. While the default is usually a good choice, you may want to choose a different method in a few situations.

If memory is tight, you should consider using the dual simplex method (`Method=1`) instead of the default. The default will invoke the barrier method, which can take a lot more memory than dual. In addition, the default for LP will try multiple algorithms simultaneously, and each requires a copy of the original model. By selecting dual simplex, you will only use one copy of the model.

Another scenario where you should change the default is when you must get the same optimal basis each time you run your program. For LP models, the default concurrent solver invokes multiple algorithms simultaneously on multi-core systems, returning the optimal basis from the one that finishes first. In rare cases, one algorithm may complete first in one run, while another completes first in another. This can potentially lead to different alternate optimal solutions. Selecting any other method, including the deterministic concurrent solver, will avoid this possibility. Note, however, that the deterministic concurrent solver can be significantly slower than the default concurrent solver.

Finally, if you are confronted with a difficult LP model, you should experiment with the different method options. While the default is rarely significantly slower than the best choice, you may find that one option is consistently faster or more robust for your models. There are no simple rules for predicting which method will work best for a particular family of models.

If you are solving QCP or SOCP models, note that the barrier algorithm is your only option.

Parallel solution

Among the remaining parameters that affect continuous models, the only one that you would typically want to adjust is `Threads`, which controls the number of threads used for the concurrent and parallel barrier algorithms. By default, concurrent and barrier will use all available cores in your machine. Note that the simplex solvers can only use one thread, so this parameter has no effect on them.

If you would like to experiment with different strategies than the default ones when solving an LP model using the concurrent optimizer, we provide methods in C, C++, Java, .NET, and Python that allow you to create and configure concurrent environments.
Infeasible or unbounded models

If you are confronted with an infeasible or unbounded LP, additional details can be obtained when you set the `InfUnbdInfo` parameter. For an unbounded model, setting this parameter allows you to retrieve an unbounded ray (using the `UnbdRay` attribute). For an infeasible model, setting this parameter allows you to retrieve a Farkas infeasibility proof (using the `FarkasDual` and `FarkasProof` attributes).

For the barrier algorithm, you should set the `BarHomogeneous` parameter to 1 whenever you have a model that you suspect is infeasible or unbounded. This algorithm is better at diagnosing infeasibility or unboundedness.

Special structure

If you wish to solve an LP model that has many more variables than constraints, you may want to try the sifting algorithm. Sifting is actually implemented within our dual simplex solver, so to select sifting, set the `Method` parameter to 1 (to select dual), and then set the `Sifting` parameter to a positive value. You can use the `SiftMethod` parameter to choose the algorithm that is used to solve the sub-problems that arise within the sifting algorithm. In general, sifting is only effective when the ratio between variables and constraints is extremely large (100 to 1 or more). Note that the default `Sifting` setting allows the Gurobi Optimizer to select sifting automatically when a problem has the appropriate structure, so you won’t typically need to select it manually.

Additional parameters

The `ScaleFlag` parameter can be used to modify the scaling performed on the model. The default scaling value (-1) is usually the most effective choice, but turning off scaling entirely (0) can sometimes reduce constraint violations on the original model. Choosing a different scaling option (1, 2, or 3) can sometimes improve performance for particularly numerically difficult models. The `ObjScale` parameter allows you to scale just the objective. Objective scaling can be useful when the objective contains extremely large values, but it can also lead to large dual violations, so it should be used sparingly.

The `SimplexPricing` parameter determines the method used to choose a simplex pivot. The default is usually the best choice. The `NormAdjust` parameter allows you to choose alternate simplex pricing norms. Again, the default is usually best. The `Quad` parameter allows you to force the simplex solver to use (or not use) quad precision. While quad precision can help for numerically difficult models, the default setting will typically recognize such cases automatically. The `PerturbValue` parameter allows you to adjust the magnitude of the simplex perturbation (used to overcome degeneracy). Again, the default value is typically effective.

Other Gurobi parameters control the details of the barrier solver. The `BarConvTol` and `BarQCPConvTol` parameters allow you to adjust barrier termination. While you can ask for more precision than the default, you will typically run into the limitations of double-precision arithmetic quite quickly. This parameter is typically used to indicate that you are willing to settle for a less accurate answer than the defaults would give. The `BarCorrectors` parameter allows you to adjust the number of central corrections applied in each barrier iteration. More corrections generally lead to more forward progress in each iteration, but at a cost of more expensive iterations. The `BarOrder` parameter allows you to choose the barrier ordering method. The default approach typically works well, but you can manually choose the less expensive Approximate Minimum Degree ordering option (`BarOrder=0`) if you find that ordering is taking too long.
MIP Models

While default settings generally work well, MIP models will often benefit from parameter tuning. We offer the following guidelines, but we also encourage you to experiment.

Most Important Parameters

The two most important Gurobi settings when solving a MIP model are probably the Threads and MIPFocus parameters. The Threads parameter controls the number of threads used by the parallel MIP solver to solve the model. The default is to use all cores in the machine. If you wish to leave some available for other activities, adjust this parameter accordingly.

The MIPFocus parameter allows you to modify your high-level solution strategy, depending on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible solutions and proving that the current solution is optimal. If you are more interested in good quality feasible solutions, you can select MIPFocus=1. If you believe the solver is having no trouble finding the optimal solution, and wish to focus more attention on proving optimality, select MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to try MIPFocus=3 to focus on the bound.

Solution Improvement

The ImproveStartTime and ImproveStartGap parameters can also be used to modify your high-level solution strategy, but in a different way. These parameters allow you to give up on proving optimality at a certain point in the search, and instead focus all attention on finding better feasible solutions from that point onward. The ImproveStartTime parameter allows you to make this transition after the specified time has elapsed, while the ImproveStartGap parameter makes the transition when the specified optimality gap has been achieved.

Termination

Another important set of Gurobi parameters affect solver termination. If the solver is unable to find a proven optimal solution within the desired time, you will need to indicate how to limit the search. The simplest option is to limit runtime using the TimeLimit parameter. Another common termination choice for MIP models is to set the MIPGap parameter. The MIPGap parameter allows you to indicate that optimization should stop when the relative gap between the best known solution and the best known bound on the solution objective is less than the specified value. You can terminate when the absolute gap is below a desired threshold using the MIPGapAbs parameter. You can also terminate based strictly on the current lower or upper bound using the BestBdStop or BestObjStop parameters. Other termination options include NodeLimit, IterationLimit, SolutionLimit, and Cutoff. The first three indicate that optimization should terminate when the number of branch-and-bound nodes, the total number of simplex iterations, or the number of discovered feasible integer solutions exceeds the specified value, respectively. The Cutoff parameter indicates that the solver should only consider solutions whose objective values are better than the specified value, and should terminate if no such solutions are found.

Reducing Memory Usage

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the NodefileStart parameter. When the amount of memory used to store nodes (measured in GBytes) exceeds the specified parameter value, nodes are written to disk. We recommend a setting of 0.5, but you may wish to choose a different value, depending on the memory available in your machine.
By default, nodes are written to the current working directory. The `NodefileDir` parameter can be used to choose a different location.

If you still exhaust memory after setting the `NodefileStart` parameter to a small value, you should try limiting the thread count. Each thread in parallel MIP requires a copy of the model, as well as several other large data structures. Reducing the `Threads` parameter can sometimes significantly reduce memory usage.

**Speeding Up The Root Relaxation**

The root relaxation in a MIP model can sometimes be quite expensive to solve. If you find that a lot of time is spent here, consider using the `Method` parameter to select a different continuous algorithm for the root. For example, `Method=2` would select the parallel barrier algorithm at the root, and `Method=3` would select the concurrent solver. Note that you can choose a different algorithm for the MIP node relaxations using the `NodeMethod` parameter, but it is rarely beneficial to change this from the default (dual simplex).

**Heuristics**

A few Gurobi parameters control internal MIP strategies. The `Heuristics` parameter controls the fraction of runtime spent on feasibility heuristics. Increasing the parameter can lead to more and better feasible solutions, but it will also reduce the rate of progress in the best bound. The `SubMIPNodes` parameter controls the number of nodes explored in some of the more sophisticated local search heuristics inside the Gurobi solver. You can increase this if you are having trouble finding good feasible solutions. The `MinRelNodes`, `PumpPasses`, and `ZeroObjNodes` parameters control a set of expensive heuristics whose goal is to find a feasible solution. All are invoked at the end of the MIP root node, but only if no feasible solution has been found already. Try these if you are having trouble finding any feasible solutions.

**Cutting Planes**

The Gurobi MIP solver employs a wide range of cutting plane strategies. The aggressiveness of these strategies can be controlled at a coarse level through the `Cuts` parameter, and at a finer grain through a further set of cuts parameters (e.g., `FlowCoverCuts`, `MIRcuts`, etc.). Each cut parameter can be set to Aggressive (2), Conservative (1), Automatic (-1), or None (0). The more specific parameters override the more general, so for example setting `MIRcuts` to None (0) while also setting `Cuts` to Aggressive (2) would aggressively generate all cut types, except MIR cuts which would not be generated. Very easy models can sometimes benefit from turning cuts off, while extremely difficult models can benefit from turning them to their Aggressive setting.

**Presolve**

Presolve behavior can be modified with a set of parameters. The `Presolve` parameter sets the aggressiveness level of presolve. Options are Aggressive (2), Conservative (1), Automatic (-1), or None (0). More aggressive application of presolve takes more time, but can sometimes lead to a significantly tighter model. The `PrePasses` provides finer-grain control of presolve. It limits the number of passes presolve performs. Setting it to a small value (e.g., 3) can reduce presolve runtime. The `Aggregate` parameter controls whether presolve performs constraint aggregation. Aggregation typically leads to a smaller formulation, but in rare cases it can introduce numerical issues. The `AggFill` parameter controls aggregation at a finer grain. It controls how much fill is tolerated in the constraint matrix from a single variable aggregation. The `PreSparsify` parameter enables an
algorithm that can sometimes significantly reduce the number of nonzero values in the constraint matrix.

**Additional Parameters**

The `Symmetry` parameter controls symmetry detection. The default value usually works well. The `VarBranch` parameter controls the branching variable selection strategy within the branch-and-bound process. Variable selection can have a significant impact on overall time to solution, but the default strategy is usually the best choice.

**Tolerances**

The Gurobi solver includes a set of numerical tolerance parameters. These rarely require adjustment, and are included for advanced users who are having trouble with the numerical properties of their models. The `FeasibilityTol`, `IntFeasTol`, `MarkowitzTol`, and `OptimalityTol` parameters allow you to adjust the primal feasibility tolerance, the integer feasibility tolerance, the Markowitz tolerance for simplex basis factorization, and the dual feasibility tolerance, respectively.

### 12.2 Parameter Descriptions

**AggFill**

Presolve aggregation fill level

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>MAXINT</td>
</tr>
</tbody>
</table>

Controls the amount of fill allowed during presolve aggregation. Larger values generally lead to presolved models with fewer rows and columns, but with more constraint matrix non-zeros.

The default value chooses automatically, and usually works well.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a `MAXINT` value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Aggregate**

Presolve aggregation

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

Enables or disables aggregation in presolve. In rare instances, aggregation can lead to an accumulation of numerical errors. Turning it off can sometimes improve solution accuracy.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BarConvTol**

Barrier convergence tolerance

Type: double  
Default value: 1e-8  
Minimum value: 0.0  
Maximum value: 1.0

The barrier solver terminates when the relative difference between the primal and dual objective values is less than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance often produces a more accurate solution, which can sometimes reduce the time spent in crossover. Loosening it causes the barrier algorithm to terminate with a less accurate solution, which can be useful when barrier is making very slow progress in later iterations.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BarCorrectors**

Barrier central corrections

Type: int  
Default value: -1  
Minimum value: -1  
Maximum value: MAXINT

Limits the number of central corrections performed in each barrier iteration. The default value chooses automatically, depending on problem characteristics. The automatic strategy generally works well, although it is often possible to obtain higher performance on a specific model by selecting a value manually.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BarHomogeneous**

Barrier homogeneous algorithm
Determines whether to use the homogeneous barrier algorithm. At the default setting (-1), it is only used when barrier solves a node relaxation for a MIP model. Setting the parameter to 0 turns it off, and setting it to 1 forces it on. The homogeneous algorithm is useful for recognizing infeasibility or unboundedness. It is a bit slower than the default algorithm.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### BarIterLimit

Barrier iteration limit

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>1000</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>MAXINT</td>
</tr>
</tbody>
</table>

Limits the number of barrier iterations performed. This parameter is rarely used. If you would like barrier to terminate early, it is almost always better to use the BarConvTol parameter instead.

Optimization returns with an `ITERATION_LIMIT` status if the limit is exceeded (see the Status Code section for further details).

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### BarOrder

Barrier ordering algorithm

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

Chooses the barrier sparse matrix fill-reducing algorithm. A value of 0 chooses Approximate Minimum Degree ordering, while a value of 1 chooses Nested Dissection ordering. The default value of -1 chooses automatically. You should only modify this parameter if you notice that the barrier ordering phase is consuming a significant fraction of the overall barrier runtime.

**Note:** Barrier only
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BarQCPConvTol**

Barrier convergence tolerance for QCP models

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1e-6</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0.0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>1.0</td>
</tr>
</tbody>
</table>

When solving a QCP model, the barrier solver terminates when the relative difference between the primal and dual objective values is less than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance may lead to a more accurate solution, but it may also lead to a failure to converge.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BestBdStop**

Objective bound to stop optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>Infinity</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-Infinity</td>
</tr>
<tr>
<td>Maximum value</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Terminates as soon as the engine determines that the best bound on the objective value is at least as good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this case.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**BestObjStop**

Objective value to stop optimization
Type: double
Default value: -Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminate as soon as the engine finds a feasible solution whose objective value is at least as good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this case.

Note that you should always include a small tolerance in this value. Without this, a solution that satisfies the intended termination criterion may not actually lead to termination due to numerical round-off in the objective.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

BQPCuts
BQP cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Boolean Quadric Polytope (BQP) cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

BranchDir
Preferred branch direction
Type: int
Default value: 0
Minimum value: -1
Maximum value: 1

Determines which child node is explored first in the branch-and-cut search. The default value chooses automatically. A value of -1 will always explore the down branch first, while a value of 1 will always explore the up branch first.

Changing the value of this parameter rarely produces a significant benefit.

Note: Only affects mixed integer programming (MIP) models
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CliqueCuts**

Clique cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls clique cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value choose automatically. Overrides the Cuts parameter.

We have observed that setting this parameter to its aggressive setting can produce a significant benefit for some large set partitioning models.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CloudAccessID**

Access ID for Gurobi Instant Cloud

<table>
<thead>
<tr>
<th>Type</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>&quot;&quot;</td>
</tr>
</tbody>
</table>

Set this parameter to the Access ID for your Instant Cloud license when launching a new instance. You can retrieve this string from your account on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a gurobi.lic file (using CLOUDACCESSID=id) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CloudHost**

Host for the Gurobi Cloud entry point

<table>
<thead>
<tr>
<th>Type</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>&quot;&quot;</td>
</tr>
</tbody>
</table>

Set this parameter to the host name of the Gurobi Cloud entry point. Currently cloud.gurobi.com.

You must set this parameter through either a gurobi.lic file (using CLOUDHOST=host) or an empty environment. Changing the parameter after your environment has been started will result in an error.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CloudSecretKey**

Secret Key for Gurobi Instant Cloud  
**Type:** string  
**Default value:** ""

Set this parameter to the Secret Key for your Instant Cloud license when launching a new instance. You can retrieve this string from your account on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a `gurobi.lic` file (using `CLOUDSECRETKEY=key`) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CloudPool**

Cloud pool to use for Gurobi Instant Cloud instance  
**Type:** string  
**Default value:** ""

Set this parameter to the name of the cloud pool you would like to use for your new Instant Cloud instance. You can browse your existing cloud pools or create new ones from your account on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a `gurobi.lic` file (using `CLOUDPOOL=pool`) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ComputeServer**

Name of a node in the Remote Services cluster  
**Type:** string  
**Default value:** ""

Set this parameter to the name of a node in the Remote Services cluster where you’d like your Compute Server job to run. You can refer to the server using its name or its IP address. If you are using a non-default port, the server name should be followed by the port number (e.g., `server1:61000`).

You will also need to set the `ServerPassword` parameter to supply the client password for the specified cluster.
You can provide a comma-separated list of nodes to increase robustness. If the first node in the list doesn’t respond, the second will be tried, etc.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

You must set this parameter through either a gurobi.lic file (using COMPUTESERVER=server) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ConcurrentJobs**

Distributed concurrent optimizer job count

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>MAXINT</td>
</tr>
</tbody>
</table>

Enables distributed concurrent optimization, which can be used to solve LP or MIP models on multiple machines. A value of \( n \) causes the solver to create \( n \) independent models, using different parameter settings for each. Each of these models is sent to a distributed worker for processing. Optimization terminates when the first solve completes. Use the WorkerPool parameter to provide a distributed worker cluster.

By default, Gurobi chooses the parameter settings used for each independent solve automatically. You can create concurrent environments to choose your own parameter settings (refer to the concurrent optimization section for details). The intent of concurrent MIP solving is to introduce additional diversity into the MIP search. By bringing the resources of multiple machines to bear on a single model, this approach can sometimes solve models much faster than a single machine.

The distributed concurrent solver produces a slightly different log from the standard solver, and provides different callbacks as well. Please refer to the Distributed Algorithms section of the Gurobi Remote Services Reference Manual for additional details.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is \( 2^{31} - 1 \), we use a MAXINT value of \( 2,000,000,000 \). Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ConcurrentMIP**

Enables the concurrent MIP solver

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>MAXINT</td>
</tr>
</tbody>
</table>
This parameter enables the concurrent MIP solver. When the parameter is set to value $n$, the MIP solver performs $n$ independent MIP solves in parallel, with different parameter settings for each. Optimization terminates when the first solve completes.

By default, Gurobi chooses the parameter settings used for each independent solve automatically. You can create concurrent environments to choose your own parameter settings (refer to the concurrent optimization section for details). The intent of concurrent MIP solving is to introduce additional diversity into the MIP search. This approach can sometimes solve models much faster than applying all available threads to a single MIP solve, especially on very large parallel machines.

The concurrent MIP solver divides available threads evenly among the independent solves. For example, if you have 6 threads available and you set ConcurrentMIP to 2, the concurrent MIP solver will allocate 3 threads to each independent solve. Note that the number of independent solves launched will not exceed the number of available threads.

The concurrent MIP solver produces a slightly different log from the standard MIP solver, and provides different callbacks as well. Please refer to the concurrent optimizer discussion for additional details.

Concurrent MIP is not deterministic. If runtimes for different independent solves are very similar, and if the model has multiple optimal solutions, you may get slightly different results from multiple runs on the same model.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ConcurrentSettings**

Create concurrent environments from a set of .prm files

**Type:** string  
**Default value:** ""

This command-line only parameter allows you to specify a comma-separated list of .prm files that are used to set parameters for the different instances in a concurrent MIP run.

To give an example, you could create two .prm files with the following contents...

s0.prm:

MIPFocus 0

s1.prm:

MIPFocus 1

Issuing the command `gurobi_cl ConcurrentSettings=s0.prm,s1.prm model.mps` would invoke the concurrent MIP solver, using parameter setting MIPFocus=0 in one of the two concurrent solves and MIPFocus=1 in the other.
Note that if you want to run concurrent MIP on multiple machines, you must also set the `ConcurrentJobs` parameter. The command for running distributed concurrent optimization using the two example parameter files on two machines would be

```
> gurobi_cl ConcurrentJobs=2 ConcurrentSettings=s0.prm,s1.prm model.mps
```

**Note:** Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### CoverCuts

Cover cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the `Cuts` parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### Crossover

Barrier crossover strategy

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>4</td>
</tr>
</tbody>
</table>

Determines the crossover strategy used to transform the interior solution produced by barrier into a basic solution (note that crossover is not available for QP or QCP models). Crossover consists of three phases: (i) a *primal push* phase, where primal variables are pushed to bounds, (ii) a *dual push* phase, where dual variables are pushed to bounds, and (iii) a *cleanup* phase, where simplex is used to remove any primal or dual infeasibilities that remain after the push phases are complete. The order of the first two phases and the algorithm used for the third phase are both controlled by the `Crossover` parameter:
<table>
<thead>
<tr>
<th>Parameter value</th>
<th>First push</th>
<th>Second push</th>
<th>Cleanup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>Dual</td>
<td>Primal</td>
<td>Primal</td>
</tr>
<tr>
<td>2</td>
<td>Dual</td>
<td>Primal</td>
<td>Dual</td>
</tr>
<tr>
<td>3</td>
<td>Primal</td>
<td>Dual</td>
<td>Primal</td>
</tr>
<tr>
<td>4</td>
<td>Primal</td>
<td>Dual</td>
<td>Dual</td>
</tr>
</tbody>
</table>

The default value of -1 chooses the strategy automatically. Use value 0 to disable crossover; this setting returns the interior solution computed by barrier.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CrossoverBasis**

Crossover basis construction strategy

- **Type:** int
- **Default value:** 0
- **Minimum value:** 0
- **Maximum value:** 1

Determines the initial basis construction strategy for crossover. The default value (0) chooses an initial basis quickly. A value of 1 can take much longer, but often produces a more numerically stable start basis.

**Note:** Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CSAPIAccessID**

Access ID for Gurobi Cluster Manager

- **Type:** string
- **Default value:** ""

A unique identifier used to authenticate an application on a Gurobi Cluster Manager.

You can provide either an access ID and a secret key, or a username and password, to authenticate your connection to a Cluster Manager.

You must set this parameter through either a `gurobi.lic` file (using `CSAPIACCESSID=YOUR_API_ID`) or an empty environment. Changing the parameter after your environment has been started will result in an error.

**Note:** Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
CSAPISecret
Secret key for Gurobi Cluster Manager

Type: string
Default value: ""

The secret password associated with an API access ID.
You can provide either an access ID and a secret key, or a username and password, to authenticate your connection to a Cluster Manager.
You must set this parameter through either a `gurobi.lic` file (using `CSAPISecret=YOUR_API_SECRET_KEY`) or an empty environment. Changing the parameter after your environment has been started will result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

CSAppName

Application name of the batches or jobs

Type: string
Default value: ""

The application name which will be sent to the server to track which application is submitting the batches or jobs.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

CSAuthToken

JSON Web Token for accessing the Cluster Manager

Type: string
Default value: ""

When a client authenticates with a Cluster Manager using a username and password, a signed token is returned by the server to be used in further calls or command-line operations. It is used internally.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

CSBatchMode

Controls Batch-Mode optimization
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

When set to 1, enable the local creation of models, and later submit batch-optimization jobs to the Cluster Manager. See the Batch Optimization section for more details. Note that if CSBatchMode is enabled, only batch-optimization calls are allowed.

You must set this parameter through either a gurobil.lic file (using CSBATCHMODE=1) or an empty environment. Changing the parameter after your environment has been started will result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CSClientLog**

Turns logging on or off

Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

Turns logging on or off for Compute Server. Options are off (0), only error messages (1), information and error messages (2), or (3) verbose, information, and error messages.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CSGroup**

Group placement request for cluster

Type: string
Default value: ""

Specifies one or more groups of cluster nodes to control the placement of the job. The list is a comma separated string of group names, with optionally a priority for a group. For example, specifying group1:10,group2:50 means that the job will run on machines of group1 or group2, and if the job is queued, it will have priority 10 on group1 and 50 on group2. Note that if the group is not specified, the job may run on any node. If there are no nodes in the cluster having the specified groups, the job will be rejected.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs and in particular to Gurobi Remote Services cluster Grouping for more information.
on grouping cluster nodes.

You must set this parameter through either a license file (using \texttt{GROUP=\textit{name}}) or an \textit{empty environment}. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

\textbf{CSIdleTimeout}

Idle time before Compute Server kills a job

\begin{itemize}
  \item \textbf{Type:} \texttt{int}
  \item \textbf{Default value:} \texttt{-1}
  \item \textbf{Minimum value:} \texttt{-1}
  \item \textbf{Maximum value:} \texttt{MAXINT}
\end{itemize}

This parameter allows you to set a limit on how long a Compute Server job can sit idle before the server kills the job (in seconds). A job is considered idle if the server is not currently performing an optimization and the client has not issued any additional commands.

The default value will allow a job to sit idle indefinitely in all but a few circumstances. The first exception is the Gurobi Instant Cloud, where the default setting will automatically impose a 30 minute idle time limit (1800 seconds). If you are using an Instant Cloud pool, the actual value will be the maximum between this parameter value and the idle timeout defined by the pool.

The second exception is any program that uses the Gurobi Python interface (including the Gurobi Interactive Shell). Such programs will also get a 30 minute idle time limit by default.

You must set this parameter through either a \texttt{gurobi.lic} file (using \texttt{IDLETIMEOUT=n}) or an \textit{empty environment}. Changing the parameter after your environment has been created will have no effect.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a \texttt{MAXINT} value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

\textbf{CSManager}

URL of the Cluster Manager for the Remote Services cluster

\begin{itemize}
  \item \textbf{Type:} \texttt{string}
  \item \textbf{Default value:} \texttt{"}"
\end{itemize}

URL of the Cluster Manager for the Remote Services cluster.

You must set this parameter through either a \texttt{gurobi.lic} file (using \texttt{CSMANAGER=YOUR_MANAGER_URL}) or an \textit{empty environment}. Changing the parameter after your environment has been started will result in an error.
Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

CSPriority

Client password for Remote Services cluster

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-100</td>
</tr>
<tr>
<td>Maximum value</td>
<td>100</td>
</tr>
</tbody>
</table>

The priority of the Compute Server job. Priorities must be between -100 and 100, with a default value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the job limit on the server. You should exercise caution with priority 100 jobs, since they can severely overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

You must set this parameter through either a gurobi.lic file (using PRIORITY=n) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

CSQueueTimeout

Queue timeout for new jobs

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>Infinity</td>
</tr>
<tr>
<td>Maximum value</td>
<td>-1</td>
</tr>
</tbody>
</table>

This parameter allows you to set a limit (in seconds) on how long a new Compute Server job will wait in queue before it gives up (and reports a JOB_REJECTED error). Note that there might be a delay of up to 20 seconds for the actual signaling of the time out.

Any negative value will allow a job to sit in the Compute Server queue indefinitely.

You must set this parameter through a gurobi.lic file (using QUEUETIMEOUT=n) or an empty environment. Changing the parameter after your environment has been created will have no effect.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**CSRouter**

Router node for Remote Services cluster

**Type:** string

**Default value:** ""

The router node for a Remote Services cluster. A router can be used to improve the robustness of a Compute Server deployment. You can refer to the router using either its name or its IP address. A typical Remote Services deployment won’t use a router, so you typically won’t need to set this parameter.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

You must set this parameter through either a `gurobi.lic` file (using `ROUTER=name`) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CSTLSInsecure**

Use insecure mode in Transport Layer Security (TLS)

**Type:** int

**Default value:** 0

**Minimum value:** 0

**Maximum value:** 1

Indicates whether the Remote Services cluster is using insecure mode in the TLS (Transport Layer Security). Set this to 0 unless your server administrator tells you otherwise.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

You must set this parameter through either a `gurobi.lic` file (using `CS TLSINSECURE` or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**CutAggPasses**

Constraint aggregation passes in cut generation

**Type:** int

**Default value:** -1

**Minimum value:** -1

**Maximum value:** MAXINT

A non-negative value indicates the maximum number of constraint aggregation passes performed during cut generation. Overrides the Cuts parameter.
Changing the value of this parameter rarely produces a significant benefit.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is \( 2^{31} - 1 \), we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### Cutoff

Objective cutoff

**Type:** double  
**Default value:** Infinity for minimization, -Infinity for maximization  
**Minimum value:** -Infinity  
**Maximum value:** Infinity

Indicates that you aren’t interested in solutions whose objective values are worse than the specified value. If the objective value for the optimal solution is better than the specified cutoff, the solver will return the optimal solution. Otherwise, it will terminate with a CUTOFF status (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### CutPasses

Cutting plane passes

**Type:** int  
**Default value:** -1  
**Minimum value:** -1  
**Maximum value:** MAXINT

A non-negative value indicates the maximum number of cutting plane passes performed during root cut generation. The default value chooses the number of cut passes automatically.

You should experiment with different values of this parameter if you notice the MIP solver spending significant time on root cut passes that have little impact on the objective bound.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is \( 2^{31} - 1 \), we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
Cuts
Global cut control
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Global cut aggressiveness setting. Use value 0 to shut off cuts, 1 for moderate cut generation, 2 for aggressive cut generation, and 3 for very aggressive cut generation. This parameter is overridden by the parameters that control individual cut types (e.g., CliqueCuts).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

DegenMoves
Degenerate simplex moves
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits degenerate simplex moves. These moves are performed to improve the integrality of the current relaxation solution. By default, the algorithm chooses the number of moves to perform automatically.

Changing the value of this parameter can help performance in cases where an excessive amount of time is spent after the initial root relaxation has been solved but before the cut generation process or the root heuristics have started.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

Disconnected
Disconnected component strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

A MIP model can sometimes be made up of multiple, completely independent sub-models. This parameter controls how aggressively we try to exploit this structure. A value of 0 ignores
this structure entirely, while larger values try more aggressive approaches. The default value of -1 chooses automatically.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**DisplayInterval**

Frequency of log lines

- **Type:** int
- **Default value:** 5
- **Minimum value:** 1
- **Maximum value:** MAXINT

Determines the frequency at which log lines are printed (in seconds).

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**DistributedMIPJobs**

Distributed MIP job count

- **Type:** int
- **Default value:** 0
- **Minimum value:** 0
- **Maximum value:** MAXINT

Enables distributed MIP. A value of $n$ causes the MIP solver to divide the work of solving a MIP model among $n$ machines. Use the WorkerPool parameter to provide a distributed worker cluster.

The distributed MIP solver produces a slightly different log from the standard MIP solver, and provides different callbacks as well. Please refer to the Distributed Algorithms section of the Gurobi Remote Services Reference Manual for additional details.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
DualReductions

Controls dual reductions

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines whether dual reductions are performed in presolve. You should disable these reductions if you received an optimization status of INF_OR_UNBD and would like a more definitive conclusion.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FeasibilityTol

Primal feasibility tolerance

Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

All constraints must be satisfied to a tolerance of FeasibilityTol. Tightening this tolerance can produce smaller constraint violations, but for numerically challenging models it can sometimes lead to much larger iteration counts.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FeasRelaxBigM

Big-M value for feasibility relaxations

Type: double
Default value: 1e6
Minimum value: 0
Maximum value: Infinity

When relaxing a constraint in a feasibility relaxation, it is sometimes necessary to introduce a big-M value. This parameter determines the default magnitude of that value.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FlowCoverCuts

Flow cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FlowPathCuts

Flow path cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow path cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FuncPieceError

Error allowed for PWL translation of function constraints
Type: double
Default value: 1e-3
Minimum value: 1e-6
Maximum value: 1e+6

If the FuncPieces parameter is set to value −1 or −2, this attribute provides the maximum allowed error (absolute for −1, relative for −2) in the piecewise-linear approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

FuncPieceLength

Piece length for PWL translation of function constraints
Type: double
Default value: 1e-2
Minimum value: 1e-5
Maximum value: 1e+6

If the FuncPieces parameter is set to value 1, this parameter gives the length of each piece of the piecewise-linear approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**FuncPieceRatio**

Control whether to under- or over-estimate function values in PWL approximation

Type: double
Default value: -1
Minimum value: -1
Maximum value: 1

This parameter controls whether the piecewise-linear approximation of a function constraint is an underestimate of the function, an overestimate, or somewhere in between. A value of 0.0 will always underestimate, while a value of 1.0 will always overestimate. A value in between will interpolate between the underestimate and the overestimate. A special value of -1 chooses points that are on the original function.

See the discussion of function constraints for more information.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**FuncPieces**

Sets strategy for PWL function approximation

Type: int
Default value: 0
Minimum value: -2
Maximum value: 200000000

This parameter sets the strategy used for performing a piecewise-linear approximation of a function constraint. There are a few options:

- **FuncPieces >= 2**: Sets the number of pieces; pieces are equal width.
- **FuncPieces = 1**: Uses a fixed width for each piece; the actual width is provided in the FuncPieceLength parameter.
- **FuncPieces = -1**: Bounds the absolute error of the approximation; the error bound is provided in the FuncPieceError parameter.
- **FuncPieces = -2**: Bounds the relative error of the approximation; the error bound is provided in the `FuncPieceError` parameter.

This parameter only applies to function constraints whose `FuncPieces` attribute has been set to 0.

See the discussion of function constraints for more information.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**FuncMaxVal**

Maximum allowed value for x and y variables in function constraints

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1e+6</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Very large values in piecewise-linear approximations can cause numerical issues. This parameter limits the bounds on the variables that participate in function constraints. Specifically, if x or y participate in a function constraint, any bound larger than `FuncMaxVal` (in absolute value) will be truncated.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**GomoryPasses**

Gomory cut passes

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>MAXINT</td>
</tr>
</tbody>
</table>

A non-negative value indicates the maximum number of Gomory cut passes performed. Overrides the `Cuts` parameter.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is \(2^{31} - 1\), we use a `MAXINT` value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note**: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**GUBCoverCuts**

GUB cover cut generation
Controls GUB cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Heuristics**

Time spent in feasibility heuristics

<table>
<thead>
<tr>
<th>Type:</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0.05</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

Determines the amount of time spent in MIP heuristics. You can think of the value as the desired fraction of total MIP runtime devoted to heuristics (so by default, we aim to spend 5% of runtime on heuristics). Larger values produce more and better feasible solutions, at a cost of slower progress in the best bound.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**IgnoreNames**

Indicates whether to ignore names provided by users.

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

This parameter affects how Gurobi deals with names. If set to 1, subsequent calls to add variables or constraints to the model will ignore the associated names. Names for objectives and the model will also be ignored. In addition, subsequent calls to modify name attributes will have no effect. Note that variables or constraints that had names at the point this parameter was changed to 1 will retain their names. If you wish to discard all name information, you should set this parameter to 1 before adding variables or constraints to the model.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**IISMethod**

Selects method used to compute IIS

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum</td>
<td>3</td>
</tr>
</tbody>
</table>

Chooses the IIS method to use. Method 0 is often faster, while method 1 can produce a smaller IIS. Method 2 ignores the bound constraints. Method 3 will return the IIS for the LP relaxation of a MIP model if the relaxation is infeasible, even though the result may not be minimal when integrality constraints are included. The default value of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ImpliedCuts**

Implied bound cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ImproveStartGap**

Solution improvement strategy control

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions. This parameter allows you to specify an optimality gap at which
the MIP solver switches to a solution improvement strategy. For example, setting this parameter to 0.1 will cause the MIP solver to switch strategies once the relative optimality gap is smaller than 0.1.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ImproveStartNodes**

Solution improvement strategy control

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>Infinity</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0.0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions. This parameter allows you to specify the node count at which the MIP solver switches to a solution improvement strategy. For example, setting this parameter to 10 will cause the MIP solver to switch strategies once the node count is larger than 10.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ImproveStartTime**

Solution improvement strategy control

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>Infinity</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0.0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

The MIP solver can change parameter settings in the middle of the search in order to adopt a strategy that gives up on moving the best bound and instead devotes all of its effort towards finding better feasible solutions. This parameter allows you to specify the time when the MIP solver switches to a solution improvement strategy. For example, setting this parameter to 10 will cause the MIP solver to switch strategies 10 seconds after starting the optimization.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**InfProofCuts**

Infeasibility proof cut generation

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls infeasibility proof cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**InfUnbdInfo**

Additional info for infeasible/unbounded models

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

Determines whether simplex (and crossover) will compute additional information when a model is determined to be infeasible or unbounded. Set this parameter if you want to query the unbounded ray for unbounded models (through the UnbdRay attribute), or the infeasibility proof for infeasible models (through the FarkasDual and FarkasProof attributes).

Note that if a model is found to be either infeasible or unbounded, and you simply want to know which one it is, you should use the DualReductions parameter instead. It performs much less additional computation.

**Note:** LP only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**InputFile**

Import data into a model before beginning optimization

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>&quot;&quot;</td>
</tr>
</tbody>
</table>

Specifies the name of a file that will be read before beginning a command-line optimization run. This parameter can be used to input a MIP start (a .mst or .sol file), MIP hints (a .hnt file), a simplex basis (a .bas file), or a set of parameter settings (a .prm file) from the Gurobi
command line. The suffix may optionally be followed by .zip, .gz, bz2, or .7z if the input files are compressed.

**Note:** Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### IntFeasTol

Integer feasibility tolerance

*Type:* double  
*Default value:* 1e-5  
*Minimum value:* 1e-9  
*Maximum value:* 1e-1

An integrality restriction on a variable is considered satisfied when the variable's value is less than `IntFeasTol` from the nearest integer value. Tightening this tolerance can produce smaller integrality violations, but very tight tolerances may significantly increase runtime. Loosening this tolerance rarely reduces runtime.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### IterationLimit

Simplex iteration limit

*Type:* double  
*Default value:* Infinity  
*Minimum value:* 0  
*Maximum value:* Infinity

Limits the number of simplex iterations performed. The limit applies to MIP, barrier crossover, and simplex. Optimization returns with an `ITERATION_LIMIT` status if the limit is exceeded (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

### JobID

Compute Server Job ID

*Type:* string  
*Default value:* ""

---

779
If you are running on a Compute Server, this parameter provides the Compute Server Job ID for the current job. Note that this is a read-only parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**JSONSolDetail**

Level of detail in JSON solution format

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

This parameter controls the amount of detail included in a JSON solution. For a precise description of the contents of the resulting JSON string, please refer to the JSON solution format section.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**LazyConstraints**

Programs that use lazy constraints must set this parameter

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>1</td>
</tr>
</tbody>
</table>

Programs that add lazy constraints through a callback must set this parameter to value 1. The parameter tells the Gurobi algorithms to avoid certain reductions and transformations that are incompatible with lazy constraints.

Note that if you use lazy constraints by setting the Lazy attribute (and not through a callback), there’s no need to set this parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**LogFile**

Name for Gurobi log file

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>&quot;&quot;</td>
</tr>
</tbody>
</table>

Determines the name of the Gurobi log file. Modifying this parameter closes the current log file and opens the specified file. Use an empty string for no log file. Use OutputFlag to shut off all
logging.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**LogToConsole**
Control console logging
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables console logging. Use OutputFlag to shut off all logging.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MarkowitzTol**
Threshold pivoting tolerance
Type: double
Default value: 0.0078125
Minimum value: 1e-4
Maximum value: 0.999

The Markowitz tolerance is used to limit numerical error in the simplex algorithm. Specifically, larger values reduce the error introduced in the simplex basis factorization. A larger value may avoid numerical problems in rare situations, but it will also harm performance.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Method**
Algorithm used to solve continuous models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 5

Algorithm used to solve continuous models or the root node of a MIP model. Options are: -1=automatic, 0=primal simplex, 1=dual simplex, 2=barrier, 3=concurrent, 4=deterministic concurrent, 5=deterministic concurrent simplex.
In the current release, the default Automatic (-1) setting will typically choose non-deterministic concurrent (Method=3) for an LP, barrier (Method=2) for a QP or QCP, and dual (Method=1) for the MIP root node. Only the simplex and barrier algorithms are available for continuous QP.
models. Only primal and dual simplex are available for solving the root of an MIQP model. Only barrier is available for continuous QCP models.

Concurrent optimizers run multiple solvers on multiple threads simultaneously, and choose the one that finishes first. Method=3 and Method=4 will run dual simplex, barrier, and sometimes primal simplex (depending on the number of available threads). Method=5 will run both primal and dual simplex. The deterministic options (Method=4 and Method=5) give the exact same result each time, while Method=3 is often faster but can produce different optimal bases when run multiple times.

The default setting is rarely significantly slower than the best possible setting, so you generally won’t see a big gain from changing this parameter. There are classes of models where one particular algorithm is consistently fastest, though, so you may want to experiment with different options when confronted with a particularly difficult model.

Note that if memory is tight on an LP model, you should consider using the dual simplex method (Method=1). The concurrent optimizer, which is typically chosen when using the default setting, consumes a lot more memory than dual simplex alone.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MinRelNodes**

Minimum relaxation heuristic

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** MAXINT

Number of nodes to explore in the minimum relaxation heuristic. Note that this heuristic is only applied at the end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

The default value automatically chooses whether to apply the heuristic. It will only rarely choose to do so.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is \(2^{31} - 1\), we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MIPFocus**

MIP solver focus
The MIPFocus parameter allows you to modify your high-level solution strategy, depending on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible solutions and proving that the current solution is optimal. If you are more interested in finding feasible solutions quickly, you can select MIPFocus=1. If you believe the solver is having no trouble finding good quality solutions, and wish to focus more attention on proving optimality, select MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to try MIPFocus=3 to focus on the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

MIPGap
Relative MIP optimality gap
Type: double
Default value: 1e-4
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and upper objective bound is less than MIPGap times the absolute value of the upper bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

MIPGapAbs
Absolute MIP optimality gap
Type: double
Default value: 1e-10
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and upper objective bound is less than MIPGapAbs.

Note: Only affects mixed integer programming (MIP) models
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MIPSepCuts**

MIP separation cut generation

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 2

Controls MIP separation cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MIQCPMethod**

Method used to solve MIQCP models

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 1

Controls the method used to solve MIQCP models. Value 1 uses a linearized, outer-approximation approach, while value 0 solves continuous QCP relaxations at each node. The default setting (-1) chooses automatically.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MIRCuts**

MIR cut generation

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 2
Controls Mixed Integer Rounding (MIR) cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ModKCuts**

Mod-k cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls mod-k cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**MultiObjMethod**

Method used for multi-objective solves

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2</td>
</tr>
</tbody>
</table>

When solving a continuous multi-objective model using a hierarchical approach, the model is solved once for each objective. The algorithm used to solve for the highest priority objective is controlled by the Method parameter. This parameter determines the algorithm used to solve for subsequent objectives. As with the Method parameters, values of 0 and 1 use primal and dual simplex, respectively. A value of 2 indicates that warm-start information from previous solves should be discarded, and the model should be solved from scratch (using the algorithm indicated by the Method parameter). The default setting of -1 usually chooses primal simplex.

**Note:** Only affects continuous multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
MultiObjPre

Initial presolve level on multi-objective models

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the initial presolve level used for multi-objective models. Value 0 disables the initial presolve, value 1 applies presolve conservatively, and value 2 applies presolve aggressively. The default -1 value usually applies presolve conservatively. Aggressive presolve may increase the chance of the objective values being slightly different than those for other options.

Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

NetworkCuts

Network cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls network cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

NodefileDir

Directory for node files

Type: string
Default value: "."

Determines the directory into which nodes are written when node memory usage exceeds the specified NodefileStart value.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**NodefileStart**

Write MIP nodes to disk

**Type:** double  
**Default value:** Infinity  
**Minimum value:** 0  
**Maximum value:** Infinity

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the **NodefileStart** parameter. When the amount of memory used to store nodes (measured in GBytes) exceeds the specified parameter value, nodes are compressed and written to disk. We recommend a setting of 0.5, but you may wish to choose a different value, depending on the memory available in your machine. By default, nodes are written to the current working directory. The **NodefileDir** parameter can be used to choose a different location.

If you still exhaust memory after setting the **NodefileStart** parameter to a small value, you should try limiting the thread count. Each thread in parallel MIP requires a copy of the model, as well as several other large data structures. Reducing the **Threads** parameter can sometimes significantly reduce memory usage.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**NodeLimit**

MIP node limit

**Type:** double  
**Default value:** Infinity  
**Minimum value:** 0  
**Maximum value:** Infinity

Limits the number of MIP nodes explored. Optimization returns with an **NODE_LIMIT** status if the limit is exceeded (see the **Status Code** section for further details). Note that if multiple threads are used for the optimization, the actual number of explored nodes may be slightly larger than the set limit.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**NodeMethod**

Method used to solve MIP node relaxations
Algorithm used for MIP node relaxations (except for the root node, see Method). Options are: -1=automatic, 0=primal simplex, 1=dual simplex, and 2=barrier. Note that barrier is not an option for MIQP node relaxations.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

NonConvex

Strategy for handling non-convex quadratic programs

Sets the strategy for handling non-convex quadratic objectives or non-convex quadratic constraints. With setting 0, an error is reported if the original user model contains non-convex quadratic constructs. With setting 1, an error is reported if non-convex quadratic constructs could not be discarded or linearized during presolve. With setting 2, non-convex quadratic problems are solved by means of translating them into bilinear form and applying spatial branching. The default -1 setting is currently equivalent to 1, and may change in future releases to be equivalent to 2.

Note: Only affects QP, QCP, MIQP, and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

NormAdjust

Choose simplex pricing norm.

Chooses from among multiple pricing norm variants. The details of how this parameter affects the simplex pricing algorithm are subtle and difficult to describe, so we’ve simply labeled the options 0 through 3. The default value of -1 chooses automatically.

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**NumericFocus**

Numerical focus

**Type:** int  
**Default value:** 0  
**Minimum value:** 0  
**Maximum value:** 3

The `NumericFocus` parameter controls the degree to which the code attempts to detect and manage numerical issues. The default setting (0) makes an automatic choice, with a slight preference for speed. Settings 1-3 increasingly shift the focus towards being more careful in numerical computations. With higher values, the code will spend more time checking the numerical accuracy of intermediate results, and it will employ more expensive techniques in order to avoid potential numerical issues.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ObjNumber**

Selects objective index of multi-objectives

**Type:** int  
**Default value:** 0  
**Minimum value:** 0  
**Maximum value:** 2000000000

When working with multiple objectives, this parameter selects the index of the objective you want to work with. When you query or modify an attribute associated with multiple objectives (ObjN, ObjNVal, etc.), the `ObjNumber` parameter will determine which objective is actually affected. The value of this parameter should be less than the value of the `NumObj` attribute (which captures the number of objectives in the model).

Please refer to the discussion of Multiple Objectives for more information on the use of alternative objectives.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ObjScale**

Objective scaling
**ObjScale**

Divides the model objective by the specified value to avoid numerical errors that may result from very large objective coefficients. The default value of 0 decides on the scaling automatically. A value less than zero uses the maximum coefficient to the specified power as the scaling (so \( \text{ObjScale} = -0.5 \) would scale by the square root of the largest objective coefficient).

Objective scaling can be useful when the objective contains extremely large values, but it can also lead to large dual violations, so it should be used sparingly.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**OptimalityTol**

Dual feasibility tolerance

<table>
<thead>
<tr>
<th>Type</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1e-6</td>
</tr>
<tr>
<td>Minimum value</td>
<td>1e-9</td>
</tr>
<tr>
<td>Maximum value</td>
<td>1e-2</td>
</tr>
</tbody>
</table>

Reduced costs must all be smaller than \( \text{OptimalityTol} \) in the improving direction in order for a model to be declared optimal.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**OutputFlag**

Controls Gurobi output

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>1</td>
</tr>
</tbody>
</table>

Enables or disables solver output. Use \( \text{LogFile} \) and \( \text{LogToConsole} \) for finer-grain control. Setting \( \text{OutputFlag} \) to 0 is equivalent to setting \( \text{LogFile} \) to "" and \( \text{LogToConsole} \) to 0.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PartitionPlace**

Controls where the partition heuristic runs
Setting the Partition attribute on at least one variable in a model enables the partitioning heuristic, which uses large-neighborhood search to try to improve the current incumbent solution. This parameter determines where that heuristic runs. Options are:

- Before the root relaxation is solved (16)
- At the start of the root cut loop (8)
- At the end of the root cut loop (4)
- At the nodes of the branch-and-cut search (2)
- When the branch-and-cut search terminates (1)

The parameter value is a bit vector, where each bit turns the heuristic on or off at that place. The numerical values next to the options listed above indicate which bit controls the corresponding option. Thus, for example, to enable the heuristic at the beginning and end of the root cut loop (and nowhere else), you would set the 8 bit and the 4 bit to 1, which would correspond to a parameter value of 12.

The default value of 15 indicates that we enable every option except the first one listed above.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PerturbValue**

Simplex perturbation

<table>
<thead>
<tr>
<th>Type:</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0.0002</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Magnitude of the simplex perturbation. Note that perturbation is only applied when progress has stalled, so the parameter will often have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PoolGap**

Maximum gap for stored solutions
Determines how large a gap to tolerate in stored solutions. When this parameter is set to a non-default value, solutions whose objective values exceed that of the best known solution by more than the specified (relative) gap are discarded. For example, if the MIP solver has found a solution at objective 100, then a setting of \texttt{PoolGap=0.2} would discard solutions with objective worse than 120 (assuming a minimization objective).

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PoolSearchMode**

Selects different modes for exploring the MIP search tree

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2</td>
</tr>
</tbody>
</table>

Selects different modes for exploring the MIP search tree. With the default setting (\texttt{PoolSearchMode=0}), the MIP solver tries to find an optimal solution to the model. It keeps other solutions found along the way, but those are incidental. By setting this parameter to a non-default value, the MIP search will continue after the optimal solution has been found in order to find additional, high-quality solutions. With a setting of 2, it will find the \texttt{n} best solutions, where \texttt{n} is determined by the value of the \texttt{PoolSolutions} parameter. With a setting of 1, it will try to find additional solutions, but with no guarantees about the quality of those solutions. The cost of the solve will increase with increasing values of this parameter.

Once optimization is complete, the \texttt{PoolObjBound} attribute can be used to evaluate the quality of the solutions that were found. For example, a value of \texttt{PoolObjBound=100} indicates that there are no other solutions with objective better than 100, and thus that any known solutions with objective better than 100 are better than any as-yet undiscovered solutions.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
Type: int
Default value: 10
Minimum value: 1
Maximum value: 2000000000

Determines how many MIP solutions are stored. For the default value of PoolSearchMode, these are just the solutions that are found along the way in the process of exploring the MIP search tree. For other values of PoolSearchMode, this parameter sets a target for how many solutions to find, so larger values will impact performance.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

PreCrush

Controls presolve reductions that affect user cuts
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Allows presolve to translate constraints on the original model to equivalent constraints on the presolved model. You must turn this parameter on when you are using callbacks to add your own cuts.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

PreDepRow

Controls the presolve dependent row reduction
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve dependent row reduction, which eliminates linearly dependent constraints from the constraint matrix. The default setting (-1) applies the reduction to continuous models but not to MIP models. Setting 0 turns the reduction off for all models. Setting 1 turns it on for all models.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**PreDual**

Controls presolve model dualization

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 2

Controls whether presolve forms the dual of a continuous model. Depending on the structure of the model, solving the dual can reduce overall solution time. The default setting uses a heuristic to decide. Setting 0 forbids presolve from forming the dual, while setting 1 forces it to take the dual. Setting 2 employs a more expensive heuristic that forms both the presolved primal and dual models (on two threads), and heuristically chooses one of them.

**Note:** LP only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

---

**PreMIQCPForm**

Format of presolved MIQCP model

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 2

Determines the format of the presolved version of an MIQCP model. Option 0 leaves the model in MIQCP form, so the branch-and-cut algorithm will operate on a model with arbitrary quadratic constraints. Option 1 always transforms the model into MISOCP form; quadratic constraints are transformed into second-order cone constraints. Option 2 always transforms the model into disaggregated MISOCP form; quadratic constraints are transformed into rotated cone constraints, where each rotated cone contains two terms and involves only three variables.

The default setting (-1) choose automatically. The automatic setting works well, but there are cases where forcing a different form can be beneficial.

**Note:** Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

---

**PrePasses**

Presolve pass limit

---

794
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of passes performed by presolve. The default setting (-1) chooses the number of passes automatically. You should experiment with this parameter when you find that presolve is consuming a large fraction of total solve time.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PreQLinearize**

Presolve quadratic linearization

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls presolve Q matrix linearization. Options 1 and 2 attempt to linearize quadratic constraints or a quadratic objective, potentially transforming an MIQP or MIQCP model into an MILP. Option 1 focuses on getting a strong LP relaxation. Option 2 aims for a compact relaxation. Option 0 always leaves Q matrices unmodified. The default setting (-1) chooses automatically.

**Note:** Only affects MIQP and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Presolve**

Controls the presolve level

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the presolve level. A value of -1 corresponds to an automatic setting. Other options are off (0), conservative (1), or aggressive (2). More aggressive application of presolve takes more time, but can sometimes lead to a significantly tighter model.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**PreSOS1BigM**

Threshold for SOS1-to-binary reformulation

- **Type:** double
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 1e10

Controls the automatic reformulation of SOS1 constraints into binary form. SOS1 constraints are often handled more efficiently using a binary representation. The reformulation often requires big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can be introduced by presolve when performing this reformulation. Larger values increase the chances that an SOS1 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0 to shut off SOS1 reformulation entirely, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

Please refer to this section for more information on SOS constraints.

**PreSOS2BigM**

Threshold for SOS2-to-binary reformulation

- **Type:** double
- **Default value:** 0
- **Minimum value:** -1
- **Maximum value:** 1e10

Controls the automatic reformulation of SOS2 constraints into binary form. SOS2 constraints are often handled more efficiently using a binary representation. The reformulation often requires big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can be introduced by presolve when performing this reformulation. Larger values increase the chances that an SOS2 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical issues.

The default value of 0 disables the reformulation. You can set the parameter to -1 to choose an automatic approach, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

Please refer to this section for more information on SOS constraints.

**PreSparsify**

Controls the presolve sparsify reduction
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve sparsify reduction. This reduction can sometimes significantly reduce the number of nonzero values in the presolved model. Value 0 shuts off the reduction, while value 1 forces it on. The default value of -1 chooses automatically.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ProjImpliedCuts**

Projected implied bound cut generation

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls projected implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**PSDTol**

Positive semi-definite tolerance

Type: double
Default value: 1e-6
Minimum value: 0
Maximum value: Infinity

Sets a limit on the amount of diagonal perturbation that the optimizer is allowed to perform on a Q matrix in order to correct minor PSD violations. If a larger perturbation is required, the optimizer will terminate with a `GRB_ERROR_Q_NOT_PSD` error.

Note: Only affects QP/QCP/MIQP/MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**PumpPasses**

Passes of the feasibility pump heuristic

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** MAXINT

Number of passes of the feasibility pump heuristic. Note that this heuristic is only applied at the end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

- **Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**QCPDual**

Dual variables for QCP models

- **Type:** int
- **Default value:** 0
- **Minimum value:** 0
- **Maximum value:** 1

Determines whether dual variable values are computed for QCP models. Computing them can add significant time to the optimization, so you should only set this parameter to 1 if you need them.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Quad**

Controls quad precision in simplex

- **Type:** int
- **Default value:** -1
- **Minimum value:** -1
- **Maximum value:** 1

Enables or disables quad precision computation in simplex. The -1 default setting allows the algorithm to decide. Quad precision can sometimes help solve numerically challenging models, but
it can also significantly increase runtime.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Record**

Enables API call recording

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value</td>
<td>1</td>
</tr>
</tbody>
</table>

Enables API call recording. When enabled, Gurobi will write one or more files (named `gurobi000.grbr` or similar) that capture the sequence of Gurobi commands that your program issued. This file can subsequently be replayed using the Gurobi command-line tool. Replaying the file will repeat the exact same sequence of commands, and when completed will show the time spent in Gurobi API routines, the time spent in Gurobi algorithms, and will indicate whether any Gurobi environments or models were leaked by your program. Replay files are particularly useful in tech support situations. They provide an easy way to relay to Gurobi tech support the exact sequence of Gurobi commands that led to a question or issue.

This parameter must be set before starting an empty environment (or in a `gurobi.env` file). All Gurobi commands will be recorded until the environment is freed or the program ends.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ResultFile**

Write a result file upon completion of optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>&quot;&quot;</td>
</tr>
</tbody>
</table>

Specifies the name of the result file to be written upon completion of optimization. The type of the result file is determined by the file suffix. The most commonly used suffixes are `.sol` (to capture the solution vector), `.bas` (to capture the simplex basis), and `.mst` (to capture the solution vector on the integer variables). You can also write a `.ilp` file (to capture the IIS for an infeasible model), or a `.mps`, `.rew`, `.lp`, or `.rlp` file (to capture the original model). The file suffix may optionally be followed by `.gz`, `.bz2`, or `.7z`, which produces a compressed result.

More information on the file formats can be found in the File Format section.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**RINS**

Relaxation Induced Neighborhood Search (RINS) heuristic frequency
Frequency of the RINS heuristic. Default value (-1) chooses automatically. A value of 0 shuts off RINS. A positive value $n$ applies RINS at every $n$-th node of the MIP search tree.

Increasing the frequency of the RINS heuristic shifts the focus of the MIP search away from proving optimality, and towards finding good feasible solutions. We recommend that you try MIPFocus, ImproveStartGap, or ImproveStartTime before experimenting with this parameter.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

RelaxLiftCuts
Relax-and-lift cut generation

Type:	int
Default value:	-1
Minimum value:	-1
Maximum value:	2

Controls relax-and-lift cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

RLTCuts
RLT cut generation

Type:	int
Default value:	-1
Minimum value:	-1
Maximum value:	2

Controls Relaxation Linearization Technique (RLT) cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ScaleFlag**
Model scaling

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>3</td>
</tr>
</tbody>
</table>

Controls model scaling. By default, the rows and columns of the model are scaled in order to improve the numerical properties of the constraint matrix. The scaling is removed before the final solution is returned. Scaling typically reduces solution times, but it may lead to larger constraint violations in the original, unscaled model. Turning off scaling (ScaleFlag=0) can sometimes produce smaller constraint violations. Choosing a different scaling option can sometimes improve performance for particularly numerically difficult models.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ScenarioNumber**
Selects scenario index of multi-scenario models

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2000000000</td>
</tr>
</tbody>
</table>

When working with multiple scenarios, this parameter selects the index of the scenario you want to work with. When you query or modify an attribute associated with multiple scenarios (ScenNLB, ScenNUB, ScenNObj, ScenNRHS, etc.), the ScenarioNumber parameter will determine which scenario is actually affected. The value of this parameter should be less than the value of the NumScenarios attribute (which captures the number of scenarios in the model).

Please refer to the discussion of Multiple Scenarios for more information on the use of alternative scenarios.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Seed**
Random number seed
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Modifies the random number seed. This acts as a small perturbation to the solver, and typically leads to different solution paths.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

ServerPassword

Client password for Remote Services cluster or token server

Type: string
Default value: ""

The password for connecting to the server (either a Compute Server or a token server).

For connecting to the Remote Services cluster referred to by the ComputeServer parameter, you’ll need to supply the client password. Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.

Supply the token server password (if needed) when connecting to the server referred to by the TokenServer parameter,

You must set this parameter through either a gurobi.lic file (using PASSWORD=pwd) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

ServerTimeout

Network timeout

Type: int
Default value: 60
Minimum value: 1
Maximum value: MAXINT

Network time-out for Compute Server and token server (in seconds). If the client program is unable to contact the server for more than the specified amount of time, the client will quit with a network error.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Compute Server jobs.
You must set this parameter using an empty environment. Changing the parameter after your environment has been created will have no effect.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**Sifting**

Controls sifting within dual simplex

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2</td>
</tr>
</tbody>
</table>

Enables or disables sifting within dual simplex. Sifting can be useful for LP models where the number of variables is many times larger than the number of constraints (we typically only see significant benefits when the ratio is 100 or more). Options are Automatic (-1), Off (0), Moderate (1), and Aggressive (2). With a Moderate setting, sifting will be applied to LP models and to the root node for MIP models. With an Aggressive setting, sifting will be applied any time dual simplex is used, including at the nodes of a MIP. Note that this parameter has no effect if you aren’t using dual simplex. Note also that Gurobi will ignore this parameter in cases where sifting is obviously a worse choice than dual simplex.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**SiftMethod**

LP method used to solve sifting sub-problems

<table>
<thead>
<tr>
<th>Type:</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2</td>
</tr>
</tbody>
</table>

LP method used to solve sifting sub-problems. Options are Automatic (-1), Primal Simplex (0), Dual Simplex (1), and Barrier (2). Note that this parameter only has an effect when you are using dual simplex and sifting has been selected (either automatically by dual simplex, or through the Sifting parameter).

Changing the value of this parameter rarely produces a significant benefit.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**SimplexPricing**

Simplex pricing strategy

**Type:** int

**Default value:** -1

**Minimum value:** -1

**Maximum value:** 3

Determines the simplex variable pricing strategy. Available options are Automatic (-1), Partial Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge (3).

Changing the value of this parameter rarely produces a significant benefit.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**SolutionLimit**

MIP solution limit

**Type:** int

**Default value:** MAXINT

**Minimum value:** 1

**Maximum value:** MAXINT

Limits the number of feasible MIP solutions found. Optimization returns with a SOLUTION_LIMIT status once the limit has been reached (see the Status Code section for further details).

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**SolFiles**

Location to store intermediate solution files

**Type:** string

**Default value:** ""

During the MIP solution process, multiple incumbent solutions are typically found on the path to finding a proven optimal solution. Setting this parameter to a non-empty string causes these solutions to be written to files (in .sol format) as they are found. The MIP solver will append _n.sol to the value of the parameter to form the name of the file that contains solution number n. For example, setting the parameter to value solutions/mymodel will create files mymodel_0.sol, mymodel_1.sol, etc., in directory solutions.

Note that intermediate solutions can be retrieved as they are generated through a callback (by requesting the MIPSOL_SOL in a MIPSOL callback). This parameter makes the process simpler.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**SolutionNumber**

Select a sub-optimal MIP solution

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When querying attribute Xn, ObjNVal, or PoolObjVal to retrieve an alternate MIP solution, this parameter determines which alternate solution is retrieved. The value of this parameter should be less than the value of the SolCount attribute.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**StartNodeLimit**

Limit MIP start sub-MIP nodes

Type: int
Default value: -1
Minimum value: -2
Maximum value: 2000000000

This parameter limits the number of branch-and-bound nodes explored when completing a partial MIP start. The default value of -1 uses the value of the SubMIPNodes parameter. A value of -2 shuts off MIP start processing entirely. Non-negative values are node limits.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**StartNumber**

Selects MIP start index
This parameter selects the index of the MIP start you want to work with. When you modify a MIP start value (using the Start attribute) the StartNumber parameter will determine which MIP start is actually affected. The value of this parameter should be less than the value of the NumStart attribute (which captures the number of MIP starts in the model).

The special value -1 is meant to append new MIP start to a model, but querying a MIP start when StartNumber is -1 will result in an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**StrongCGCuts**

Strong-CG cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2000000000</td>
</tr>
</tbody>
</table>

Controls Strong Chvátal-Gomory (Strong-CG) cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**SubMIPCuts**

Sub-MIP cut generation

<table>
<thead>
<tr>
<th>Type</th>
<th>int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>-1</td>
</tr>
<tr>
<td>Minimum value</td>
<td>-1</td>
</tr>
<tr>
<td>Maximum value</td>
<td>2</td>
</tr>
</tbody>
</table>

Controls sub-MIP cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.
**SubMIPNodes**

Nodes explored in sub-MIP heuristics

*Type:* int  
*Default value:* 500  
*Minimum value:* 0  
*Maximum value:* MAXINT

Limits the number of nodes explored by MIP-based heuristics (such as RINS). Exploring more nodes can produce better solutions, but it generally takes longer.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our [Parameter Examples](#).

**Symmetry**

MIP symmetric detection

*Type:* int  
*Default value:* -1  
*Minimum value:* -1  
*Maximum value:* 2

Controls MIP symmetry detection. A value of -1 corresponds to an automatic setting. Other options are off (0), conservative (1), or aggressive (2).

Changing the value of this parameter rarely produces a significant benefit.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our [Parameter Examples](#).

**Threads**

Thread count

*Type:* int  
*Default value:* 0  
*Minimum value:* 0  
*Maximum value:* NProc

Controls the number of threads to apply to parallel algorithms (concurrent LP, parallel barrier, parallel MIP, etc.). The default value of 0 is an automatic setting. It will generally use all of the cores in the machine, but it may choose to use fewer.
While you will generally get the best performance by using all available cores in your machine, there are a few exceptions. One is of course when you are sharing a machine with other jobs. In this case, you should select a thread count that doesn’t oversubscribe the machine.

We have also found that certain classes of MIP models benefit from reducing the thread count, often all the way down to one thread. Starting multiple threads introduces contention for machine resources. For classes of models where the first solution found by the MIP solver is almost always optimal, and that solution isn’t found at the root, it is often better to allow a single thread to explore the search tree uncontended.

Another situation where reducing the thread count can be helpful is when memory is tight. Each thread can consume a significant amount of memory.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**TimeLimit**

Time limit

<table>
<thead>
<tr>
<th>Type:</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>Infinity</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Limits the total time expended (in seconds). Optimization returns with a TIME_LIMIT status if the limit is exceeded (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**TokenServer**

Name of your token server

<table>
<thead>
<tr>
<th>Type:</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>”&quot;</td>
</tr>
</tbody>
</table>

When using a token license, set this parameter to the name of the token server. You can refer to the server using its name or its IP address.

You can provide a comma-separated list of token servers to increase robustness. If the first server in the list doesn’t respond, the second will be tried, etc.

You must set this parameter through either a gurobi.lic file (using TOKENSERVER=server) or an empty environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**TSPort**

Port for token server
Port to use when connecting to the Gurobi token server. You should only change this if your
network administrator tells you to.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

**TuneCriterion**

Tuning criterion

Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Modifies the tuning criterion for the tuning tool. The primary tuning criterion is always to
minimize the runtime required to find a proven optimal solution. However, for MIP models that
don’t solve to optimality within the specified time limit, a secondary criterion is needed. Set this
parameter to 1 to use the optimality gap as the secondary criterion. Choose a value of 2 to use the
objective of the best feasible solution found. Choose a value of 3 to use the best objective bound.
Choose 0 to ignore the secondary criterion and focus entirely on minimizing the time to find a
proven optimal solution. The default value of -1 chooses automatically.

Note that for multi-objective problems value 1 and 3 are unsupported. See the Multiple Obje-
catives section for more details on this.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

**TuneJobs**

Distributed tuning job count

Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed parallel tuning, which can significantly increase the performance of the
tuning tool. A value of $n$ causes the tuning tool to distribute tuning work among $n$ parallel jobs.
These jobs are distributed among a set of machines. Use the WorkerPool parameter to provide a
distributed worker cluster.

Note that distributed tuning is most effective when the worker machines have similar perfor-
man ce. Distributed tuning doesn’t attempt to normalize performance by server, so it can incorrectly
attribute a boost in performance to a parameter change when the associated setting is tried on a worker that is significantly faster than the others.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a \texttt{MAXINT} value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

\textbf{TuneOutput}

Tuning output level

\begin{itemize}
\item \textbf{Type:} \texttt{int}
\item \textbf{Default value:} 2
\item \textbf{Minimum value:} 0
\item \textbf{Maximum value:} 3
\end{itemize}

Controls the amount of output produced by the tuning tool. Level 0 produces no output; level 1 produces tuning summary output only when a new best parameter set is found; level 2 produces tuning summary output for each parameter set that is tried; level 3 produces tuning summary output, plus detailed solver output, for each parameter set tried.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

\textbf{TuneResults}

Number of improved parameter sets returned

\begin{itemize}
\item \textbf{Type:} \texttt{int}
\item \textbf{Default value:} -1
\item \textbf{Minimum value:} 1
\item \textbf{Maximum value:} MAXINT
\end{itemize}

The tuning tool often finds multiple parameter sets that produce better results than the baseline settings. This parameter controls how many of these sets should be retained when tuning is complete. The default value retains the best results that were found for each count of changed parameters. In other words, it retains the best result for one changed parameter, for two changed parameter, etc. Results that aren’t on the efficient frontier are discard.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a \texttt{MAXINT} value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

\textbf{TuneTimeLimit}

Tuning tool time limit
Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

Limits total tuning runtime (in seconds). The default setting (-1) chooses a time limit automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**TuneTrials**

Perform multiple runs on each parameter set to limit the effect of random noise

Type: int
Default value: 3
Minimum value: 1
Maximum value: MAXINT

Performance on a MIP model can sometimes experience significant variations due to random effects. As a result, the tuning tool may return parameter sets that improve on the baseline only due to randomness. This parameter allows you to perform multiple solves for each parameter set, using different Seed values for each, in order to reduce the influence of randomness on the results.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

**Note:** Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**UpdateMode**

Changes the behavior of lazy updates

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines how newly added variables and linear constraints are handled. The default setting (1) allows you to use new variables and constraints immediately for building or modifying the model. A setting of 0 requires you to call `update` before these can be used.

Since the vast majority of programs never query Gurobi for details about the optimization models they build, the default setting typically removes the need to call `update`, or even be aware of the details of our lazy `update` approach for handling model modifications. However, these details will show through when you try to query modified model information.
In the Gurobi interface, model modifications (bound changes, right-hand side changes, objective changes, etc.) are placed in a queue. These queued modifications are applied to the model at three times: when you call `update`, when you call `optimize`, or when you call `write` to write the model to disk. When you query information about the model, the result will depend on both whether that information was modified and when it was modified. In particular, if the modification is sitting in the queue, you’ll get the result from before the modification. Note that this lazy update behavior is independent of the value of the `UpdateMode` parameter.

The only potential benefit to changing the parameter to 0 is that in unusual cases this setting may allow simplex make more aggressive use of warm-start information after a model modification.

If you want to change this parameter, you need to set it as soon as you create your Gurobi environment.

Note that you still need to call `update` to modify an attribute on an SOS constraint, quadratic constraint, or general constraint.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**UserName**

User name for Remote Services

*Type:* string

*Default value:* ""

Identify the user connecting to the Remote Services Manager.

You can provide either a username and password, or an access ID and a secret key, to authenticate your connection to a Cluster Manager.

You can set this parameter through either a `gurobi.lic` file (using `USERNAME=YOUR_USERNAME`) or an empty environment. Changing the parameter after your environment has been started will result in an error.

**Note:** Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**VarBranch**

Branch variable selection strategy

*Type:* int

*Default value:* -1

*Minimum value:* -1

*Maximum value:* 3

Controls the branch variable selection strategy. The default -1 setting makes an automatic choice, depending on problem characteristics. Available alternatives are Pseudo Reduced Cost Branching (0), Pseudo Shadow Price Branching (1), Maximum Infeasibility Branching (2), and Strong Branching (3).

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**WorkerPassword**

Distributed worker password

**Type:** string  
**Default value:** ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed tuning), this parameter allows you to specify the password for the distributed worker cluster provided in the WorkerPool parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**WorkerPool**

Distributed worker cluster (for distributed algorithms)

**Type:** string  
**Default value:** ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed tuning), this parameter allows you to specify a Remote Services cluster that will provide distributed workers. You should also specify the access password for that cluster, if there is one, in the WorkerPassword parameter. Note that you don’t need to set either of these parameters if your job is running on a Compute Server node and you want to use the same cluster for the distributed workers.

You can provide a comma-separated list of machines for added robustness. If the first node in the list is unavailable, the client will attempt to contact the second node, etc.

To give an example, if you have a Remote Services cluster that uses port 61000 on a pair of machines named server1 and server2, you could set WorkerPool to "server1:61000" or "server1:61000,server2:61000".

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

**ZeroHalfCuts**

Zero-half cut generation

**Type:** int  
**Default value:** -1  
**Minimum value:** -1  
**Maximum value:** 2

---

813
Controls zero-half cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

ZeroObjNodes

Zero-objective heuristic

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the zero objective heuristic. Note that this heuristic is only applied at the end of the MIP root, and only when no other root heuristic finds a feasible solution. This heuristic is quite expensive, and generally produces poor quality solutions. You should generally only use it if other means, including exploration of the tree with default settings, fail to produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our Parameter Examples.

12.3 Parameter Examples

Gurobi parameter handling is designed to be orthogonal, meaning that you only need to use a small number of routines to work with a large number parameters. In particular:

- The names and meanings of the various Gurobi parameters remain constant across the different programming language API's, although some decoration is required in each language.

- Given the type of a parameter (double, integer, etc.) and the programming language you wish to use it from, you simply need to identify the appropriate routine for that parameter type in that language in order to query or modify that parameter.

Please refer to the following sections for detailed examples of how to work with parameters from our various API's:

- C

- C++
You can also browse our Examples to get a better sense of how to use our parameter interface.

One important note about integer-valued parameters: while the maximum value that can be stored in a signed integer is $2^{31} - 1$, we use a MAXINT value of 2,000,000,000. Attempting to set an integer parameter to a value larger than this maximum will produce an error.

C Parameter Examples

The C interface defines a symbolic constant for each parameter. The symbolic constant name is prefixed by `GRB_type_PAR_`, where `type` is either INT, DBL, or STR. This is followed by the capitalized parameter name. For example, the symbolic constant for the integer Threads parameter (found in C header file `gurobi_c.h`) is:

```
#define GRB_INT_PAR_THREADS "Threads"
```

The routine you use to modify a parameter value depends on the type of the parameter. For a double-valued parameter, you would use `GRBsetdblparam`.

Recall that each model gets its own copy of the environment when it is created. Parameter changes to the original environment therefore have no effect on existing models. You’ll need to use `GRBgetenv` to retrieve the environment associated with a particular model if you want to change a parameter for that model.

To set the TimeLimit parameter for a model, you’d do:

```
error = GRBsetdblparam(GRBgetenv(model), GRB_DBL_PAR_TIMELIMIT, 100.0);
```

If you’d prefer to use a string for the parameter name, you can also do:

```
error = GRBsetdblparam(GRBgetenv(model), "TimeLimit", 100.0);
```

The case of the string is ignored, as are underscores. Thus, `TimeLimit` and `TIMELIMIT` are equivalent.

Use `GRBgetdblparam` to query the current value of a (double) parameter:

```
double currentvalue;
error = GRBgetdblparam(modelenv, "TimeLimit", ¤tvalue);
```
C++ Parameter Examples

In the C++ interface, parameters are grouped by datatype into three enums: GRB_DoubleParam, GRB_IntParam, and GRB_StringParam. You refer to a specific parameter by appending the parameter name to the enum name. For example, the Threads parameter is GRB_IntParam_Threads.

To modify a parameter, you use GRBModel::set. Recall that you can also set parameters on an environment, but changes to the environment won’t affect models that have already been created using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

```c++
GRBModel *m = ...;
m->set(GRB_DoubleParam_TimeLimit, 100.0);
```

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

```c++
GRBModel *m = ...;
m->set("TimeLimit", "100.0");
```

Use GRBModel::get to query the current value of a parameter:

```c++
currentlimit = m.get(GRB_DoubleParam_TimeLimit);
```

C# Parameter Examples

In the C# interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set the TimeLimit parameter, for example:

```csharp
GRBModel m = ...;
m.Parameters.TimeLimit = 100.0;
```

You can also use GRBModel.Set:

```csharp
m.Set(GRB.DoubleParam.TimeLimit, 100.0);
```

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

```csharp
GRBModel m = ...;
m.Set("TimeLimit", "100.0");
```

To query the current value of a parameter, use:

```csharp
currentlimit = m.Parameters.TimeLimit;
```

You can also use GRBModel.Get:

```csharp
currentlimit = m.Get(GRB.DoubleParam.TimeLimit);
```
Java Parameter Examples

In the Java interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, you use GRBModel.set. Recall that you can also set parameters on an environment, but changes to the environment won’t affect models that have already been created using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

```java
GRBModel m = ...;
m.set(GRB.DoubleParam.TimeLimit, 100.0);
```

You can also set the value of a parameter using strings for the parameter name and desired value. For example:

```java
GRBModel m = ...;
m.set("TimeLimit", "100.0");
```

Use GRBModel.get to query the current value of a parameter:

```java
currentlimit = m.get(GRB.DoubleParam.TimeLimit);
```

MATLAB Parameter Examples

In the MATLAB interface, parameters are passed to Gurobi through a struct. To modify a parameter, you create a field in the struct with the appropriate name, and set it to the desired value. For example, to set the TimeLimit parameter to 100 you’d do:

```matlab
params.timelimit = 100;
```

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

```matlab
params.timeLimit = 100;
```

...or...

```matlab
params.TIME_LIMIT = 100;
```

All desired parameter changes should be stored in a single struct, which is passed as the second parameter to the `gurobi` function.

Python Parameter Examples

In the Python interface, parameters are listed as constants within the GRB.Param class. You would refer to the Threads parameter as GRB.Param.Threads.

To modify a parameter, you can set the appropriate member of Model.Params. To set the time limit for model `m`, you’d do:

```python
m.Params.timeLimit = 100.0
```

The case of the parameter name is actually ignored, as are underscores, so you could also do:
m.Params.timelimit = 100.0

...or...

m.Params.TIME_LIMIT = 100.0

You can also use the Model.setParam method:

m.setParam(GRB.Param.TimeLimit, 100.0)

If you’d prefer to use a string for the parameter name, you can also do:

m.setParam("TimeLimit", 100.0);

To query the current value of a parameter, use:

currentlimit = m.Params.timeLimit

**R Parameter Examples**

In the R interface, parameters are passed to Gurobi through a list. To modify a parameter, you create a named component in the list with the appropriate name, and set it to the desired value. For example, to set the TimeLimit parameter to 100 you’d do:

```r
params <- list(TimeLimit=100)
```

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

```r
params <- list(timeLimit = 100)
```

...or...

```r
params <- list(TIME_LIMIT = 100)
```

All desired parameter changes should be stored in a single list, which is passed as the second parameter to the gurobi function.

**Visual Basic Parameter Examples**

In the Visual Basic interface, parameters are grouped by datatype into three enums: GRB.DoubleParam, GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set the TimeLimit parameter, for example:

```vbnet
GRBModel m = ...
m.Parameters.TimeLimit = 100.0
```

You can also use GRBModel.Set:

```vbnet
m.Set(GRB.DoubleParam.TimeLimit, 100.0)
```

You can also set the value of a parameter using strings for the parameter name and desired value. For example:
GRBModel m = ...
m.Set("TimeLimit", "100.0")

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit)
Once an optimize call has returned, the Gurobi optimizer sets the Status attribute of the model to one of several possible values. The attribute takes an integer value, but we recommend that you use one of the predefined status constants to check the status in your program. Each code has a name, and each language requires a prefix on this name to obtain the appropriate constant. You would access status code OPTIMAL in the following ways from the available Gurobi interfaces:

<table>
<thead>
<tr>
<th>Language</th>
<th>Status Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>GRB_OPTIMAL</td>
</tr>
<tr>
<td>C++</td>
<td>GRB_OPTIMAL</td>
</tr>
<tr>
<td>Java</td>
<td>GRB.Status.OPTIMAL</td>
</tr>
<tr>
<td>.NET</td>
<td>GRB.Status.OPTIMAL</td>
</tr>
<tr>
<td>Python</td>
<td>GRB.OPTIMAL</td>
</tr>
</tbody>
</table>

Possible status codes are as follows:

<table>
<thead>
<tr>
<th>Status code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADED</td>
<td>1</td>
<td>Model is loaded, but no solution information is available.</td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>2</td>
<td>Model was solved to optimality (subject to tolerances), and an optimal solution is available.</td>
</tr>
<tr>
<td>INFEASIBLE</td>
<td>3</td>
<td>Model was proven to be infeasible.</td>
</tr>
<tr>
<td>INF_OR_UNBD</td>
<td>4</td>
<td>Model was proven to be either infeasible or unbounded. To obtain a more definitive conclusion, set the DualReductions parameter to 0 and reoptimize.</td>
</tr>
<tr>
<td>UNBOUNDED</td>
<td>5</td>
<td>Model was proven to be unbounded. Important note: an unbounded status indicates the presence of an unbounded ray that allows the objective to improve without limit. It says nothing about whether the model has a feasible solution. If you require information on feasibility, you should set the objective to zero and reoptimize.</td>
</tr>
<tr>
<td>CUTOFF</td>
<td>6</td>
<td>Optimal objective for model was proven to be worse than the value specified in the Cutoff parameter. No solution information is available.</td>
</tr>
<tr>
<td>ITERATION_LIMIT</td>
<td>7</td>
<td>Optimization terminated because the total number of simplex iterations performed exceeded the value specified in the IterationLimit parameter, or because the total number of barrier iterations exceeded the value specified in the BarIterLimit parameter.</td>
</tr>
<tr>
<td>NODE_LIMIT</td>
<td>8</td>
<td>Optimization terminated because the total number of branch-and-cut nodes explored exceeded the value specified in the NodeLimit parameter.</td>
</tr>
<tr>
<td>Code</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>TIME_LIMIT</td>
<td>9</td>
<td>Optimization terminated because the time expended exceeded the value specified in the <code>TimeLimit</code> parameter.</td>
</tr>
<tr>
<td>SOLUTION_LIMIT</td>
<td>10</td>
<td>Optimization terminated because the number of solutions found reached the value specified in the <code>SolutionLimit</code> parameter.</td>
</tr>
<tr>
<td>INTERRUPTED</td>
<td>11</td>
<td>Optimization was terminated by the user.</td>
</tr>
<tr>
<td>NUMERIC</td>
<td>12</td>
<td>Optimization was terminated due to unrecoverable numerical difficulties.</td>
</tr>
<tr>
<td>SUBOPTIMAL</td>
<td>13</td>
<td>Unable to satisfy optimality tolerances; a sub-optimal solution is available.</td>
</tr>
<tr>
<td>INPROGRESS</td>
<td>14</td>
<td>An asynchronous optimization call was made, but the associated optimization run is not yet complete.</td>
</tr>
<tr>
<td>USER_OBJ_LIMIT</td>
<td>15</td>
<td>User specified an objective limit (a bound on either the best objective or the best bound), and that limit has been reached.</td>
</tr>
</tbody>
</table>
All batches have a current status, which is queried through the `BatchStatus` attribute on a Batch object. The attribute takes an integer value, but we recommend that you use one of the predefined status constants to check the status in your program. Each code has a name, and each language requires a prefix on this name to obtain the appropriate constant. You would access status code `COMPLETED` in the following ways from the available Gurobi interfaces:

<table>
<thead>
<tr>
<th>Language</th>
<th>Status Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>GRB_BATCH_COMPLETED</td>
</tr>
<tr>
<td>C++</td>
<td>GRB_BATCH_COMPLETED</td>
</tr>
<tr>
<td>Java</td>
<td>GRB.BatchStatus.COMPLETED</td>
</tr>
<tr>
<td>.NET</td>
<td>GRB.BatchStatus.COMPLETED</td>
</tr>
<tr>
<td>Python</td>
<td>GRB.BATCH_COMPLETED</td>
</tr>
</tbody>
</table>

Possible batch status codes are as follows:

<table>
<thead>
<tr>
<th>Status code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATED</td>
<td>1</td>
<td>Batch was created, but is not ready to be scheduled.</td>
</tr>
<tr>
<td>SUBMITTED</td>
<td>2</td>
<td>The batch has been completely specified, and now is waiting for a job to finish processing.</td>
</tr>
<tr>
<td>ABORTED</td>
<td>3</td>
<td>Batch processing was aborted by the user.</td>
</tr>
<tr>
<td>FAILED</td>
<td>4</td>
<td>Batch processing failed.</td>
</tr>
<tr>
<td>COMPLETED</td>
<td>5</td>
<td>A Batch Job successfully processed the Batch request.</td>
</tr>
</tbody>
</table>

See the Batch Optimization section for more details.
The Gurobi callback routines make use of a pair of arguments: where and what. When a user callback function is called, the where argument indicates from where in the Gurobi optimizer it is being called (presolve, simplex, barrier, MIP, etc.). When the user callback wishes to obtain more detailed information about the state of the optimization, the what argument can be passed to an appropriate get method for your language to obtain additional information (e.g., GRBcbbget in C, GRBCallback::getIntInfo in C++, GRBCallback.getIntInfo in Java, GRBCallback.GetIntInfo in .NET, and Model.cbGet in Python).

More detailed information on how to use callbacks in your application can be found in the reference manuals for the different Gurobi language interfaces (C, C++, Java, .NET, and Python).

Note that changing parameters from within a callback is not supported, doing so may lead to undefined behavior.

Possible values for the where and what arguments are listed in the following tables. Note that these values are referred to in slightly different ways from the different Gurobi interfaces. Consider the SIMPLEX value as an example. You would refer to this constant as follows from the different Gurobi APIs:

<table>
<thead>
<tr>
<th>Language</th>
<th>Callback constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>GRB_CB_SIMPLEX</td>
</tr>
<tr>
<td>C++</td>
<td>GRB_CB_SIMPLEX</td>
</tr>
<tr>
<td>Java</td>
<td>GRB.Callback.SIMPLEX</td>
</tr>
<tr>
<td>.NET</td>
<td>GRB.Callback.SIMPLEX</td>
</tr>
<tr>
<td>Python</td>
<td>GRB.Callback.SIMPLEX</td>
</tr>
</tbody>
</table>

Possible where values are:

<table>
<thead>
<tr>
<th>where</th>
<th>Numeric value</th>
<th>Optimizer status</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLLING</td>
<td>0</td>
<td>Periodic polling callback</td>
</tr>
<tr>
<td>PRESOLVE</td>
<td>1</td>
<td>Currently performing presolve</td>
</tr>
<tr>
<td>SIMPLEX</td>
<td>2</td>
<td>Currently in simplex</td>
</tr>
<tr>
<td>MIP</td>
<td>3</td>
<td>Currently in MIP</td>
</tr>
<tr>
<td>MIPSOL</td>
<td>4</td>
<td>Found a new MIP incumbent</td>
</tr>
<tr>
<td>MIPNODE</td>
<td>5</td>
<td>Currently exploring a MIP node</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>6</td>
<td>Printing a log message</td>
</tr>
<tr>
<td>BARRIER</td>
<td>7</td>
<td>Currently in barrier</td>
</tr>
<tr>
<td>MULTIOBJ</td>
<td>8</td>
<td>Currently in multi-objective optimization</td>
</tr>
</tbody>
</table>

Allowable what values depend on the value of the where argument. Valid combinations are:

<table>
<thead>
<tr>
<th>what</th>
<th>where</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUNTIME</td>
<td>Any except POLLING</td>
<td>double</td>
<td>Elapsed solver runtime (seconds).</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE_COLDEL</td>
<td>The number of columns removed by presolve to this point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE_ROWDEL</td>
<td>The number of rows removed by presolve to this point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE_SENCHG</td>
<td>The number of constraint senses changed by presolve to this point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE_BNDCHG</td>
<td>The number of variable bounds changed by presolve to this point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE_COECHG</td>
<td>The number of coefficients changed by presolve to this point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPX_ITRCNT</td>
<td>Current simplex iteration count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPX_OBJVAL</td>
<td>Current simplex objective value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPX_PRIMINF</td>
<td>Current primal infeasibility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPX_DUALINF</td>
<td>Current dual infeasibility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPX_ISPERT</td>
<td>Is problem current perturbed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_OBJBST</td>
<td>Current best objective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_OBJBND</td>
<td>Current best objective bound.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_NODCNT</td>
<td>Current explored node count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_SOLCNT</td>
<td>Current count of feasible solutions found.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_CUTCNT</td>
<td>Current count of cutting planes applied.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_NODLFT</td>
<td>Current unexplored node count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP_ITRCNT</td>
<td>Current simplex iteration count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_SOL</td>
<td>Solution vector for new solution (C only). Use GRBcbget method in object-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>oriented interfaces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_OBJ</td>
<td>Objective value for new solution.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_OBJBST</td>
<td>Current best objective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_OBJBND</td>
<td>Current best objective bound.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_NODCNT</td>
<td>Current explored node count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPSOL_SOLCNT</td>
<td>Current count of feasible solutions found.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPNODE_STATUS</td>
<td>Optimization status of current MIP node. (see Status Code section for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>further information).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPNODE_OBJBST</td>
<td>Current best objective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPNODE_OBJBND</td>
<td>Current best objective bound.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIPNODE_NODCNT</td>
<td>Current explored node count.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MIPNODE_SOLCNT  MIPNODE  int  Current count of feasible solutions found.

MIPNODE_REL  MIPNODE  double *  Relaxation solution for the current node, when its optimization status is GRB_OPTIMAL (C only). The resultP argument to C routine GRBcbget should point to an array of doubles that is at least as long as the number of variables in the user model. Use the getNodeRel callback method in the object-oriented interfaces.

BARRIER_ITRCNT  BARRIER  int  Current barrier iteration count.

BARRIER_PRIMOBJ  BARRIER  double  Primal objective value for current barrier iterate.

BARRIER_DUALOBJ  BARRIER  double  Dual objective value for current barrier iterate.

BARRIER_PRIMINF  BARRIER  double  Primal infeasibility for current barrier iterate.

BARRIER_DUALINF  BARRIER  double  Dual infeasibility for current barrier iterate.

BARRIER_COMPL  BARRIER  double  Complementarity violation for current barrier iterate.

MULTIOBJ_OBJCNT  MULTIOBJ  int  Current count of objectives already optimized.

MULTIOBJ_SOLCNT  MULTIOBJ  int  Current count of feasible solutions found.

MULTIOBJ_SOL  MULTIOBJ  double *  Solution vector for new solution (C only). The resultP argument to C routine GRBcbget should point to an array of doubles that is at least as long as the number of variables in the user model. Use the getSolution callback method in the object-oriented interfaces.

MSG_STRING  MESSAGE  char *  The message that is being printed.

Remember that the appropriate prefix must be added to the what or where name listed above, depending on the language you are using.

**Callback notes**

Note that the POLLING callback does not allow any additional information to be retrieved. It is provided in order to allow interactive applications to regain control frequently, so that they can maintain application responsiveness.

The object-oriented interfaces have specialized methods for obtaining the incumbent or relaxation solution. While in C you would use GRBcbget, you use getSolution or getNodeRel in the
object-oriented interfaces. Please consult the callback descriptions for C++, Java, .NET, or Python for further details.

Note that the MIPNODE callback will be called once for each cut pass during the root node solve. The MIPNODE_NODCNT value will remain at 0 until the root node is complete. If you query relaxation values from during the root node, the first MIPNODE callback will give the relaxation with no cutting planes, and the last will give the relaxation after all root cuts have been applied.

Note that the multi-objective optimization algorithm solves a sequence of optimization problems. In each solve the MULTIOBJ callback will be called. Also, MIP-related callbacks will be called if the original model is a MIP, and LP-related callbacks will be called if the original model is an LP.
Errors can arise in most of the Gurobi library routines. In the C interface, library routines return an integer error code. In the C++, Java, .NET, and Python interfaces, Gurobi methods can throw an exception (a C++ exception, a Java exception, a .NET exception, or a Python exception).

Underlying all Gurobi error reporting is a set of error codes. These are integer values, but we recommend that you use one of the predefined error code constants to check the error status in your program. Each error code has a name, and each language requires a prefix on this name to obtain the appropriate constant. You would access error code `OUT_OF_MEMORY` in the following ways from the available Gurobi interfaces:

<table>
<thead>
<tr>
<th>Language</th>
<th>Error Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>GRB_ERROR_OUT_OF_MEMORY</td>
</tr>
<tr>
<td>C++</td>
<td>GRB_ERROR_OUT_OF_MEMORY</td>
</tr>
<tr>
<td>Java</td>
<td>GRB.Error.OUT_OF_MEMORY</td>
</tr>
<tr>
<td>.NET</td>
<td>GRB.Error.OUT_OF_MEMORY</td>
</tr>
<tr>
<td>Python</td>
<td>GRB.Error.OUT_OF_MEMORY</td>
</tr>
</tbody>
</table>

Note that when an error occurs, it produces both an error code and an error message. The message can be obtained through `GRBgeterrormessage` in C, through `GRBException::getMessage()` in C++, through the inherited `getMessage()` method on the `GRBException` class in Java, through the inherited `Message` property on the `GRBException` class in .NET, or through the `e.message` attribute on the `GurobiError` object in Python.

Possible error codes are:

<table>
<thead>
<tr>
<th>Error code</th>
<th>Error number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT_OF_MEMORY</td>
<td>10001</td>
<td>Available memory was exhausted</td>
</tr>
<tr>
<td>NULL_ARGUMENT</td>
<td>10002</td>
<td>NULL input value provided for a required argument</td>
</tr>
<tr>
<td>INVALID_ARGUMENT</td>
<td>10003</td>
<td>An invalid value was provided for a routine argument</td>
</tr>
<tr>
<td>UNKNOWN_ATTRIBUTE</td>
<td>10004</td>
<td>Tried to query or set an unknown attribute</td>
</tr>
<tr>
<td>DATA_NOT_AVAILABLE</td>
<td>10005</td>
<td>Attempted to query or set an attribute that could not be accessed at that time</td>
</tr>
<tr>
<td>INDEX_OUT_OF_RANGE</td>
<td>10006</td>
<td>Tried to query or set an attribute, but one or more of the provided indices (e.g., constraint index, variable index) was outside the range of valid values</td>
</tr>
<tr>
<td>UNKNOWN_PARAMETER</td>
<td>10007</td>
<td>Tried to query or set an unknown parameter</td>
</tr>
<tr>
<td>VALUE_OUT_OF_RANGE</td>
<td>10008</td>
<td>Tried to set a parameter to a value that is outside the parameter’s valid range</td>
</tr>
<tr>
<td>NO_LICENSE</td>
<td>10009</td>
<td>Failed to obtain a valid license</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>10010</td>
<td>Attempted to solve a model that is larger than the limit for a demo license</td>
<td></td>
</tr>
<tr>
<td>10011</td>
<td>Problem in callback</td>
<td></td>
</tr>
<tr>
<td>10012</td>
<td>Failed to read the requested file</td>
<td></td>
</tr>
<tr>
<td>10013</td>
<td>Failed to write the requested file</td>
<td></td>
</tr>
<tr>
<td>10014</td>
<td>Numerical error during requested operation</td>
<td></td>
</tr>
<tr>
<td>10015</td>
<td>Attempted to perform infeasibility analysis on a feasible model</td>
<td></td>
</tr>
<tr>
<td>10016</td>
<td>Requested operation not valid for a MIP model</td>
<td></td>
</tr>
<tr>
<td>10017</td>
<td>Tried to query or modify a model while optimization was in progress</td>
<td></td>
</tr>
<tr>
<td>10018</td>
<td>Constraint, variable, or SOS contained duplicated indices</td>
<td></td>
</tr>
<tr>
<td>10019</td>
<td>Error in reading or writing a node file during MIP optimization</td>
<td></td>
</tr>
<tr>
<td>10020</td>
<td>Q matrix in QP model is not positive semi-definite</td>
<td></td>
</tr>
<tr>
<td>10021</td>
<td>QCP equality constraint specified (only inequalities are supported unless the NonConvex parameter is set to 2)</td>
<td></td>
</tr>
<tr>
<td>10022</td>
<td>Problem communicating with the Gurobi Compute Server</td>
<td></td>
</tr>
<tr>
<td>10023</td>
<td>Gurobi Compute Server responded, but was unable to process the job (typically because the queuing time exceeded the user-specified timeout or because the queue has exceeded its maximum capacity)</td>
<td></td>
</tr>
<tr>
<td>10024</td>
<td>Indicates that a Gurobi feature is not supported under your usage environment (for example, some advanced features are not supported in a Compute Server environment)</td>
<td></td>
</tr>
<tr>
<td>10025</td>
<td>Indicates that the user has called a query routine on a model with more than 2 billion non-zero entries, and the result would exceed the maximum size that can be returned by that query routine. The solution is typically to move to the GRBX version of that query routine.</td>
<td></td>
</tr>
<tr>
<td>10026</td>
<td>Piecewise-linear objectives must have certain properties (as described in the documentation for the various setPWLObj methods). This error indicates that one of those properties was violated.</td>
<td></td>
</tr>
<tr>
<td>10027</td>
<td>The UpdateMode parameter can not be modified once a model has been created.</td>
<td></td>
</tr>
<tr>
<td>10028</td>
<td>Problems launching a Gurobi Instant Cloud job.</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>MODEL_MODIFICATION</td>
<td>Indicates that the user has modified the model in such a way that the model became invalid. For example, this happens when a general constraint exists in the model and the user deletes the resultant variable of this constraint. In such a case, the general constraint does not have any meaningful interpretation anymore. The solution is to also delete the general constraint when a resultant variable is deleted.</td>
<td></td>
</tr>
<tr>
<td>CSWORKER</td>
<td>When you are using a client-server feature, this error indicates that there was an application problem.</td>
<td></td>
</tr>
<tr>
<td>TUNE_MODEL_TYPES</td>
<td>Indicates that tuning was invoked on a set of models, but the models were of different types (e.g., one an LP, another a MIP).</td>
<td></td>
</tr>
<tr>
<td>SECURITY</td>
<td>Indicates that an authentication step failed or that an operation was attempted for which the current credentials do not warrant permission.</td>
<td></td>
</tr>
<tr>
<td>NOT_IN_MODEL</td>
<td>Tried to use a constraint or variable that is not in the model, either because it was removed or because it has not yet been added.</td>
<td></td>
</tr>
<tr>
<td>FAILED_TO_CREATE_MODEL</td>
<td>Failed to create the requested model</td>
<td></td>
</tr>
<tr>
<td>INTERNAL</td>
<td>Internal Gurobi error</td>
<td></td>
</tr>
</tbody>
</table>
The Gurobi optimizer works with a variety of file formats:

- The **MPS, REW, LP, RLP, ILP, and OPB** formats are used to hold optimization models.
- The **MST** format is used to hold MIP start data. Importing this data into a MIP model allows optimization to start with a known feasible solution.
- The **HNT** format is used to hold MIP hints. Importing this data into a MIP model guides the MIP search towards a guess at a high-quality feasible solution.
- The **ORD** format is used to hold MIP variable branching priorities. Importing this data into a MIP model affects the search strategy.
- The **BAS** format holds simplex basis information. Importing this data into a continuous models allows the simplex algorithm to start from the given simplex basis.
- The **SOL** and **JSON solution** formats are used to hold solution information. The latter includes additional information about the results of the optimization. Both formats can only be written after the model has been optimized.
- The **ATTR** format stores a collection of attributes of a model, including (multiple) MIP starts, solution, basis information, partitions, variable hints and branching priorities.
- The **PRM** format holds parameter values. Importing this data into a model changes the values of the referenced parameters.

Note that all of the Gurobi file I/O routines can work with compressed versions of these files. Specifically, we can read or write files with the following extensions: .zip, .gz, .bz2, and .7z (assuming that the associated compression tool, e.g., 7zip for .7z, is installed on your machine and a corresponding entry is part of you PATH environment variable).

### 17.1 MPS format

MPS format is the oldest and most widely used format for storing math programming models. There are actually two variants of this format in wide use. In fixed format, the various fields must always start at fixed columns in the file. Free format is very similar, but the fields are separated by whitespace characters instead of appearing in specific columns. One important practical difference between the two formats is in name length. In fixed format, row and column names are exactly 8 characters, and spaces are part of the name. In free format, names can be arbitrarily long (although the Gurobi reader places a 255 character limit on name length), and names may not contain spaces. The Gurobi MPS reader reads both MPS types, and recognizes the format automatically.

Note that any line that begins with the * character is a comment. The contents of that line are ignored.
**NAME section**

The first section in an MPS format file is the NAME section. It gives the name of the model:

```
NAME AFIRO
```

In fixed format, the model name starts in column 15.

**ROWS section**

The next section is the ROWS section. It begins with the word ROWS on its own line, and continues with one line for each row in the model. These lines indicate the constraint type (E for equality, L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format, the type appears in column 2 and the row name starts in column 5. Here’s a simple example:

```
ROWS
E R09
E R10
L X05
N COST
```

Note that an N in the type field indicates that the row is a free row. The first free row is used as the objective function.

If the file includes multiple N rows, each including a priority, weight, relative, and absolute tolerance field, then each such row is treated as an objective in a multi-objective model. The additional fields must appear after the name, separated by spaces. For example, the following would capture a pair of objectives, where the first has priority 2 and the second has priority 1 (and both have identical weights, and relative and absolute tolerances):

```
N OBJ0 2 1 0 0
N OBJ1 1 1 0 0
```

Please refer to the multi-objective, ObjNPriority, ObjNWeight, ObjNAbsTol, and ObjNRelTol sections for information on the meanings of these fields. Note that all objectives of a multi-objective optimization problem have to be linear.

**LAZYCONS section**

The next section is the LAZY CONSTRAINT section. It begins with the line LAZYCONS, optional followed by a space and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and continues with one line for each lazy constraint. The format is the same as that of the ROWS section: each line indicates the constraint type (E for equality, L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format, the type appears in column 2 and the row name starts in column 5. For example:

```
LAZYCONS
E R01
G R07
L S01
LAZYCONS 2
E R02
G R03
L S11
```
Lazy constraints are linear constraints, and they are semantically equivalent to standard linear constraints (i.e., entries in the ROWS section). Depending on their laziness level they are enforced differently by the MIP solver. Please refer to the description of the Lazy attribute for details.

This section is optional.

**COLUMNs section**

The next and typically largest section of an MPS file is the COLUMNs section, which lists the columns in the model and the non-zero coefficients associated with each. Each line in the columns section provides a column name, followed by either zero, one, or two non-zero coefficients from that column. Coefficients are specified using a row name first, followed by a floating-point value. Consider the following example:

```plaintext
COLUMNS
 X01 X48 .301 R09 -1.
 X01 R10 -1.06 X05 1.
 X02 X21 -1. R09 1.
 X02 COST -4.
```

The first line indicates that column X01 has a non-zero in row X48 with coefficient .301, and a non-zero in row R09 with coefficient -1.0. Note that multiple lines associated with the same column must be contiguous in the file.

In fixed format, the column name starts in column 5, the row name for the first non-zero starts in column 15, and the value for the first non-zero starts in column 25. If a second non-zero is present, the row name starts in column 40 and the value starts in column 50.

**Integerality markers**

The COLUMNs section can optionally include integerality markers. The variables introduced between a pair of markers must take integer values. All variables within markers will have a default lower bound of 0 and a default upper bound of 1 (other bounds can be specified in the BOUNDS section). The beginning of an integer section is marked by an INTORG marker:

```plaintext
MARK0000 'MARKER' 'INTORG'
```

The end of the section is marked by an INTEND marker:

```plaintext
MARK0000 'MARKER' 'INTEND'
```

The first field (beginning in column 5 in fixed format) is the name of the marker (which is ignored). The second field (in column 15 in fixed format) must be equal to the string 'MARKER' (including the single quotes). The third field (in column 40 in fixed format) is 'INTORG' at the start and 'INTEND' at the end of the integer section.

The COLUMNs section can contain an arbitrary number of such marker pairs.

**RHS section**

The next section of an MPS file is the RHS section, which specifies right-hand side values. Each line in this section may contain one or two right-hand side values.

```plaintext
RHS
 B X50 310. X51 300.
 B X05 80. X17 80.
```
The first line above indicates that row $X_{50}$ has a right-hand side value of 310, and $X_{51}$ has a right-hand side value of 300. In fixed format, the variable name for the first bound starts in column 15, and the first bound value starts in column 25. For the second bound, the variable name starts in column 40 and the value starts in column 50. The name of the RHS is specified in the first field (column 5 in fixed format), but this name is ignored by the Gurobi reader. If a row is not mentioned anywhere in the RHS section, that row takes a right-hand side value of 0.

**BOUNDS section**

The next section in an MPS file is the optional BOUNDS section. By default, each variable takes a lower bound of 0 and an infinite upper bound. Each line in this section can modify the lower bound of a variable, the upper bound, or both. Each line indicates a bound type (in column 2 in fixed format), a bound name (ignored), a variable name (in column 15 in fixed format), and a bound value (in columns 25 in fixed format). The different bound types, and the meaning of the associate bound value, are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>lower bound</td>
</tr>
<tr>
<td>UP</td>
<td>upper bound</td>
</tr>
<tr>
<td>FX</td>
<td>variable is fixed at the specified value</td>
</tr>
<tr>
<td>FR</td>
<td>free variable (no lower or upper bound)</td>
</tr>
<tr>
<td>MI</td>
<td>infinite lower bound</td>
</tr>
<tr>
<td>PL</td>
<td>infinite upper bound</td>
</tr>
<tr>
<td>BV</td>
<td>variable is binary (equal 0 or 1)</td>
</tr>
<tr>
<td>LI</td>
<td>lower bound for integer variable</td>
</tr>
<tr>
<td>UI</td>
<td>upper bound for integer variable</td>
</tr>
<tr>
<td>SC</td>
<td>upper bound for semi-continuous variable</td>
</tr>
<tr>
<td>SI</td>
<td>upper bound for semi-integer variable</td>
</tr>
</tbody>
</table>

Consider the following example:

```
BOUNDS
 FR BND X49
 UP BND X50 80.
 LO BND X51 20.
 FX BND X52 30.
```

In this BOUNDS section, variable $X_{49}$ gets a lower bound of $-\infty$ (infinite upper bound is unchanged), variable $X_{50}$ gets a upper bound of 80 (lower bound is unchanged at 0, $X_{51}$ gets a lower bound of 20 (infinite upper bound is unchanged), and $X_{52}$ is fixed at 30.

**QUADOBJ section**

The next section in an MPS file is the optional QUADOBJ section, which contains quadratic objective terms. Each line in this section represents a single non-zero value in the lower triangle of the Q matrix. The names of the two variable that participate in the quadratic term are found first (starting in columns 5 and 15 in fixed format), followed by the numerical value of the coefficient (in column 25 in fixed format). By convention, the Q matrix has an implicit one-half multiplier associated with it. Here’s an example containing three quadratic terms:

```
QUADOBJ
 X01 X01 10.0
 X01 X02 2.0
```
These three terms would represent the quadratic function \(10X01^2 + 2X01 \ast X02 + 2X02 \ast X01 + 2X02^2)/2\) (recall that the single off-diagonal term actually represents a pair of non-zero values in the symmetric Q matrix).

**QCMATRIX section**

The next section in an MPS file contains zero or more QCMATRIX blocks. These blocks contain the quadratic terms associated with the quadratic constraints. There should be one block for each quadratic constraint in the model.

Each QCMATRIX block starts with a line that indicates the name of the associated quadratic constraint (starting in column 12 in fixed format). This is followed by one of more quadratic terms. Each term is described on one line, which gives the names of the two involved variables (starting in columns 5 and 15 in fixed format), followed by the coefficient (in column 25 in fixed format). For example:

```
QCMATRIX QC0
 X01 X01 10.0
 X01 X02 2.0
 X02 X01 2.0
 X02 X02 2.0
```

These four lines describe three quadratic terms: quadratic constraint QC0 contains terms \(10X01^2\), \(4X01 \ast X02\), and \(2X02^2\). Note that a QCMATRIX block must contain a symmetric matrix, so for example an \(X01 \ast X02\) term must be accompanied by a matching \(X02 \ast X01\) term.

Linear terms for quadratic constraint QC0 appear in the COLUMNS section. The sense and right-hand side value appear in the ROWS and RHS sections, respectively.

**PWLOBJ section**

The next section in an MPS file is the optional PWLOBJ section, which contains piecewise-linear objective functions. Each line in this section represents a single point in a piecewise-linear objective function. The name of the associated variable appears first (starting in column 4), followed by the x and y coordinates of the point (starting in columns 14 and 17). Here's an example containing two piecewise-linear expressions, for variables X01 and X02, each with three points:

```
X01 1 1
X01 2 2
X01 3 4
X02 1 1
X02 3 5
X02 7 10
```

**SOS section**

The next section in an MPS file is the optional SOS section. The representation for a single SOS constraint contains one line that provides the type of the SOS set (S1 for SOS type 1 or S2 for SOS type 2, found in column 2 in fixed format) and the name of the SOS set (column 5 in fixed format) of the SOS set. This is followed by one line for each SOS member. The member line gives the name of the member (column 5 in fixed format) and the associated weight (column 15 in fixed format). Here's an example containing two SOS2 sets.
SOS
S2 sos1
  x1  1
  x2  2
  x3  3
S2 sos2
  x3  1
  x4  2
  x5  3

**Indicator Constraint section**

The indicator constraint section is optional in the MPS format. It starts with the keyword **INDICATORS**. Each subsequent line of the indicator section starts with the keyword **IF** (placed at column 2 in fixed format) followed by a space and a row name (the row must have already been defined in the **ROWS** section). The line continues with a binary variable (placed at column 15 in fixed format) and finally a value 0 or 1 (placed at column 25 in fixed format).

Here a simple example:

```
INDICATORS
 IF row1 x1 0
 IF row2 y1 1
```

The first indicator constraint in this example states that row1 has to be fulfilled if the x1 takes a value of 0.

**General Constraint section**

An MPS file may contain an optional section that captures **general constraints**. This section starts with the keyword **GENCONS**.

General constraints can be of two basic types: *simple* general constraints - **MIN**, **MAX**, **OR**, **AND**, **ABS** or **PWL**, or *function* constraints - polynomial (**POLY**), power (**POW**), exponential (**EXP** or **EXPA**), logarithmic (**LOG** or **LOGA**), and trigonometric functions (**SIN**, **COS**, or **TAN**).

Each general constraint starts with a general constraint type specifier (**MIN**, **MAX**, **OR**, **AND**, **ABS**, **PWL**, **POLY**, **POW**, **EXP**, **EXPA**, **LOG**, **LOGA**, **SIN**, **COS**, or **TAN**), found in column 2 in fixed format. Optionally a space and a constraint name may follow.

For function constraints, the next line defines a few attributes used to perform the piecewise-linear approximation. The line starts with the keyword **Options** (found in column 5 in fixed format), followed by two spaces, followed by four values (separated by two spaces) that define the **FuncPieces**, **FuncPieceLength**, **FuncPieceError**, and **FuncPieceRatio** attribute values (in that order).

What follows depends on the general constraint type. Simple general constraints start with the name of the so-called resultant variable, placed on it’s own line (starting at column 5 in fixed format). For **MIN** or **MAX** constraints, a non empty list of variables or values follows (with each variable name on its own line). For **OR** and **AND** constraints, a list of binary variables follows (each on its own line). For **ABS** constraints, one additional variable follows (on its own line). In fixed format, all of these variables or values begin in column 5.

Piecewise-linear constraints start with the name of the so-called operand variable (starting at column 5 in fixed format), followed by the so-called resultant variable. The next lines contain the
piecewise-linear function breakpoints, each represented as pair of x and y values. The x values must be non-decreasing.

Function constraints also start with the name of the operand variable (starting at column 5 in fixed format), followed by two spaces, followed by the name of the resultant variable. This is sufficient to define EXP, LOG, SIN, COS, and TAN functions. The POW, EXPA and LOGA functions require an exponent or base, respectively, which is defined on the next line (starting in column 5 in fixed format). For the polynomial function, the following lines contain a coefficient (at column 5 in fixed format), followed by two spaces, followed by the associated power (natural numbers only). Note that powers must be decreasing.

The other general constraint type, the INDICATOR constraint, appears in a separate Indicator section, which is described above.

The following shows an example of a general constraint section:

```
GENCONS
MAX gc0
 r1
 x1
 x2
 x10
 0.7
MIN gencons1
 r2
 y0
 10
 y1
 r1
AND and1
 r
 b1
 b2
OR or1
 r
 b3
 b4
ABS GC14
 xabs
 x
PWL GC0
 x[0] y[0]
 -1 2
 0 1
 0 0
 0 1
 1 2
POLY GC2
 Options 0 0.01 0.001 -1
```
For more information, consult the general constraint discussion.

**Scenario section**

An MPS file may contain an optional section that captures scenario data. A model can have multiple scenarios, where each defines a set of changes to the original model (which we refer to as the base model).

This section starts with the keyword **SCENARIOS**, followed by the number of scenarios. Scenarios are described as a set of changes to the objective function, the right-hand sides of linear constraints, and the bounds of variables. Objective changes are stated first, followed by right-hand side changes, then bound changes. A scenario can be empty (i.e., identical to the base model).

Each scenario starts with the keyword **NAME** (starting at column 2 in fixed format), followed by a scenario name.

Changes to the objective function are defined in the **COLUMNS** subsection (starting at column 2 in fixed format). Each objective change is on its own line; that line contains the variable name (starting at column 5 in fixed format), the objective name (starting at column 15 in fixed format), and the modified objective value (starting at column 25 in fixed format). The format is similar to the columns section above.

Changes to the right-hand sides of linear constraints are defined in the **RHS** subsection (starting at column 2 in fixed format). Each right-hand side change is on its own line; that line contains a right-hand side specifier (starting at column 5 in fixed format), the constraint name (starting at column 15 in fixed format), and the right-hand side value (starting at column 25 in fixed format). The format is similar to the right-hand side section above.

Changes to variable bounds are defined in the **BOUNDS** subsection. Each changed variable bound is on its own line. The format is similar to the bounds section above (with a small difference that the first and second column in fixed format are 5 and 8, respectively).

The following example shows three scenarios in MPS format:

```
SCENARIOS 3
NAME scenario0
NAME scenario1
COLUMNS
 x1 OBJ 0
```
The final line in an MPS file must be an ENDATA statement.

**Endata**

The REW format is identical to the MPS format, except in how objects are named when files are written. When writing an MPS format file, the Gurobi optimizer refers to constraints and variables using their given names. When writing an REW format file, the Gurobi optimizer ignores the given names and instead refers to the variables using a set of default names that are based on row and column numbers. The constraint name depends solely on the associated row number: row i gets name ci. The variable name depends on the type of the variable, the column number of the variable in the constraint matrix, and the number of non-zero coefficients in the associated column. A continuous variable in column 7 with column length 2 would get name C7(2), for example. A binary variable with the same characteristics would get name B7(2).

The LP format captures an optimization model in a way that is easier for humans to read than MPS format, and can often be more natural to produce. One limitation of the LP format is that it doesn’t preserve several model properties. In particular, LP files do not preserve column order when read, and they typically don’t preserve the exact numerical values of the coefficients (although this isn’t inherent to the format).

Unlike MPS files, LP files do not rely on fixed field widths. Line breaks and whitespace characters are used to separate objects. Here is a simple example:

\ LP format example
Maximize
   x + y + z
Subject To
   c0: x + y = 1
   c1: x + 5 y + 2 z <= 10
   qc0: x + y + [ x ^ 2 - 2 x * y + 3 y ^ 2 ] <= 5
Bounds
   0 <= x <= 5
   z >= 2
Generals
   x y z
End

The backslash symbol starts a comment; the remainder of that line is ignored.

Variable names play a major role in LP files. Each variable must have its own unique name. A name should be no longer than 255 characters, and to avoid confusing the LP parser, it should not begin with a number, or contain any of the characters +, -, *, ^, <, >, =, (, ), [ , ], ,, or : or whitespace. Also, variable names should not be equal (case insensitive) to any of the LP file format keywords, e.g., st, bounds, min, max, binary, or end.

The same rules apply to any other type of names in the LP format, e.g., constraint names or the objective name.

Note that whitespace characters are not optional in the Gurobi LP format. Thus, for example, the text x+y+z would be treated as a single variable name, while x + y + z would be treated as a three term expression.

LP files are structured as a list of sections, where each section captures a logical piece of the whole optimization model. Sections begin with particular keywords, and must generally come in a fixed order, although a few are allowed to be interchanged.

Objective Section
The first section in an LP file is the objective section. This section begins with one of the following six keywords: minimize, maximize, minimum, maximum, min, or max. Capitalization is ignored. This keyword may appear alone, or it may be immediately followed by multi-objectives, which indicates that the model contains multiple objective functions.

Single-Objective Case
Let us consider single-objective models first, where this header is followed by a single linear or quadratic expression that captures the objective function.

The objective optionally begins with a label. A label consists of a name, followed by a colon character, following by a space. A space is allowed between the name and the colon, but not required.

The objective then continues with a list of linear terms, separated by the + or - operators. A term can contain a coefficient and a variable (e.g., 4.5 x), or just a variable (e.g., x). The objective can be spread over many lines, or it may be listed on a single line. Line breaks can come between tokens, but never within tokens.

The objective may optionally continue with a list of quadratic terms. The quadratic portion of the objective expression begins with a [ symbol and ends with a ] symbol, followed by / 2.
These brackets should enclose one or more quadratic terms. Either squared terms (e.g., \(2 \times x^2\)) or product terms (e.g., \(3 \times x \times y\)) are accepted. Coefficients on the quadratic terms are optional.

For variables with piecewise-linear objective functions, the objective section will include a \(\_\_\text{pwl}(x)\) term, where \(x\) is the name of the variable. You should view these as comments; they are ignored by the LP reader. The actual piecewise-linear expressions are pulled from the later \text{PWLObj} section.

The objective expression must always end with a line break.

An objective section might look like the following:

Minimize

\[
\text{obj: } 3.1 \times x + 4.5 \times y + 10 \times z + \left[ x^2 + 2 \times x \times y + 3 \times y^2 \right] / 2
\]

**Multi-Objective Case**

In the multi-objective case, the header is followed by one or more linear objective functions, where each starts with its own sub-header. The sub-header gives the name of the objective, followed by a number of fields that provide a \text{Priority}, \text{Weight}, absolute tolerance (\text{AbsTol}) and relative tolerance (\text{RelTol}) for that objective (see \text{ObjNPriority}, \text{ObjNWeight}, \text{ObjNAbsTol}, and \text{ObjNRelTol} for details on the meanings of these fields). The fields start with the field name, followed by a =, followed by the value. For example:

\[
\text{OBJ0: } \text{Priority}=2 \text{ Weight}=1 \text{ AbsTol}=0 \text{ RelTol}=0
\]

Please refer to the multi-objective section for additional details.

A complete multi-objective section might look like the following:

Minimize multi-objectives

\[
\text{OBJ0: } \text{Priority}=2 \text{ Weight}=1 \text{ AbsTol}=0 \text{ RelTol}=0
\]

\[
3.1 \times x + 4.5 \times y + 10 \times z
\]

\[
\text{OBJ1: } \text{Priority}=1 \text{ Weight}=1 \text{ AbsTol}=0 \text{ RelTol}=0
\]

\[
10 \times x + 0.1 \times y
\]

The objective section is optional. The objective is set to 0 when it is not present.

**Constraints Section**

The next section is the constraints section. It begins with one of the following headers, on its own line: \text{subject to}, \text{such that}, \text{st}, or \text{s.t.}. Capitalization is ignored.

The constraint section can have an arbitrary number of constraints. Each constraint starts with an optional label (constraint name, followed by a colon, followed by a space), continues with a linear expression, followed by an optional quadratic expression (enclosed in square brackets), and ends with a comparison operator, followed by a numerical value, followed by a line break. Valid comparison operators are =, <=, <, >, or >. Note that LP format does not distinguish between strict and non-strict inequalities, so for example < and <= are equivalent.

Note that the left-hand side of a constraint may not contain a constant term; the constant must appear on the right-hand side.

The following is a simple example of a valid linear constraint:

\[
c0: \ 2.5 \times x + 2.3 \times y + 5.3 \times z \leq 8.1
\]
The following is a valid quadratic constraint:

\[ \text{qc0}: 3.1 \, x + 4.5 \, y + 10 \, z + [ \, x \, ^2 + 2 \, x \, y + 3 \, y \, ^2 \, ] \leq 10 \]

The constraint section may also contain another constraint type: the so-called indicator constraint. Indicator constraints start with an optional label (constraint name, followed by a colon, followed by a space), followed by a binary variable, a space, a \( = \), again a space and a value, either 0 or 1. They continue with a space, followed by \( \rightarrow \), and again a space and finally a linear constraint (without a label).

For example:

\[ \text{c0}: \, b1 = 1 \rightarrow 2.5 \, x + 2.3 \, y + 5.3 \, z \leq 8.1 \]

This example constraint requires the given linear constraint to be satisfied if the variable \( b1 \) takes a value of 1.

Every LP format file must have a constraints section.

**Lazy Constraints Section**

The next section is the lazy constraints section. It begins with the line **Lazy Constraints**, optional followed by a space and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and continues with a list of linear constraints in the exact same format as the linear constraints in the constraints section. For example:

Lazy Constraints

- \( c0: \, 2.5 \, x + 2.3 \, y + 5.3 \, z \leq 8.1 \)
- **Lazy Constraints 2**
  - \( c1: \, 1.5 \, x + 3.3 \, y + 4.3 \, z \leq 8.1 \)

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear constraints. Depending on their laziness level they are enforced differently by the MIP solver. Please refer to the description of the **Lazy** attribute for details.

This section is optional.

**Bounds Section**

The next section is the bounds section. It begins with the word **Bounds**, on its own line, and is followed by a list of variable bounds. Each line specifies the lower bound, the upper bound, or both for a single variable. The keywords **inf** or **infinity** can be used in the bounds section to specify infinite bounds. A bound line can also indicate that a variable is **free**, meaning that it is unbounded in either direction.

Here are examples of valid bound lines:

\[
\begin{align*}
0 & \leq x0 \leq 1 \\
x1 & \leq 1.2 \\
x2 & \geq 3 \\
x3 & \text{ free} \\
x2 & \geq -\text{Inf}
\end{align*}
\]

It is not necessary to specify bounds for all variables; by default, each variable has a lower bound of 0 and an infinite upper bound. In fact, the entire bounds section is optional.
**Variable Type Section**

The next section is the variable types section. Variables can be designated as being either binary, general integer, or semi-continuous. In all cases, the designation is applied by first providing the appropriate header (on its own line), and then listing the variables that have the associated type. For example:

**Binary**

```
 x y z
```

Variable type designations don’t need to appear in any particular order (e.g., general integers can either precede or follow binaries). If a variable is included in multiple sections, the last one determines the variable type.

Valid keywords for variable type headers are: `binary`, `binaries`, `bin`, `general`, `generals`, `gen`, `semi-continuous`, `semis`, or `semi`.

The variable types section is optional. By default, variables are assumed to be continuous.

**SOS Section**

An LP file can contain a section that captures SOS constraints of type 1 or type 2. The SOS section begins with the `SOS` header on its own line (capitalization isn’t important). An arbitrary number of SOS constraints can follow. An SOS constraint starts with a name, followed by a colon (unlike linear constraints, the name is not optional here). Next comes the SOS type, which can be either `S1` or `S2`. The type is followed by a pair of colons.

Next come the members of the SOS set, along with their weights. Each member is captured using the variable name, followed by a colon, followed by the associated weight. Spaces can optionally be placed before and after the colon. An SOS constraint must end with a line break.

Here’s an example of an SOS section containing two SOS constraints:

```
SOS
sos1: S1 :: x1 : 1 x2 : 2 x3 : 3
sos2: S2 :: x4:8.5 x5:10.2 x6:18.3
```

The SOS section is optional.

**PWLObj Section**

An LP file can contain a section that captures piecewise-linear objective functions. The PWL section begins with the `PWLObj` header on its own line (capitalization isn’t important). Each piecewise-linear objective function is associated with a model variable. A PWL function starts with the corresponding variable name, followed immediately by a colon (the name is not optional). Next come the points that define the piecewise-linear function. These points are represented as \((x, y)\) pairs, with parenthesis surrounding the two values and a comma separating them. A PWL function must end with a line break.

Here’s an example of a PWLObj section containing two simple piecewise-linear functions:

```
PWLObj
x1: (1, 1) (2, 2) (3, 4)
x2: (1, 3) (3, 5) (100, 300)
```

The PWLObj section is optional.
General Constraint Section

An LP file may contain an optional section that captures *general constraints*. This section starts with one of the following keywords *general constraints*, *general constraint*, *gencons*, or *g.c.* (capitalization is ignored).

General constraints can be of two basic types: *simple* general constraints - *MIN*, *MAX*, *OR*, *AND*, *ABS*, or *PWL*, or *function* constraints - polynomial (*POLY*), power (*POW*), exponential (*EXP* or *EXPA*), logarithmic (*LOG* or *LOGA*), or trigonometric (*SIN*, *COS*, or *TAN*).

A simple general constraint starts with an optional label (constraint name, followed by a colon), followed by a variable name (the so-called *resultant*), then an equals sign `. The line continues with a general constraint type specifier (*MIN*, *MAX*, *OR*, *AND*, or *ABS*), then a `. All tokens must be separated using spaces. Capitalization is ignored.

What follows depends on the general constraint type. *MIN* or *MAX* constraints expect a non-empty, comma-separated list of variables or values. *OR* and *AND* constraints expect a comma-separated list of binary variables. *ABS* constraints only expect one variable name. Again, all tokens (including commas) must be separated using spaces.

All of these general constraints end with a `)` and a line break.

Here are a few examples:

```
gc0: r1 = MAX (x1 , x2 , x10 , 0.7)
gencons1: r2 = MIN (y0 , 10 , y1 , r1)
and1: r = AND (b1 , b2)
or1: r = OR (b3 , b4)
GC14: xabs = ABS (x)
```

Piecewise-linear constraints also start with an optional label (constraint name, followed by a colon). The line continues with a variable name (the so-called *resultant*) and an equal sign `. Next comes the keyword *PWL* that indicates that the constraint is of type piecewise-linear. This is followed by a `(`, and then by a variable name (the so-called *operand*) followed by a `)`. The line continues with a `:` and then the list of piecewise-linear breakpoints in parentheses (e.g., `(x0, y0) (x1, y1)`) with non-decreasing values on x. Recall that spaces are required between tokens.

Here an example:

```
GC0: y[0] = PWL (x[0]) : (-1, 2) (0, 1) (0, 0) (0, 1) (1, 2)
```

There is one other type of simple constraint, the *INDICATOR* constraint. Those appear in the regular constraints section (described above), not in the general constraint section.

Function constraints also start with an optional label (constraint name, followed by a colon). An optional list of attribute assignments follows. These start with a `(`, then a space-separate list of Name=Value strings (no spaces before or after the `=`), closed with a `)`. An example is shown below. Default values are used if no attributes are specified.

The line continues with a variable name (the so-called *resultant*) and an equal sign `. Next comes a keyword that indicates the type of function being defined (*POLY*, *POW*, *EXP*, *EXPA*, *LOG*, *LOG_A*, *SIN*, *COS*, or *TAN*). For a *LOG*, use *LOG_A* if it isn’t a natural log, where A is the base. This is followed by a `(`, and then by the expression that defines the actual function. The line closes with a `)`. Recall that spaces are required between tokens.

Polynomials and powers are described in what is hopefully the natural way, with exponents preceded by the `^` symbol.
The following give examples of a few function constraints:

\( \text{gc1: ( PieceError=1e-05 PieceRatio=0.5 ) z = \text{SIN} ( y ) } \)
\( \text{GC2: ( PieceLength=0.001 ) y = \text{POLY} ( 5 x ^ 3 + 2 x + 5 ) } \)
\( \text{gc3: } z = \text{EXPA} ( 3.5 ^ y ) \)
\( \text{gc4: } z = \text{LOG}_10 ( y ) \)
\( \text{logytoz: } z = \text{LOG} ( y ) \)

For more information, consult the general constraint discussion.

**Scenario Section**

An LP file may contain an optional section that captures scenario data. A model can have multiple scenarios, where each defines a set of changes to the original model (which we refer to as the *base model*).

This section starts with the *Scenario* keyword (capitalization is ignored), followed by a scenario name. Scenarios are described as a set of changes to the objective function, the right-hand sides of linear constraints, and the bounds of variables. Objective changes are stated first, followed by right-hand side changes, then bound changes. A scenario can be empty (i.e., identical to the base model).

Changes to the objective function start with one of the allowed objective keywords (*Minimize*, *Maximize*, etc.; see objective section above for additional information). Note that the keyword needs to match the objective sense of the base model. This is followed by a line for each changed objective coefficient that contains the variable name and its modified value (separated by a space).

Changes to the right-hand sides of linear constraints start with one of the allowed constraint section keywords (*Subject To*, etc.; see the constraints section above for additional information). This is followed by a line for each changed right-hand side value that contains the constraint name followed by a colon, then a space, the constraint sense, a space, and the scenario right-hand side value.

Changes to variable bounds start with the *Bounds* keyword. This is followed by a line for each variable with changed scenario bounds; the format of each such line is the same as in the bounds section above.

The following example shows three scenarios in LP format:

```lp
Scenario scenario0
Scenario scenario1
Maximize
 x1 0
 x2 1
Subject To
 c1: <= 2
 c2: >= 2
Bounds
 x3 <= 1.5
 x1 free
 0 <= x2 <= 0
 x3 >= 0.5
Scenario scenario2
```

844
Bounds
x3 = 3

For more information, consult the multiple scenario discussion.

End statement
The last line in an LP format file should be an End statement.

17.4 RLP format

The RLP format is identical to the LP format, except in how objects are named when files are written. When writing an LP format file, the Gurobi optimizer refers to constraints and variables using their given names. When writing an RLP format file, the Gurobi optimizer ignores the given names and instead refers to the variables using names that are based on variable or constraint characteristics. The constraint name depends solely on the associated row number: row i gets name ci. The variable name depends on the type of the variable, the column number of the variable in the constraint matrix, and the number of non-zero coefficients in the associated column. A continuous variable in column 7 with column length 2 would get name C7(2), for example. A binary variable with the same characteristics would get name B7(2).

17.5 ILP format

The ILP file format is identical to the LP format. The only difference is in how they are used. ILP files are specifically used to write computed Irreducible Inconsistent Subsystem (IIS) models.

17.6 OPB format

The OPB file format is used to store pseudo-boolean satisfaction and pseudo-boolean optimization models. These models may only contain binary variables, but these variables may be complemented and multiplied together in constraints and objectives. Pseudo-boolean models in OPB files are translated into a MIP representation by Gurobi. The syntax of the OPB format is described in detail by Roussel and Manquinho. However, the OPB format supported by Gurobi is less restrictive, e.g., fractional coefficients are allowed.

The following is an example of a pseudo-boolean optimization model

\[
\begin{align*}
\text{minimize} & \quad y - 1.3x(1 - z) + (1 - z) \\
\text{subject to} & \quad 2y - 3x + 1.7w = 1.7 \\
& \quad -y + x + xz(1 - v) \geq 0 \\
& \quad -y \leq 0, \\
& \quad v, w, x, y, z \in \{0, 1\}.
\end{align*}
\]

The corresponding OPB file for this example is given by

* This is a dummy pseudo-boolean optimization model
min: y - 1.3 x -z + -z;
2 y - 3 x + 1.7 w = 1.7;
-1 y + x + x z -v >= 0;
-1 y <= 0;
Lines starting with * are treated as comments and ignored. Non-comment lines must end with a semicolon ;. Whitespace characters must be used to separate variables. The complement of a variable may be specified with a tilde ~.

Only minimization models are supported. These models must be specified with the min: objective keyword. This keyword must appear before other constraints. Satisfiability models may be defined by omitting the objective.

Constraint senses >=, =, and <= are supported.

17.7 MST format

A MIP start (MST) file is used to specify an initial solution for a mixed integer programming model. The file lists values to assign to the variables in the model. If a MIP start has been imported into a MIP model before optimization begins (using GRBread, for example), the Gurobi optimizer will attempt to build a feasible solution from the specified start values. A good initial solution often speeds the solution of the MIP model, since it provides an early bound on the optimal value, and also since the specified solution can be used to seed the local search heuristics employed by the MIP solver.

A MIP start file consists of variable-value pairs, each on its own line. Any line that begins with the hash sign (#) is a comment line and is ignored. The following is a simple example:

# MIP start
x1 1
x2 0
x3 1

Importing a MIP start into a model is equivalent to setting the Start attribute for each listed variable to the associated value. If the same variable appears more than once in a start file, the last assignment is used. Importing multiple start files is equivalent to reading the concatenation of the imported files.

Note that start files don’t need to specify values for all variables. When variable values are left unspecified, the Gurobi solver will try to extend the specified values into a feasible solution for the full model.

It is important to mention that when saving an MST file, Gurobi will not save the values of continuous variables. If you want to save a complete description of the best solution found, we recommend to save it as a solution file (SOL format). This will guarantee that you will save the values for each variable present in your model.

17.8 HNT format

A MIP hint (HNT) file is used to provide hints for the values of the variables in a mixed integer programming model (typically obtained from a solution to a related model). The file lists values for variables in the model, and priorities for those hints. When MIP hints are imported into a MIP model before optimization begins (using GRBread, for example), the MIP search is guided towards the values captured in those hints. Good hints often allow the MIP solver to find high-quality solutions much more quickly.

A MIP hint file consists of variable-value-priority triples, each on its own line. Any line that begins with the hash sign (#) is a comment line and is ignored. The following is a simple example:
# MIP hints
x1 1 2
x2 0 1
x3 1 1

Importing hints into a model is equivalent to setting the \texttt{VarHintVal} and \texttt{VarHintPri} attributes for each listed variable to the associated values. If the same variable appears more than once in a hint file, the last assignment is used. Importing multiple hint files is equivalent to reading the concatenation of the imported files.

Note that hint files don’t need to specify values for all variables. When values are left unspecified, the Gurobi MIP solver won’t attempt to adjust the search strategy for those variables.

17.9 ORD format

A priority ordering (ORD) file is used to input a set of variable priority orders. Reading a priority file (using \texttt{GRBread}, for example) modifies the MIP branch variable selection. When choosing a branching variable from among a set of fractional variables, the Gurobi MIP solver will always choose a variable with higher priority over one with a lower priority.

The file consists of variable-value pairs, each on its own line. The file contains one line for each variable in the model. Any line that starts with the hash sign (\#) is treated as a comment line and is ignored. The following is a simple example:

# Branch priority file
x 1
y 1
z -1

Variables have a default branch priority value of 0, so it is not necessary to specify values for all variables.

Importing a priority order file is equivalent to replacing the \texttt{BranchPriority} attribute value for each variable in the model. Note that you can still modify the \texttt{BranchPriority} attribute after importing an ordering file.

17.10 BAS format

An LP basis (BAS) file is used to specify an initial basis for a continuous model. The file provides basis status information for each variable and constraint in the model. If written by Gurobi, to reduce the size of the file, it only includes the difference to the slack basis. In a slack basis for each row the corresponding slack variable is basic while all other problem variables are at their lower bound. If a basis has been imported into a continuous model before optimization begins (using \texttt{GRBread}, for example), and if a simplex optimizer has been selected (through the \texttt{Method} parameter), the Gurobi simplex optimizer begins from the specified basis.

A BAS file begins with a \texttt{NAME} line, and ends with an \texttt{ENDATA} statement. No information is retrieved from these lines, but they are required by the format. Between these two lines are basis status lines, each consisting of two or three fields and starting with a white space character. If the first field is LL, UL, or BS, the variable named (slack variables are not allowed) in the second field is non-basic at its lower bound, non-basic at its upper bound, or basic, respectively. Any additional
fields are ignored. If the first field is XL or XU, the variable named in the second field is basic, while the row named in the third field states that the corresponding slack variable is non-basic at its lower or upper bound, respectively.

The following is a simple example:

```plaintext
NAME example.bas
XL x1 c1
XU x2 c2
UL x3
LL x4
ENDATA
```

Importing a basis into a model is equivalent to setting the V Basis and C Basis attributes for each listed variable and constraint to the specified basis status.

A near-optimal basis can speed the solution of a difficult LP model. However, specifying a start basis that is not extremely close to an optimal solution will often slow down the solution process. Exercise caution when providing start bases.

### 17.11 SOL format

A Gurobi solution (SOL) file is used to output a solution vector. It can be written (using GRBwrite, for example) whenever a solution is available.

The file consists of variable-value pairs, each on its own line. The file contains one line for each variable in the model. The following is a simple example:

```plaintext
Solution file
x 1.0
y 0.5
z 0.2
```

### 17.12 JSON solution format

JSON (or JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It was derived from JavaScript, but many modern programming languages include code to generate and parse JSON-format data.

Gurobi JSON solution format is meant to be a simple and standard way to capture and share optimization results. It conforms to the RFC-8259 standard. JSON solutions can be written to a file or captured in a string.

The JSON solution captures the values of various Gurobi attributes associated with the solution to the model. Some are related to the model overall, some to individual variables, and some to individual constraints. The exact contents of a JSON solution string will depend on a few factors:

- The type of model being solved (linear, quadratic, mixed-integer, multi-objective, etc.). Some solution information is simply not available for certain problem types (e.g., dual variable values for MIP models).
• The set of tagged elements in the model. Users can tag variables (using the VTag attribute), linear constraints (using the CTag attribute), and quadratic constraints (using the QCTag attribute). Only tagged elements will have solution information in the JSON solution.

• The JSONSolDetail parameter, which controls how much detail is included in the JSON solution.

• Parameter settings such as InfUnbdInfo or QCPDual, which cause the optimization process to generate more solution information.

JSON solutions aren’t generally meant to be interpreted directly by humans. Instead, you typically feed them into a JSON parser, which provides tools for extracting the desired information from the string. JSON is a widely-used format, and nearly all modern program languages have libraries available for helping to parse JSON strings and files. And if you are determined to examine the string directly, JSON parsers typically also include pretty-printing utilities that make it easier to do so.

Basic Structure

A JSON solution string consists of a collection of named components. In its simplest form, it might look like the following:

```
{ "SolutionInfo": { "Status": 3,
 "Runtime": "3.4289908409118652e-01",
 "BoundVio": "0",
 "ConstrVio": "0",
 "IterCount": "0",
 "BarIterCount": 0}
```

A JSON parser makes it relatively easy to extract the various components from this string. In Python, for example, you would be able to retrieve the optimization status by accessing `result['SolutionInfo']['Status']` after parsing.

Before discussing the specific information that is available in this format, let us first say a word about how data is represented. The type of each data item follows from the attribute type. For example, Status is an integer attribute, so the corresponding value is stored as an integer. Runtime is a double attribute, which is represented as a string, and that string always captures the exact, double-precision (IEEE754) value of the attribute.

Named Components

A JSON solution will always have at least one named object: SolutionInfo. It may contain up to three optional named arrays: Vars, Constrs, QConstrs. A JSON solution string may look like:

```
{"SolutionInfo": {...},
 "Vars": [...],
 "Constrs": [...],
 "QConstrs": [...]}
```

The exact contents of the three optional sections will depend on what model components have been tagged and on what solution information is available. If no variables have been tagged, for example, then the Vars array will not be present. For a MIP model, the Constrs array will not be present, since MIP solutions don’t contain any constraint information.
SolutionInfo Object

The SolutionInfo object contains high-level information about the solution that was computed for this model. Some entries will always be present, while others depend on the problem type or the results of the optimization. This component may include the following model attributes:

**Status (always present):** The optimization status (optimal, infeasible, hit the time limit, etc.).

**Runtime (always present):** Runtime for the optimization (in seconds).

**ObjVal:** The solution objective value.

**ObjBound:** The best known bound on the objective value.

**ObjBoundC:** The best known bound on the objective value (before using integrality information to strengthen the bound).

**MIPGap:** The optimality gap.

**IntVio:** The maximum integrality violation.

**BoundVio:** The maximum bound violation.

**ConstrVio:** The maximum constraint violation.

**ObjNVal (multi-objective only):** An array of objective values, one for each objective.

**ScenNObjVal (multi-scenario only):** An array of objective values, one for each scenario.

**ScenNObjBound (multi-scenario only):** An array of objective bounds, one for each scenario.

**IterCount:** Number of simplex iterations.

**BarIterCount:** Number of barrier iterations.

**NodeCount:** Number of branch-and-cut nodes explored for MIP models.

**FarkasProof:** Part of the infeasibility certificate for infeasible models. Note that you have to set the InfUnbdInfo parameter before the optimization call for this information to be available.

**SolCount:** Number of stored solutions (only for MIP models).

**PoolObjBound:** Bound on the objective of undiscovered MIP solutions.

**PoolObjVal:** Only for MIP models with at least one solution. For single-objective models, this is an array containing the objective value for each stored solution (starting with the incumbent). For multi-objective models, this is an array containing **SolCount** arrays of values, each array contains the objective value for each multi-objective for the particular solution.

Here’s an example of a SolutionInfo object for a MIP model:
{ "SolutionInfo": { "Status": 2,
  "Runtime": "5.8451418876647949e+00",
  "ObjVal": "3089",
  "ObjBound": "3089",
  "ObjBoundC": "3089",
  "MIPGap": "0",
  "IntVio": "0",
  "BoundVio": "0",
  "ConstrVio": "0",
  "IterCount": "32",
  "BarIterCount": 0,
  "NodeCount": "1",
  "SolCount": 1,
  "PoolObjBound": "3089",
  "PoolObjVal": [ "3089"]}}

**Vars Array**

The **Vars** component is an array (possibly empty) of objects containing information about tagged variables. Some entries will always be present, while others depend on the problem type or the results of the optimization. This component may include the following variable attributes:

- **VTag** (always present): Array containing the variable tag. Note that this is stored as an array, but the array will currently only ever contain a single string.
- **X** (always present): Value for the variable in the current solution.
- **Xn**: Values for all stored solutions including the incumbent solution (only for MIP).
- **ScenNX**: For multiple scenarios, values for all scenario solutions.
- **RC**: For continuous models with dual information, the reduced cost for the variable.
- **VBasis**: For continuous models whose solution is basic, the basis status for the variable.
- **UnbdRay**: For unbounded models with InfUnbdInfo enabled, the unbounded ray component associated with the variable.

The following attributes are only included if JSONSolDetail is greater than 0: RC, UnbdRay, VBasis, Xn.

These objects may look like:

{ "VTag": ["VTag7"], "X": "1"}
{ "VTag": ["VTag12"], "X": "3.6444895037909271e-02", "RC": "0"}
{ "VTag": ["VTag2747"],
  "X": "0",
  "Xn": [ "0", "1", "1", "0", "1", "1", "0", "0", "0"]}
**Constrs Array**

The Constrs component is an array (possibly empty) of objects containing information about tagged linear constraints. Some entries will always be present, while others depend on the problem type or the results of the optimization. This component may include the following constraint attributes:

**CTag** *(always present)*: Array containing the linear constraint tag. Note that this is stored as an array, but the array will currently only ever contain a single string.

**Slack** *(always present)*: Value for the slack variable in the current solution.

**Pi**: For continuous models with dual information, the dual value for the corresponding constraint.

**FarkasDual**: For infeasible models with InfUnbdInfo enabled, the Farkas dual component associated with the constraint.

This component will always be empty for MIP models.

The following attributes are only included if JSONSolDetail is greater than 0: CBasis, FarkasDual, Pi, Slack.

These objects may look like:

```json
{ "CTag": ["CTag72"],
 "Slack": "-1.3877787807814457e-17",
 "Pi": "-5.6530866311690423e-02"}
```

**QConstrs Array**

The QConstrs component is an array (possibly empty) of objects containing information about tagged quadratic constraints. Some entries will always be present, while others depend on the problem type or the results of the optimization. This component may include the following quadratic constraint attributes:

**QCTag** *(always present)*: Array containing the quadratic constraint tag. Note that this is stored as an array, but the array will currently only ever contain a single string.

**QCSlack** *(always present)*: Value for the slack variable in the current solution.

**QCPi**: For continuous models with dual information, the dual value for the corresponding constraint.

This component will always be empty for MIP models.

The following attributes are only included if JSONSolDetail is greater than 0: QCPi, QCSlack.

**JSON Solution Examples**

For a continuous model, the JSON solution string may look like

```json
{ "SolutionInfo": {
 "Status": 2,
 "Runtime": "9.92949582580566e-01",
 "ObjVal": "5.2045497375374854e-07",
 "BoundVio": "0",
```

852
"ConstrVio": "1.002e-07",
"IterCount": "0",
"BarIterCount": 3,
"Vars": [
   
   ]

For a multi-objective LP, the JSON solution string may look like

```
{ "SolutionInfo": {
 "Status": 2,
 "Runtime": "2.2838807106018066e-01",
 "ObjNVal": ["10", "339"],
 "IterCount": "112",
 "BarIterCount": 0,
 "NodeCount": "0"},

 "Vars": [

]
```

For a regular MIP problem, the JSON solution string may look like

```
{ "SolutionInfo": {
 "Status": 2,
 "Runtime": "2.4669170379638672e-03",
 "ObjVal": "3124",
 "BarIterCount": 0,
 "NodeCount": "0"},

 "Vars": [

]
```

---

853
For a multi-objective MIP, the JSON solution string may look like

```
{ "SolutionInfo": {
 "Status": 2,
 "Runtime": "3.5403838157653809e+00",
 "ObjNVal": ["2763", "704"],
 "IterCount": "595",
 "BarIterCount": 0,
 "NodeCount": "1",
 "SolCount": 6,
 "PoolObjVal": [["2763", "704"], ["2763", "705"],
 ["2763", "716"], ["2763", "718"],
 ["2763", "769"], ["2763", "1060"]],
 "Vars": [
 {"VTag": ["VTag7"], "X": "1", "Xn": ["1", "1", "1", "1"]},
 {"VTag": ["VTag466"], "X": "0", "Xn": ["0", "1", "1", "0"]},
 {"VTag": ["VTag925"], "X": "0", "Xn": ["0", "0", "0", "0"]},
 {"VTag": ["VTag1384"], "X": "0", "Xn": ["0", "0", "1", "1"]},
 {"VTag": ["VTag1843"], "X": "0", "Xn": ["0", "1", "0", "0"]},
 {"VTag": ["VTag2302"], "X": "0", "Xn": ["0", "1", "1", "0"]}]
 }
```

For a multi-scenario model, the JSON solution string may look like

```
{ "SolutionInfo": {
 "Status": 2,
 "Runtime": "3.5403838157653809e+00",
 "ObjVal": "2763",
 "Vars": [
 {"VTag": ["VTag7"], "X": "1", "Xn": ["1", "1", "1", "1", "1", "1"]},
 {"VTag": ["VTag466"], "X": "0", "Xn": ["0", "1", "1", "0", "0", "0"]},
 {"VTag": ["VTag925"], "X": "0", "Xn": ["0", "0", "0", "0", "1", "1"]},
 {"VTag": ["VTag1384"], "X": "0", "Xn": ["0", "0", "1", "1", "0", "0"]},
 {"VTag": ["VTag1843"], "X": "0", "Xn": ["0", "1", "0", "0", "0", "0"]},
 {"VTag": ["VTag2302"], "X": "0", "Xn": ["0", "1", "0", "0", "0", "0"]}]
```

854
If the scenario objective value ScenNObjVal is infinite (GRB_INFINITY = 1e+100 for minimization, -GRB_INFINITY = -1e+100 for maximization), then no feasible solution has been found for this scenario. The corresponding ScenNX value for each variable will be GRB_UNDEFINED = 1e+101. Moreover, if the ScenNObjBound value for the scenario is also infinite, it means that the scenario has been proven to be infeasible.

### 17.13 ATTR format

A Gurobi attribute (ATTR) file is used to store, and read, attribute information of a model -- provided by the user or generated during a previous solution call -- that affects the optimization process.

More precisely, this file stores -- if available -- the following attributes: X, the primal solution to the last optimization call. Start, all the stored MIP start vectors. Partition, the variable partition. VarHintVal and VarHintPri, the variable hint information. BranchPriority, the variable branch priority vector. Lazy, the lazy attribute for each constraint. VTag, CTag and QCTag, the tagged elements of the model. VBasis and CBasis, the basis information for variables and constraints. PStart and DStart, the simplex-start information for variables and constraints.

Any line starting with the character '#' or empty lines, are considered as comments, and will be discarded at reading time. The file should start by a line of the form

```plaintext
GRB_ATTR_FILE_VERSION 090001
```

which indicate the version of the file. Older versions are backward-compatible. Then follows a number of sections, each storing one set of attributes. Each section starts with one of the following:

- **SECTION SOLUTION**
- **SECTION MIPSTART**
For those attributes for which there is a dedicated file extension, the following format is exactly the same as described in the corresponding file format description.

For sections involving other variable attributes, each line is a tuple describing the variable name, and the attribute(s) value related to it. Variables with attribute values at default may be omitted.

For sections involving other constraint attributes, each line is a tuple describing the constraint name, and the attribute(s) value related to it. Constraints with attribute values at default may be omitted.

If a model has multiple MIP starts, each of them will be saved in a different SECTION MIPSTART. Whenever an attribute file is loaded into a model, each SECTION MIPSTART will be loaded into a new MIP start vector.

The tags of variables and constraints must be enclosed in double quotes. If the tag itself contains a double quote, this needs to be escaped by a backslash. Moreover, if the tag contains a backslash, this also needs to be escaped, which yields two consecutive backslashes. For example, if a variable named "V01" has as a tag the string: "My Tag"\", the corresponding line in the attribute file will contain:

V01 "My Tag \\

Note that tags can only consist of US-ASCII printable characters.

17.14 PRM format

A Gurobi parameter (PRM) file is used to specify parameter settings. Reading a parameter file (using GRBread, for example) causes the parameters specified in the file to take the specified values.

The file consists of parameter-value pairs, each on its own line. Any line that begins with the hash sign (#) is a comment line and is ignored. The following is a simple example:

# Parameter settings
Cuts 2
Heuristics 0.5
If an unknown parameter name is listed in the file, a warning is printed and the associated line is ignored.

Note that when you write a Gurobi parameter file (using `GRBwrite` in C, `Model.write` in Python, or in any of the other APIs), both integer or double parameters not at their default value will be saved, but no string parameter will be saved into the file.
The Gurobi Optimizer produces a log that allows you to track the progress of the optimization. By default, the log is put to both the screen and to a file. Screen output can be controlled using the OutputFlag parameter, and file output can be controlled using the LogFile parameter.

The format of the log depends on the algorithm that is used to solve the model (simplex, barrier, sifting, or branch-and-cut). We now describe the contents of the log for each algorithm.

### 18.1 Simplex Logging

The simplex log can be divided into three sections: the presolve section, the simplex progress section, and the summary section.

**Presolve Section**

The first thing the Gurobi optimizer does when optimizing a model is to apply a presolve algorithm in order to simplify the model. The first section of the Gurobi log provides information on the extent to which presolve succeeds in this effort. Consider the following example output from NETLIB model df1001:

Presolve removed 2348 rows and 3329 columns
Presolve time: 0.12s
Presolved: 3723 rows, 8901 columns, 31074 nonzeros

The example output shows that presolve was able to remove 2381 rows and 3347 columns, and it required 0.12 seconds. The final line in the presolve section shows the size of the model after presolve. This is size of the model that is passed to the simplex optimizer. Note that the solution that is computed for this model is automatically transformed into a solution for the original problem once simplex finishes (in a process often called uncrushing), but this uncrush step is transparent and produces no log output.

**Progress Section**

The second section of the Gurobi simplex output provides information on the progress of the simplex method:

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Primal Inf.</th>
<th>Dual Inf.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.1669702e+06</td>
<td>1.986805e+03</td>
<td>0.000000e+00</td>
<td>0s</td>
</tr>
<tr>
<td>18171</td>
<td>1.1266373e+07</td>
<td>5.233073e+02</td>
<td>0.000000e+00</td>
<td>5s</td>
</tr>
<tr>
<td>18331</td>
<td>1.1266393e+07</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
<td>5s</td>
</tr>
</tbody>
</table>

The five columns in each output row show the number of simplex iterations performed to that point, the objective value for the current basis, the magnitude of the primal infeasibility for the current basis (computed as the sum of the absolute values of all constraint and bound violations), the magnitude of the dual infeasibility (computed as the sum of the absolute values of all dual constraint violations), and the amount of time expended to that point (measured using wall clock time).
time). The default simplex algorithm in the Gurobi solver is dual simplex, which tries to maintain
dual feasibility while performing simplex pivots to improve the objective. Thus, once the dual
simplex algorithm has found an initial dual feasible basis, you will generally see a dual infeasibility
value of zero. When the primal and dual infeasibilities both reach zero, the basis is optimal and
optimization is complete.

By default, the Gurobi optimizer produces a log line every 5 seconds. The frequency of log
lines can be changed by modifying the DisplayInterval parameter (see the Parameter section of this
document for more information).

**Summary Section**

The third section of the simplex log provides summary information. It provides a summary of the
work that the simplex algorithm performed, including the iteration count and the runtime, and it
provides information on outcome of the optimization. The summary for a model that is solved to
optimality would look like this:

```
Solved in 18331 iterations and 5.12 seconds
Optimal objective 1.126639304e+07
```

Other termination states produce different summaries. For example, a user interrupt would produce
a summary that looks like:

```
Stopped in 7482 iterations and 3.41 seconds
Solve interrupted
```

Hitting a time limit would produce a summary that looks like:

```
Stopped in 18082 iterations and 5.00 seconds
Time limit reached
```

### 18.2 Barrier Logging

The barrier log can be divided into five sections: the presolve section, the barrier preprocessing
section, the barrier progress section, the crossover progress section, and the summary section.

**Presolve Section**

As mentioned earlier, the first thing the Gurobi optimizer does when optimizing a model is to apply
a *presolve* algorithm in order to simplify the model. The first section of the Gurobi log provides
information on the extent to which presolve succeeds in this effort. Consider the following example
output from NETLIB model df1001:

```
Presolve removed 2348 rows and 3329 columns
Presolve time: 0.05s
Presolved: 3723 rows, 8901 columns, 31074 nonzeros
```

The example output shows that presolve was able to remove 2381 rows and 3347 columns, and
it required 0.12 seconds. The final line in the presolve section shows the size of the model after
presolve. This is size of the model that is passed to the barrier optimizer. Note that the solution
that is computed for this model is automatically transformed into a solution for the original problem
once barrier finishes (in a process often called *uncrushing*), but this uncrush step is transparent
and produces no log output.
Barrier Preprocessing Section

The factor matrix for the linear system solved in each iteration of the barrier method can be quite large and quite expensive to compute. In order to reduce the cost of this computation, the first step of the barrier algorithm is to compute a fill-reducing reordering of the rows and columns of this matrix. This step can be quite expensive, but the cost is recouped in the reduced cost of the subsequent barrier iterations.

Once this fill-reducing reordering has been computed, the Gurobi Optimizer outputs information related to the barrier factor matrix:

**Barrier statistics:**
- AA' NZ : 3.688e+04
- Factor NZ : 8.960e+05 (roughly 12 MBytes of memory)
- Factor Ops : 4.489e+08 (less than 1 second per iteration)
- Threads : 4

The first line indicates how many columns from the constraint matrix were treated as dense. The second line indicates how many variables in the model are free. Dense columns and free variables can sometimes lead to numerical difficulties in the barrier solver, so it is sometimes useful to know that they are present. Note that these lines are only printed when the model contains dense columns or free variables.

The next line shows the number of off-diagonal entries in the lower triangle of $AA^T$. A scaled version of this matrix is factored in each iteration of the barrier algorithm, so the structure of the Cholesky factor depends on the structure of $AA^T$.

The final two lines indicate the number of non-zero values in the factor matrix, and the number of floating-point operations required to factor it. Note that the log also provides an estimate of how much memory will be needed by the barrier algorithm, and how long each barrier iteration will require: These are rough estimates that are meant to provide a general sense of how difficult the model will be to solve. If you want to obtain an estimate of overall solution time, note that most models achieve convergence in roughly 50 iterations, but there are many exceptions. Crossover runtime is typically comparable to the cost of a few barrier iterations, but this time can vary considerably, depending on the model characteristics.

Progress Section

The third section of the Gurobi barrier output provides information on the progress of the barrier method:

<table>
<thead>
<tr>
<th>Iter</th>
<th>Objective Primal</th>
<th>Objective Dual</th>
<th>Residual Primal</th>
<th>Residual Dual</th>
<th>Compl</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.79149254e+12</td>
<td>-1.13818577e+09</td>
<td>1.48e+04</td>
<td>0.00e+00</td>
<td>2.10e+09</td>
<td>0s</td>
</tr>
<tr>
<td>1</td>
<td>7.20689339e+11</td>
<td>-4.28901315e+10</td>
<td>5.94e+03</td>
<td>6.41e+06</td>
<td>9.48e+08</td>
<td>0s</td>
</tr>
<tr>
<td>2</td>
<td>3.28659311e+11</td>
<td>-9.90094825e+10</td>
<td>2.50e+03</td>
<td>2.41e+06</td>
<td>4.07e+08</td>
<td>0s</td>
</tr>
<tr>
<td>3</td>
<td>7.11842071e+10</td>
<td>-1.00890021e+11</td>
<td>2.42e+02</td>
<td>3.26e+05</td>
<td>5.64e+07</td>
<td>0s</td>
</tr>
<tr>
<td>4</td>
<td>2.37964375e+10</td>
<td>-2.53121906e+10</td>
<td>2.12e+01</td>
<td>2.63e+04</td>
<td>7.99e+06</td>
<td>0s</td>
</tr>
<tr>
<td>5</td>
<td>4.63460621e+09</td>
<td>-7.99934222e+09</td>
<td>4.79e-01</td>
<td>6.15e+03</td>
<td>1.44e+06</td>
<td>0s</td>
</tr>
<tr>
<td>6</td>
<td>1.53036904e+09</td>
<td>-1.74378459e+09</td>
<td>7.41e-02</td>
<td>1.27e+03</td>
<td>3.56e+05</td>
<td>0s</td>
</tr>
</tbody>
</table>
The seven columns in each output row show the number of barrier iterations performed to that point, the primal and dual objective values for the current barrier iterate, the magnitude of the primal and dual infeasibilities for the current iterate (computed as the infinity-norms of the primal and dual residual vectors, respectively), the magnitude of the complementarity violation of the current primal and dual iterates (the dot product of the primal solution and the dual reduced cost vector), and the amount of time expended to that point (measured using wall clock time). When the primal infeasibility, dual infeasibility, and complementarity satisfy barrier convergence tolerances (controlled using the BarConvTol parameter), the solution is declared optimal and optimization is complete.

Unlike the simplex and MIP optimizers, the barrier optimizer produces a log line for each iterate, independent of the value of the DisplayInterval parameter.

You may sometimes see a star after the iteration count in the barrier progress log:

This indicates that the model may be primal or dual infeasible. Note that these intermediate indications of infeasibility won’t necessarily turn into an infeasibility proof, so the star may disappear in later iterations.

**Crossover Section**

The fourth section of the barrier log provides information on the crossover step. This section is only present when crossover is selected (as controlled through the Crossover parameter). Crossover converts the interior point solution produced by the barrier algorithm to a basic solution.

The first stage in crossover is to push variables to bounds in order to obtain a valid basic solution. By default, this is done for dual variables first, then for primal variables. Progress of this phase is tracked with this portion of the crossover log...

```
Crossover log...

0 DPushes remaining with DInf 2.0627140e-06 3s
139 PPushes remaining with PInf 2.0382353e-03 3s
0 PPushes remaining with PInf 2.0382353e-03 3s

Push phase complete: Pinf 2.0382353e-03, Dinf 3.5643461e-06 3s
```
Each line indicates how many push steps remain, the amount of infeasibility in the current solution, and the elapsed barrier time.

Upon completion of the push phase, crossover has a basic solution that isn’t necessarily optimal. The resulting basis is passed to simplex, and simplex completes the optimization...

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Primal Inf.</th>
<th>Dual Inf.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1680</td>
<td>1.1266350e+07</td>
<td>2.038235e-03</td>
<td>0.000000e+00</td>
<td>3s</td>
</tr>
<tr>
<td>1889</td>
<td>1.1266393e+07</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
<td>3s</td>
</tr>
</tbody>
</table>

The five columns in each output row of the simplex log show the number of simplex iterations performed to that point in the crossover algorithm (including the push steps), the objective value for the current basis, the magnitude of the primal infeasibility for the current basis (computed as the sum of the absolute values of all constraint and bound violations), the magnitude of the dual infeasibility (computed as the sum of the absolute values of all dual constraint violations), and the amount of time expended by the crossover algorithm to that point (measured using wall clock time). When the primal and dual infeasibilities both reach zero, the basis is optimal and optimization is complete.

**Summary Section**

The final section of the barrier log provides summary information. It provides a summary of the work that the barrier algorithm performed, including the iteration count and the runtime, and it provides information on outcome of the optimization. The summary for a model that is solved to optimality would look like this:

Solved in 1889 iterations and 3.10 seconds
Optimal objective  1.126639304e+07

Other termination states produce different summaries. For example, a user interrupt would produce a summary that looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 9221 iterations and 5.00 seconds
Time limit exceeded

**18.3 Sifting Logging**

Sifting will sometimes be used within the dual simplex method, either as a result of an automatic choice by the Gurobi Optimizer or because the user selected it through the **Sifting** parameter. The sifting log consists of three sections: the presolve section, the sifting progress section, and the summary section. The first and last are identical to those for simplex, so we’ll only discuss the middle section here.
**Sifting Progress Section**

As we mentioned, output for sifting and dual simplex are indistinguishable until the progress section begins. For sifting, the progress section begins with a clear indication that sifting has been selected:

Starting sifting (using dual simplex for sub-problems)...

The sifting algorithm performs a number of major iterations, where each iteration solves a smaller LP sub-problem. It uses the result to update the current primal and dual solution. The sifting log prints one line per major iteration, with information on the current primal and dual objective values:

<table>
<thead>
<tr>
<th>Iter</th>
<th>Pivots</th>
<th>Primal Obj</th>
<th>Dual Obj</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>infinity</td>
<td>2.0000000e+01</td>
<td>11s</td>
</tr>
<tr>
<td>1</td>
<td>4662</td>
<td>1.5220652e+03</td>
<td>2.7034420e+02</td>
<td>12s</td>
</tr>
<tr>
<td>2</td>
<td>8917</td>
<td>1.3127217e+03</td>
<td>4.6530259e+02</td>
<td>13s</td>
</tr>
<tr>
<td>3</td>
<td>16601</td>
<td>1.1651147e+03</td>
<td>6.4767742e+02</td>
<td>17s</td>
</tr>
<tr>
<td>4</td>
<td>30060</td>
<td>1.0881514e+03</td>
<td>7.8842688e+02</td>
<td>29s</td>
</tr>
<tr>
<td>5</td>
<td>45169</td>
<td>1.0618879e+03</td>
<td>8.8656855e+02</td>
<td>46s</td>
</tr>
<tr>
<td>6</td>
<td>59566</td>
<td>1.0549766e+03</td>
<td>9.5404159e+02</td>
<td>64s</td>
</tr>
<tr>
<td>7</td>
<td>73614</td>
<td>1.0540577e+03</td>
<td>1.0172213e+03</td>
<td>82s</td>
</tr>
</tbody>
</table>

The first column in the log gives the major iteration number. The second shows the total number of simplex iterations performed in solving the sifting sub-problems. The third and fourth columns show the primal and dual objective values for the current solution. The final column shows elapsed runtime.

The completion of sifting is indicated with the following message:

Sifting complete

The basis computed by sifting is then handed back to dual simplex, and the log from that point forward comes from the dual simplex algorithm.

### 18.4 MIP Logging

The MIP log can be divided into three sections: the presolve section, the simplex progress section, and the summary section.

**Presolve Section**

As with the simplex and barrier logs, the first section of the MIP log is the presolve section. Here is presolve output for MIPLIB model mas76:

Presolve removed 0 rows and 3 columns
Presolve time: 0.01s
Presolved: 12 rows, 148 columns, 1615 nonzeros

In this example, presolve was able to remove 3 columns. The final line shows the size of the model that is passed to the branch-and-cut algorithm.
Progress Section

The next section in the MIP log tracks the progress of the branch-and-cut search. The search involves a number of different steps, so this section typically contains a lot of detailed information. The first thing to observe in the log for example mas76 is these lines:

Found heuristic solution: objective 157344.61033
Found heuristic solution: objective 157344.61033

These indicate that the Gurobi heuristics found three integer feasible solutions before the root relaxation was solved.

The next thing you will see in the log is the root relaxation solution display. For a model where the root solves quickly, this display contains a single line:

Root relaxation: objective 3.889390e+04, 50 iterations, 0.00 seconds

For models where the root relaxation takes more time (MIPLIB model dano3mip, for example), the Gurobi solver will automatically include a detailed simplex log for the relaxation itself:

Root simplex log...

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Primal Inf.</th>
<th>Dual Inf.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>15338</td>
<td>5.7472018e+02</td>
<td>6.953458e+04</td>
<td>0.000000e+00</td>
<td>5s</td>
</tr>
<tr>
<td>19787</td>
<td>5.7623162e+02</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
<td>7s</td>
</tr>
</tbody>
</table>

Root relaxation: objective 5.762316e+02, 19787 iterations, 6.18 seconds

To be more precise, this more detailed log is triggered whenever the root relaxation requires more than the DisplayInterval parameter value (5 seconds by default).

The next section provides progress information on the branch-and-cut tree search:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj</td>
<td>Depth</td>
</tr>
<tr>
<td>0 0</td>
<td>38893.9036</td>
<td>11 157344.610</td>
<td>38893.9036</td>
</tr>
<tr>
<td>H</td>
<td>0 0</td>
<td>80297.610430</td>
<td>38893.9036</td>
</tr>
<tr>
<td>H</td>
<td>0 0</td>
<td>60361.518931</td>
<td>38893.9036</td>
</tr>
<tr>
<td>H</td>
<td>0 0</td>
<td>41203.601476</td>
<td>38893.9036</td>
</tr>
<tr>
<td>0 0</td>
<td>38923.3264</td>
<td>12 41203.6015</td>
<td>38923.3264</td>
</tr>
<tr>
<td>0 0</td>
<td>38923.3264</td>
<td>12 41203.6015</td>
<td>38923.3264</td>
</tr>
<tr>
<td>H</td>
<td>0 0</td>
<td>40697.054142</td>
<td>38923.3264</td>
</tr>
<tr>
<td>0 0</td>
<td>38923.3264</td>
<td>13 40697.0541</td>
<td>38923.3264</td>
</tr>
<tr>
<td>H</td>
<td>0 0</td>
<td>40005.054142</td>
<td>38923.3264</td>
</tr>
<tr>
<td>0 0</td>
<td>38923.3264</td>
<td>15 40005.0541</td>
<td>38923.3264</td>
</tr>
<tr>
<td>0 0</td>
<td>38964.7042</td>
<td>13 40005.0541</td>
<td>38964.7042</td>
</tr>
<tr>
<td>0 0</td>
<td>38999.8237</td>
<td>14 40005.0541</td>
<td>38999.8237</td>
</tr>
<tr>
<td>0 0</td>
<td>39005.7057</td>
<td>16 40005.0541</td>
<td>39005.7057</td>
</tr>
<tr>
<td>0 0</td>
<td>39005.7057</td>
<td>16 40005.0541</td>
<td>39005.7057</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>39005.7057</td>
<td>0</td>
</tr>
<tr>
<td>Time (s)</td>
<td>Distance (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39005.7057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39005.7057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39020.4019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39022.9528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39026.2521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39026.6391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39028.3182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39028.4511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39028.8846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39029.6078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39029.6541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39035.1012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39035.3898</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39035.8084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39036.8876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39038.4573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39038.6338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39039.6058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39040.2064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39040.3540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39040.4766</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39040.5673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39040.8083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39041.3800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39043.7172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39046.4067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39046.6600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39048.6126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39049.1237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39049.3336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39050.2689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39051.6844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39053.2361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39056.1733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39056.5864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39057.8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39057.9275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39059.5673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39059.6371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39060.2217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39060.5357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39060.9630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39061.4627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39061.6644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39062.7863</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This display is somewhat dense with information, but each column is hopefully fairly easy to understand. The **Nodes** section (the first two columns) provides general quantitative information on the progress of the search. The first column shows the number of branch-and-cut nodes that have been explored to that point, while the second shows the number of leaf nodes in the search tree that remain unexplored. At times, there will be an H or * character at the beginning of the output line. These indicate that a new feasible solution has been found, either by a MIP heuristic (H) or by branching (*).

The **Current Node** section provides information on the specific node that was explored at that point in the branch-and-cut tree. It shows the objective of the associated relaxation, the depth of that node in the branch-and-cut tree, and the number of integer variables that have non-integral values in the associated relaxation.

The **Objective Bounds** section provides information on the best known objective value for a feasible solution (i.e., the objective value of the current incumbent), and the current objective bound provided by leaf nodes of the search tree. The optimal objective value is always between these two values. The third column in this section (Gap) shows the relative gap between the two objective bounds. When this gap is smaller than the MIPGap parameter, optimization terminates.

The **Work** section of the log provides information on how much work has been performed to that point. The first column shows the average number of simplex iterations performed per node in the branch-and-cut tree. The final column shows the elapsed time since the solve began.

By default, the Gurobi MIP solver prints a log line every 5 seconds (although the interval can sometimes be longer for models with particularly time-consuming nodes). The interval between log lines can be adjusted with the DisplayInterval parameter (see the Parameter section of this document for more information).

Note that the explored node count often stays at 0 for an extended period. This means that the Gurobi MIP solver is processing the root node. The Gurobi solver can often expend a significant amount of effort on the root node, generating cutting planes and trying various heuristics in order to reduce the size of the subsequent branch-and-cut tree.

**Summary Section**

The third section in the log provides summary information once the MIP solver has finished:

**Cutting planes:**
- Gomory: 2
- MIR: 14

Explored 241338 nodes (1336406 simplex iterations) in 6.57 seconds
Thread count was 4 (of 4 available processors)
Solution count 7: 40005.1 40697.1 41203.6 ... 157345

Optimal solution found (tolerance 1.00e-04)
Best objective 4.000505414200e+04, best bound 4.000505414200e+04, gap 0.0000%

In this example, the Gurobi solver required just over 11 seconds to solve the model to optimality, and it used two processors to do so (the processor count can be limited with the Threads parameter). The gap between the best feasible solution objective and the best bound is just under 0.01%, which produces an Optimal termination status, since the achieved gap is smaller than the default MIPGap parameter value.

18.5 Solution Pool and Multi-Scenario Logging

Populating a solution pool or solving for multiple scenarios involves looking for more than one solution, which leads to different logging output. In particular, logging for these methods comes in two phases. In the first, the log shows progress towards finding one provably optimal solution (for multi-scenario optimization, this is the best solution over all scenarios). The log for this first phase is identical to the standard MIP log. It shows progress in the lower and upper bounds, and the phase terminates when these are sufficiently close to each other.

The second phase starts once attention has shifted towards finding solutions beyond that one optimal solution. You will see a message indicating that a new phase has begun. When populating a solution pool, you will see:

Optimal solution found at node 7407 - now completing solution pool...

When solving for multiple scenarios, you will see:

Optimal solution found at node 15203 - now completing multiple scenarios...

You will also see an additional header, which is slightly different from the standard MIP header. For a solution pool:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Pool Obj. Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Worst</td>
<td></td>
</tr>
<tr>
<td>Expl Unexpl</td>
<td>Obj Depth IntInf</td>
<td>Incumbent BestBd Gap</td>
<td>It/Node Time</td>
</tr>
</tbody>
</table>

For multiple scenarios:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Scenario Obj. Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Worst</td>
<td></td>
</tr>
<tr>
<td>Expl Unexpl</td>
<td>Obj Depth IntInf</td>
<td>Incumbent BestBd Gap</td>
<td>It/Node Time</td>
</tr>
</tbody>
</table>

The most important difference versus the standard header is in the Incumbent column. In the standard MIP log, this column shows the objective value for the best solution found so far. For a solution pool or multiple scenarios, this column shows the objective value for the worst solution. This of course isn’t the worst solution ever found. Rather, it shows the objective value for the worst solution among all the solutions that the MIP solver has been asked to find. For example, if you have set the PoolSolutions parameter to 100 to ask for the 100 best solutions, this column will
show the objective value for the 100th best solution found so far. If you are solving a multi-scenario model, this column shows the worst solution found over all scenarios. As the search progresses, the value in this column will improve monotonically as the MIP solver replaces this worst solution with better solutions.

One other important difference in this second phase log is in the meaning of the BestBd column. In the standard MIP log, this column gives a bound on the best possible objective value for any solution. In this log, this column shows the best possible objective value for any solution that has not yet been found. To give an example, if a minimization model has a unique optimal solution at objective 100, the second phase will begin once the lower bound reaches 100, and the BestBd column will show a value larger than 100 once the solver has determined that only one solution exists at objective 100.

The BestBd and Incumbent columns allow you to track progress towards completion of the solution pool or multi-scenario solve. Specifically, once the best bound for any solution that has not yet been found reaches the objective value for the worst solution, we know that we can’t improve that solution and we can stop.

18.6 Multi-Objective Logging

The contents of the log for a multi-objective solve will depend on the approach you use to solve the model. As noted in the section on multi-objective models, you have two options. In a blended approach, where the objectives are combined into a single objective, the log will be the same as what you’d see for a single-objective model. When using a hierarchical approach, a series of models is solved, one for each objective priority level. If your model is a pure hierarchical multi-objective problem with three objectives, the optimization process log will start with

```
Multi-objectives: starting optimization with 3 objectives ...
```

If your model is a mixed hierarchical-blended multi-objective problem with five objectives but only three priorities, the optimization log will start with

```
Multi-objectives: starting optimization with 5 objectives (3 combined) ...
```

You will also see a log for each solve, introduced by a small header

```
Multi-objectives: optimize objective 1 Name ...
```

Where Name will be the name of the objective function being optimize, or (weighted) if the objective function is the result of blending more than one objective function.

The logs for the individual solves will again be the same as what you’d see for a single-objective model.
18.7 Distributed MIP Logging

Logging for distributed MIP is very similar to the standard MIP logging. The main difference is in the progress section. The header for the standard MIP logging looks like this:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj Depth</td>
<td>IntInf</td>
</tr>
</tbody>
</table>

In contrast, the distributed MIP header has a different label for the second-to-last field:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj Depth</td>
<td>IntInf</td>
</tr>
</tbody>
</table>

Instead of showing iterations per node, this field in the distributed log shows parallel utilization. Specifically, it shows the fraction of the preceding time period (the time since the previous progress log line) that the workers spent actively processing MIP nodes.

Here is an example of a distributed MIP progress log:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj Depth</td>
<td>IntInf</td>
</tr>
</tbody>
</table>

H 0 157344.61033 - - 0s
H 0 40707.729144 - - 0s
H 0 28468.534497 - - 0s
H 0 18150.083866 - - 0s
H 0 14372.871258 - - 0s
H 0 13725.475382 - - 0s
0 0 10543.7611 0 19 13725.4754 10543.7611 23.2% 99% 0s
* 266 12988.468031 10543.7611 18.8% 0s
H 1503 12464.099984 10630.6187 14.7% 0s
* 2350 12367.608657 10632.7061 14.0% 1s
* 3360 12234.641804 10641.4586 13.0% 1s
H 3870 11801.185729 10641.4586 9.83% 1s

Ramp-up phase complete - continuing with instance 2 (best bd 10661)

16928 2731 10660.9626 0 12 11801.1857 10660.9635 9.66% 99% 2s
135654 57117 11226.5449 19 12 11801.1857 11042.3036 6.43% 98% 5s
388736 135228 11693.0268 23 12 11801.1857 11182.6300 5.24% 96% 10s
705289 196412 cutoff 11801.1857 11248.8963 4.68% 98% 15s
1065224 232839 11604.6587 28 10 11801.1857 11330.2111 3.99% 98% 20s
1412054 238202 11453.2202 31 12 11801.1857 11389.7119 3.49% 99% 25s
1782362 209060 cutoff 11801.1857 11437.2670 3.08% 97% 30s
2097018 158137 11773.6235 20 11 11801.1857 11476.1690 2.75% 92% 35s
2468495 11516 cutoff 11801.1857 11699.9393 0.86% 78% 40s
2481830 0 cutoff 11801.1857 11801.1857 0.00% 54% 40s

One thing you may find in the progress section is that node counts may not increase monotonically. Distributed MIP tries to create a single, unified view of node numbers, but with multiple
machines processing nodes independently, possibly at different rates, some inconsistencies are inevitable.

Another difference is the line that indicates that the distributed ramp-up phase is complete. At this point, the distributed strategy transitions from a concurrent approach to a distributed approach. The log line indicates which worker was the winner in the concurrent approach. Distributed MIP continues by dividing the partially explored MIP search tree from this worker among all of the workers.

Another difference in the distributed log is in the summary section. The distributed MIP log includes a breakdown of how runtime was spent:

Runtime breakdown:

Runtime breakdown:
    Active: 37.85s (93%)
    Sync: 2.43s (6%)
    Comm: 0.34s (1%)

This is an aggregated view of the utilization data that is displayed in the progress log lines. In this example, the workers spent 93% of runtime actively working on MIP nodes, 6% waiting to synchronize with other workers, and 1% communicating data between machines.
The Gurobi command-line tool allows you to perform simple commands without the overhead or complexity of an interactive interface. While the most basic usage of the command-line tool is quite straightforward, the tool has a number of uses that are perhaps less obvious. This section talks about its full capabilities.

To use this tool, you’ll need to type commands into a command-line interface. Linux and Mac users can use a Terminal window. Windows users will need to open a Command Prompt (also known as a Console window or a cmd window). To launch one, hold down the Start and R keys simultaneously, and then type cmd into the Run box that appears.

The command to solve a model using the command-line tool is:

```
gurobi_cl [parameter=value]* modelfile
```

The Gurobi log file is printed to the screen as the model solves, and the command terminates when the solve is complete. Parameters are chosen from among the Gurobi parameters. The final argument is the name of a file that contains an optimization model, stored in MPS or LP format. You can learn more about using the command-line tool to solve models in this section.

The command-line tool can also be used to replay recordings of API calls. The command for this usage is:

```
gurobi_cl recordingfile
```

A recording file is a binary file generated by Gurobi with a .grbr extension. You can learn more about using the command-line tool to replay recordings in this section.

The command-line tool can also be used to check on the status of a Gurobi token server. The command is:

```
gurobi_cl --tokens
```

This command will show you whether the token server is currently serving tokens, and which users and machines are currently using tokens.

You can also type:

```
gurobi_cl --help
```

to get help on the use of the tool, or:

```
gurobi_cl --version
```

to get version information, or:

```
gurobi_cl --license
```

872
to get the location of the current Gurobi license file.

## 19.1 Solving a Model

The command-line tool provides an easy way to solve a model stored in a file. The model can be stored in several different formats, including MPS, REW, LP, and RLP, and the file can optionally be compressed using gzip, bzip2, or 7z. See the File Format discussion for more information on accepted formats.

The most basic command-line command is the following:

```
gurobi_cl model.mps
```

This will read the model from the indicated file, optimize it, and display the Gurobi log file as the solve proceeds.

You can optionally include an arbitrary number of `parameter=value` commands before the name of the file. For example:

```
gurobi_cl Method=2 TimeLimit=100 model.mps
```

The full set of Gurobi parameters is described in the Parameter section.

Gurobi Compute Server users can add the `--server=` switch to specify a server. For example, the command:

```
gurobi_cl --server=server1 Method=2 TimeLimit=100 model.mps
```

would solve the model stored in file `model.mps` on machine `server1`, assuming it is running Gurobi Compute Server. If the Compute Server has an access password, use the `--password=` switch to specify it.

Gurobi Instant Cloud users can add the `--accessid=`, `--secretkey=`, and `--pool=` switches to run a model on a cloud instance. For example, the command:

```
gurobi_cl --accessid=0f5e0ace-f929-a919-82d5-02272b3b0e19 --secretkey=8EDZOIf7T9avp0ZHef9Tsw --pool=mypool model.mps
```

would solve the model stored in file `model.mps` on cloud pool `mypool` using the provided access ID and secret key. If the pool isn’t currently active, it will launch it first.

### Writing Result Files

While it is often useful to simply solve a model and display the log, it is also common to want to review the resulting solution. You can use the `ResultFile` parameter to write the solution to a file:

```
gurobi_cl ResultFile=model.sol model.mps
```

The file name suffix determines the type of file written. Useful file formats for solution information are `.sol` (for solution vectors) and `.bas` (for simplex basis information). Again, you should consult the section on File Formats for a list of the supported formats.

If you have an infeasible model, you may want to examine a corresponding Irreducible Inconsistent Subsystem (IIS) to identify the cause of the infeasibility. You can ask the command-line tool to write a `.ilp` format file. It will attempt to solve the model, and if the model is found to be infeasible, it will automatically compute an IIS and write it to the requested file name. An IIS is a subset of the constraints and variable bounds with the following properties:
the subsystem represented by the IIS is infeasible, and

- if any of the constraints or bounds of the IIS is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the one with minimum cardinality; there may exist others with fewer constraints or bounds.

If an IIS computation is interrupted before completion, Gurobi will return the smallest IIS found to that point.

Another use of ResultFile is to translate between file formats. For example, if you want to translate a model from MPS format to LP format, you could issue the following command:

gurobi_cl TimeLimit=0 ResultFile=model.lp model.mps

Gurobi can write compressed files directly, so this command would also work (assuming that 7zip is installed on your machine):

gurobi_cl TimeLimit=0 ResultFile=model.lp.7z model.mps

The ResultFile parameter works differently from other parameters in the command-line interface. While a parameter normally takes a single value, you can actually specify multiple result files. For example, the following command:

gurobi_cl ResultFile=model.sol ResultFile=model.bas model.mps

will write two files.

Reading Input Files

You can use the InputFile parameter to read input files during the optimization. The most common input formats are .bas (a simplex basis), .mst (a MIP start), .sol (also a MIP start), .hnt (MIP hints), and .ord (a MIP priority order). For example, the following command:

gurobi_cl InputFile=model.bas model.mps

would start the optimization of the continuous model stored in file model.mps using the basis provided in file model.bas.

Reading input files is equivalent to setting the values of Gurobi attributes. A .bas file populates the VBasis and CBasis attributes, while a .ord file populates the BranchPriority attribute. A .mst or .sol file populates the Start attribute. A .hnt file populates the VarHintVal and VarHintPri attributes.

Again, you should consult the File Formats section for more information on supported file formats

19.2 Replaying Recording Files

If you’ve generated a recording of the Gurobi API calls made by your program, you may use the command-line tool to replay this recording.

Recordings are stored in files with .grbr extensions. To replay a recording from a file named recording000.grbr issue the following command:

gurobi_cl recording000.grbr
You should adjust the file name to match the recording you wish to replay.

You will know you have succeeded in replaying a recording, if you see lines similar to the following at the beginning of the command-line tool’s output:

```
Replay* Replay of file 'recording000.grbr'
Replay* Recording captured Tue Sep 13 19:28:48 2020
Replay* Recording captured with Gurobi version 9.0.1 (linux64)
```

For information about recording API calls and replaying them, see the **Recording API Calls** chapter.
While the default goal of the Gurobi Optimizer is to find one proven optimal solution to your model, with a possible side-effect of finding other solutions along the way, the solver provides a number of parameters that allow you to change this behavior.

## 20.1 Finding Multiple Solutions

By default, the Gurobi MIP solver will try to find one proven optimal solution to your model. It will typically find multiple sub-optimal solutions along the way, which can be retrieved later (using the `SolutionNumber` parameter, and the `Xn` and `PoolObjVal` attributes). However, these solutions aren’t produced in a systematic way. The set of solutions that are found depends on the exact path the solver takes through the MIP search. You could solve a MIP model once, obtaining a set of interesting sub-optimal solutions, and then solve the same problem again with different parameter settings, and find only the optimal solution.

If you’d like more control over how solutions are found and retained, the Gurobi Optimizer has a number of parameters available for this. The first and simplest is `PoolSolutions`, which controls the size of the solution pool. Changing this parameter won’t affect the number of solutions that are found - it simply determines how many of those are retained.

You can use the `PoolSearchMode` parameter to control the approach used to find solutions. In its default setting (0), the MIP search simply aims to find one optimal solution. Setting the parameter to 1 causes the MIP search to expend additional effort to find more solutions, but in a non-systematic way. You will get more solutions, but not necessarily the best solutions. Setting the parameter to 2 causes the MIP to do a systematic search for the \( n \) best solutions. For both non-default settings, the `PoolSolutions` parameter sets the target for the number of solutions to find.

If you are only interested in solutions that are within a certain gap of the best solution found, you can set the `PoolGap` parameter. Solutions that are not within the specified gap are discarded.

Obtaining an `OPTIMAL` optimization return status when using `PoolSearchMode=2` indicates that the MIP solver succeeded in finding the desired number of best solutions, or it proved that the model doesn’t have that many distinct feasible solutions. If the solver terminated early (e.g., due to a time limit), you can use the `PoolObjBound` attribute to evaluate the quality of the solutions that were found. This attribute gives a bound on the objective of any solution that isn’t already in the solution pool. The difference between this attribute and `ObjBound` is that the latter gives a bound on the objective for any solution, and which is often looser than `PoolObjBound`.

There are a few subtleties associated with finding multiple solutions that you should be aware of. For example, the notion of finding the \( n \) best solutions can be a bit ambiguous when you have a non-zero optimality tolerance. Also, it isn’t obvious whether two solutions should be considered different when the model has continuous variables. We’ll discuss these issues later in this section.
20.2 Examples

Let’s continue with a few examples of how these parameters would be used. Imagine that you are solving a MIP model with an optimal (minimization) objective of 100. Further imagine that, using default settings, the MIP solver finds four solutions to this model with objectives 100, 110, 120, and 130.

If you set the PoolSolutions parameter to 3 and solve the model again, the MIP solver would discard the worst solution and return with 3 solutions in the solution pool (i.e., the SolCount attribute would have value 3). If you instead set the PoolGap parameter to value 0.2, the MIP solver would discard any solutions whose objective value is worse than 120 (which would also leave 3 solutions in the solution pool).

If you set the PoolSearchMode parameter to 2 and the PoolSolutions parameter to 10, the MIP solver would attempt to find the 10 best solutions to the model. An OPTIMAL return status would indicate that either (i) it found the 10 best solutions, or (ii) it found all feasible solutions to the model, and there were fewer than 10. If you also set the PoolGap parameter to a value of 0.1, the MIP solver would try to find 10 solutions with objective no worse than 110. While this may appear equivalent to asking for 10 solutions and simply ignoring those with objective worse than 110, the solve will typically complete significantly faster with this parameter set, since the solver does not have to expend effort looking for solutions beyond the requested gap.

20.3 Retrieving Solutions

After optimization has completed, you can retrieve solutions from the solution pool using a few parameters and attributes. The SolCount attribute indicates how many solutions were retained by the MIP solver. The best solution can always be obtained through the X attribute. Sub-optimal solutions can be obtained by first setting the SolutionNumber parameter and then querying the Xn attribute to obtain the solution or the PoolObjVal attribute to obtain the objective value for the corresponding solution.

For example, to retrieve the worst solution kept by the MIP solver, you’d first query SolCount to determine how many solutions are available, then set the SolutionNumber parameter to SolCount-1, then query the Xn attribute.

The PoolObjBound attribute gives a bound on the objective of undiscovered solutions. Further tree exploration won’t find better solutions. You can use this parameter to get a count of how many of the n best solutions you found: any solutions whose objective values are at least as good as PoolObjBound are among the n best.

20.4 Subtleties and Limitations

There are a few subtleties associated with finding multiple solutions that we’ll cover now.

Continuous Variables

One subtlety arises when considering multiple solutions for models with continuous variables. Specifically, you may have two solutions that take identical values on the integer variables but where some continuous variables differ. By choosing different points on the line between these two solutions, you actually have an infinite number of choices for feasible solutions to the problem. To avoid this issue, we define two solutions as being equivalent if they take the same values on all
integer variables (and on all continuous variables that participate in SOS constraints). A solution will be discarded if it is equivalent to another solution that is already in the pool.

**Optimality Gap**

The interplay between the optimality gap (MIPGap or MIPGapAbs) and multiple solutions can be a bit subtle. When using the default PoolSearchMode, a non-zero optimality gap indicates that you are willing to allow the MIP solver to declare a solution optimal, even though the model may have other, better solutions. The claim the solver makes upon termination is that no other solution would improve the incumbent objective by more than the optimality gap. Terminating at this point is ultimately a pragmatic choice - we’d probably rather have the true best solution, but the cost of reducing the optimality gap to zero can often be prohibitive.

This pragmatic choice can produce a bit of confusion when finding multiple optimal solutions. Specifically, if you ask for the $n$ best solutions, the optimality gap plays a similar role as it does in the default case, but the implications may be a bit harder to understand. Specifically, a non-zero optimality gap means that you are willing to allow the solver to declare that it has found the $n$ best solutions, even though there may be solutions that are better than those that were returned. The claim in this case is that any solution not among the reported $n$ best would improve on the objective for the worst among the $n$ best by less than the optimality gap.

If you want to avoid this source of potential confusion, you should set the optimality gap to 0 when using PoolSearchMode=2.

**Logging**

The log for a MIP solve with PoolSearchMode set to a non-default value is different from the standard MIP log. You should consult this section for details.

**Distributed MIP**

One limitation that we should point out related to multiple solutions is that the distributed MIP solver has not been extended to support non-default PoolSearchMode settings. Distributed MIP will typically produce many more feasible solutions than non-distributed MIP, but there’s no way to ask it to find the $n$ best solutions.
Multiple Objectives

While typical optimization models have a single objective function, real-world optimization problems often have multiple, competing objectives. For example, in a production planning model, you may want to both maximize profits and minimize late orders, or in a workforce scheduling application, you may want to minimize the number of shifts that are short-staffed while also respecting worker’s shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how to manage the trade-offs between them. Gurobi provides tools that simplify the task: Gurobi allows you to blend multiple objectives, to treat them hierarchically, or to combine the two approaches. In a blended approach, you optimize a weighted combination of the individual objectives. In a hierarchical or lexicographic approach, you set a priority for each objective, and optimize in priority order. When optimizing for one objective, you only consider solutions that would not degrade the objective values of higher-priority objectives. Gurobi allows you to enter and manage your objectives, to provide weights for a blended approach, and to set priorities for a hierarchical approach.

21.1 Specifying Multiple Objectives

Let us first discuss the interface for managing multiple objectives. An empty model starts with one objective function, which is initially just 0.0. We’ll refer to this as the primary objective. You can modify the primary objective in two ways: you can set the Obj attribute, or you can use the setObjective method from your language API (e.g., Model.setObjective in Python). For models with a single objective, this primary objective can be linear, quadratic, or piecewise-linear. In general, attributes and methods that aren’t specific to multi-objective optimization will work with the primary objective function.

Every objective in a multi-objective model has the following settable attributes: ObjNCon with default value 0, ObjNPriority with default value 0, ObjNWeight with default value 1, ObjNRelTol with default value 0, ObjNAbsTol with default value 0, and ObjNName.

To provide additional objectives, use the setObjectiveN method from your language API (e.g. Model.setObjectiveN in Python). Objectives are numbered 0 through NumObj-1. The order of the objectives is arbitrary, but you must provide a unique index for each one (specified using the index argument to setObjectiveN). You can query the number of objectives in your model using the NumObj attribute. Note that all objectives, including the primary one, must be linear for multi-objective models.

You can query and modify information about multiple objectives using the ObjNumber parameter, in conjunction with several model and variable attributes. For example, to retrieve the coefficient for variable x in objective 2, you’d set the ObjNumber parameter to 2, then query the ObjN attribute for x. Similarly, querying the ObjNName attribute after setting ObjNumber to 3 would give the name of objective 3.

We should note that there is one important exception to our statement above that the order of
objectives is arbitrary: objective 0 is treated as the primary objective. One consequence is that the original objective automatically becomes objective 0 when you add a second objective. Another is that querying the ObjN attribute is equivalent to querying the Obj attribute when ObjNumber is 0.

Note that a model has a single objective sense (controlled by the ModelSense attribute). This means that you can’t maximize the first objective and minimize the second. However, you can achieve the same result with a simple trick. Each objective has a weight, and these weights are allowed to be negative. Minimizing an objective function is equivalent to maximizing the negation of that function.

You can change the number of objectives in your model as many times as you like (by modifying the NumObj attribute). When you increase the objective count, the new objectives and their associated attributes are set to 0. When you decrease the count, objectives beyond the new count are discarded. If you set the number of objectives to zero, the model becomes a pure feasibility problem.

We have extended the LP and MPS file formats, so writing a model with multiple objectives to a file will capture those objectives. Similarly, if you read a model file that contains multiple objectives, then NumObj and ObjN will capture the objectives stored in the file. See the file format section for details.

21.2 Working With Multiple Objective

Of course, specifying a set of objectives is only the first step in solving a multi-objective optimization problem. The next step is to indicate how the objectives should be combined. As noted earlier, we support two approaches: blended and hierarchical.

Blended Objectives

A blending approach creates a single objective by taking a linear combination of your objectives. You provide a weight for each objective as an argument to setObjectiveN. Alternatively, you can use the ObjNWeight attribute, together with ObjNumber. The default weight for an objective is 1.0.

To give an example, if your model has two objectives, $1 + x + 2y$ and $y + 2z$, and if you give weights of $-1$ and 2 to them, respectively, then Gurobi would solve your model with a blended objective of $-1 \cdot (1 + x + 2y) + 2 \cdot (y + 2z) = -1 - x + 4z$.

You should avoid weights that are very large or very small. A very large weight (i.e., larger than $10^6$) may lead to very large objective coefficients, which can cause numerical difficulties. A very small weight (i.e., smaller than $1e-6$) may cause the contribution from that objective to the overall blended objective to be smaller than tolerances, which may lead to that objective being effectively ignored.

Hierarchical Objectives

A hierarchical or lexicographic approach assigns a priority to each objective, and optimizes for the objectives in decreasing priority order. At each step, it finds the best solution for the current objective, but only from among those that would not degrade the solution quality for higher-priority objectives. You provide the priority for each objective as an argument to setObjectiveN. Alternatively, you can use the ObjNPriority attribute. Priorities are integral, not continuous. Larger values indicate higher priorities. The default priority for an objective is 0.
To give an example, if your model has two objectives, with priorities 10 and 5, and objective weights 1.0 and -1.0. Assuming the optimal solution for the first objective has value 100, then the solver will find the solution that optimizes minus the second objective from among all solutions with objective 100 for the first objective.

**Allowing Multiple-Objective Degradation**

By default, our hierarchical approach won’t allow later objectives to degrade earlier objectives, subject to the user-given ending gap conditions for the optimization problem. More precisely, the base value used to define what solutions are acceptable for lower priorities objectives – for a minimization problem – is computed as:

\[
\text{base\_value} = \max\{\text{bestsol}, \text{bestbound} + |\text{bestbound}| * \text{rgap}, \text{bestbound} + \text{agap}\},
\]

where \text{bestsol} is the value of the best incumbent solution, \text{bestbound} is the value of the best proven lower bound for the problem, \text{rgap} is the relative MIP gap, and \text{agap} is the absolute MIP gap, and the set of feasible solutions for the next objective will consider solutions whose objective value is at most that value.

This behavior can be relaxed for MIPs through a pair of tolerances: a relative and an absolute tolerance. These are provided as arguments to \text{setObjectiveN}, or they can be set using attributes \text{ObjNRelTol} and \text{ObjNAbsTol}. By setting one of these for a particular objective, you can indicate that later objectives are allowed to degrade this objective by the specified relative or absolute amount, respectively. In our earlier example, if the optimal value for the first objective is 100, and if we set \text{ObjNAbsTol} for this objective to 20, then the second optimization step would find the best solution for the second objective from among all solutions with objective 120 or better for the first objective. Note that if you modify both tolerances, later optimizations would use the looser of the two values (i.e., the one that allows the larger degradation).

Objective degradations are handled differently for multi-objective LP models. For LP models, solution quality for higher-priority objectives is maintained by fixing some variables to their values in previous optimal solutions. These fixings are decided using variable reduced costs. The value of the \text{ObjNAbsTol} parameter indicates the amount by which a fixed variable’s reduced cost is allowed to violate dual feasibility, whereas the \text{ObjNRelTol} parameter is simply ignored. If you want the MIP behavior, where the degradation is controlled more directly, you can add a dummy binary variable to the model, thus transforming it into a MIP. Solving the resulting multi-objective MIP will be much more time consuming than solving the original multi-objective LP.

**Combining Blended and Hierarchical Objectives**

Actually, both weight and priority are always specified for each objective. This allows you to seamlessly combine the blended and hierarchical approaches. To understand how this works, we should first provide more detail on how hierarchical objectives are handled.

When you specify a different priority for each of \(n\) objectives, the solver performs \(n\) separate optimization steps. In each step, in decreasing priority order, it optimizes for the current objective multiplied by its \text{ObjNWeight} attribute, while imposing constraints that ensure that the quality of higher-priority objectives isn’t degraded by more than the specified tolerances.

If you give the same priority to multiple objectives, then they will be handled in the same optimization step, resulting in fewer than \(n\) total steps for \(n\) objectives. More precisely, one optimization step is performed per distinct priority value, in order of decreasing priority, and all
objectives with the same priority are blended together, using the weights for those objectives. This gives you quite a bit of flexibility when combining the blended and hierarchical approaches.

One subtle point when blending multiple objectives within a single level in a hierarchical approach relates to the handling of degradations from lower-priority levels. The objective degradation allowed after a blended optimization step is the maximum absolute and relative degradations allowed by each of the participating objectives. For example, if we have three objectives with ObjNPriority equal to \(\{2, 2, 1\}\), and ObjNRelTol equal to \(\{0.10, 0.05, 0.00\}\) and ObjNAbsTol equal to \(\{0, 1, 2\}\), and if the best solution for the first priority objective is 10, then the allowed degradation for the first priority objective is \(\max\{10 \cdot 0.10, 10 \cdot 0.05, 0, 1\} = 1\).

**Querying multi-objective results**

Multiple objective values can be queried programmatically in all our APIs. The basic notion is that you have to specify for which multi objective you want to query information (by setting the parameter ObjNumber). Furthermore, you can also specify for which solution you want to query this information (by setting the parameter SolutionNumber). For example, in Python you can do the following:

```python
Read and solve a model with multiple objectives
m = read('input.mps')
m.optimize()

get the set of variables
x = m.getVars()

Ensure status is optimal
assert m.Status == GRB.Status.OPTIMAL

Query number of multiple objectives, and number of solutions
nSolutions = m.SolCount
nObjectives = m.NumObj
print('Problem has', nObjectives, 'objectives')
print('Gurobi found', nSolutions, 'solutions')

For each solution, print value of first three variables, and
value for each objective function
solutions = []
for s in range(nSolutions):
 # Set which solution we will query from now on
 m.params.SolutionNumber = s
 print('Solution ', s, ', ')
 for o in range(nObjectives):
 # Set which objective we will query
 m.params.ObjNumber = o
 # Query the o-th objective value
 print(' ', m.ObjNVal, end='')
 # print first three variables in the solution
 n = min(len(x), 3)
 for j in range(n):
 print(x[j].VarName, x[j].Xn, end='')
 print('')
```
# query the full vector of the o-th solution
solutions.append(m.getAttr('Xn',x))

## 21.3 Additional Details

### Multi-Objective Environments

By default, the termination criteria (e.g. TimeLimit, SolutionLimit, MIPGap, etc.) for each pass in a hierarchical multiple-objective optimization are controlled by the parameters defined in the model environment. However, we provide a feature called multi-objective environments that allows you to create a Gurobi environment for each objective function and set parameters on those environments. Those settings will only affect the corresponding pass of the multi-objective optimization. Thus, for example, if the TimeLimit parameter for the model is 100, but you use a multi-objective environment to set the parameter to 10 for a particular multi-objective pass, then the multi-objective optimization will spend at most 10 seconds on that particular pass (and at most 100 seconds in total).

To create a multi-objective environment for a particular multi-objective pass, use the `getMultiobjEnv` method from your language API (e.g. `Model.getMultiobjEnv` in Python). The `index` argument gives the index of the multi-objective pass that you want to control.

Note that multi-objective environments are tied to a given multi-objective optimization pass and not to a given multi-objective function, so multi-objective environment 0 is always tied to the highest priority (possibly blended) objective, while multi-objective environment 1 is always tied to the second highest priority objective (if any).

Once you create multi-objective environments, they will be used for every subsequent multi-objective optimization on that model. Use the `discardMultiobjEnvs` method from your language API (e.g. `Model.discardMultiobjEnvs` in Python) to revert back to default multi-objective optimization behavior.

### Other Details

We haven’t attempted to generalize the notions of dual solutions or simplex bases for continuous multi-objective models, so you can’t query attributes such as Pi, RC, VBasis, or CBasis for multi-objective solutions. Because of this, we’ve concluded that the most consistent result to return for attribute IsMIP is 1. Note, however, that several MIP-specific attributes such as ObjBound, ObjBoundC and MIPGap don’t make sense for multi-objective models and are also not available.

Gurobi will only solve multi-objective models with strictly linear objectives. If the primary objective is quadratic or piecewise linear, the solve call will return an error.

When solving a continuous multi-objective model using a hierarchical approach, you have a choice of which optimization algorithm to use for the different steps (primal simplex, dual simplex, or barrier). The first step will always use the algorithm specified in the Method parameter. The algorithm for subsequent steps is controlled by the MultiObjMethod parameter. This parameter has no effect for multi-objective MIP models. Note you can get finer-grained control over the algorithm choice using our multi-objective environment feature, by setting the Method parameter for individual objectives.

For the hierarchical approach, Gurobi will perform a conservative presolve step at the beginning of the multi-objective optimization, and a more aggressive presolve step at the beginning of each step.
(assuming presolve hasn't been turned off). You can optionally perform a more aggressive presolve step at the beginning of the multi-objective optimization by setting parameter MultiObjPre to value 2. This can help performance, but it makes a few simplifying assumptions that could lead to small degradations in the values achieved for lower-priority objectives.

The log file when using a hierarchical approach will show optimization progress for each step of the process. You'll see log lines that look like this:

```
Multi-objectives: optimize objective 1 (Obj1Name) ...
...
Multi-objectives: optimize objective 2 (weighted) ...
...
```

For further details, please see section Multi-Objective Logging.
When solving an optimization model, it is often useful to understand the sensitivity of the computed solution to changes in the inputs. How would profits be affected if the price of a particular raw material increased significantly? Would I still be able to satisfy customer orders if one of my machines broke down? The most general form of this problem would fall into the domain of stochastic or robust optimization, but those fields bring significant complexity with them. The Gurobi Optimizer includes scenario analysis features that have a much more modest goal: to allow the user to specify a set of scenarios, and to compute optimal solutions for all of these scenarios as quickly as possible. These solutions often provide significant insight into how the solution would change as inputs vary.

22.1 Definition of a Multi-Scenario Model

Before diving into the details of working with multiple scenarios, we first need to explain exactly what we mean by the term. Let us start by claiming that it only makes sense to consider a set of models as being different scenarios for the same underlying model if they have a lot in common. They should definitely share the same set of variables. They should also have similar sets of constraints and similar objectives. In our approach, scenarios are described as a set of changes from a single base model. More specifically, scenarios can only modify model features that are present in the base model. We should add that other modifications, including addition and deletion of variables or constraints, can be achieved through the clever use of various tricks. For now, though, it is best to think of scenarios as being small variations on the same base.

What variations do we allow from this base model? Scenarios can differ in the following attributes:

- Linear objective function coefficients.
- Variable lower and upper bounds.
- Constraint right-hand side values.

A single scenario can have multiple changes from the base, so for example you could change an objective coefficient, two variable bounds, and a right-hand side value in the same scenario.

After you have defined a set of scenarios (the specific mechanics for doing so will be described shortly), the next step is to find solutions for all of the scenarios. A single call to the standard Gurobi optimize method is all that is needed. This will of course be much more expensive than finding an optimal solution for a single model, but our goal is for it to be faster and more convenient than formulating and solving separate models for each scenario.

22.2 Specifying Multiple Scenarios

Your first step in building a multi-scenario model is to modify the NumScenarios attribute to indicate how many scenarios you would like to consider. Once you have changed this attribute, you
can describe the different scenarios by changing various scenario-related attributes (listed below). When you later call optimize on a multi-scenario model (a model where NumScenarios is greater than 0), the solver will try to find optimal solutions for all specified scenarios. Note that it will not try to find a solution for the base model.

Variations in the different scenarios are expressed through a set of four attributes:

- ScenNObj
- ScenNLB
- ScenNUB
- ScenNRHS

The first three are variable attributes, and the last is a linear constraint attribute. You can give each scenario a name through the ScenNName attribute (a model attribute).

You use the ScenarioNumber parameter to modify scenario attributes for a specific scenario. Scenarios are numbered 0 through NumScenarios - 1. To give an example, to create a model where binary variable x is fixed to 0 and 1 in two scenarios, you would:

- Set the NumScenarios attribute to 2, to indicate that your model has two scenarios.
- Set the ScenarioNumber parameter to 0, to indicate that you would first like to modify scenario attributes for scenario 0.
- Set the ScenNUB attribute for variable x to 0 (to fix the binary variable to zero in this scenario).
- Set the ScenarioNumber parameter to 1, to move on to scenario 1.
- Set the ScenNLB attribute for variable x to 1 (to fix the binary variable to one in this scenario).

You query scenario attributes in a similar manner: set the ScenarioNumber parameter to choose the scenario you would like to query, and then use the appropriate attribute query routine to obtain the desired attribute values (consult our Attribute Examples for examples).

Note that unmodified scenario attributes take a special value of GRB.UNDEFINED. If you modified a scenario attribute and would like to revert that modification, you can set the attribute back to GRB.UNDEFINED.

You can change the number of scenarios in your model as many times as you like (by modifying the NumScenarios attribute). When you increase the count, new empty scenarios are created (an empty scenario is a scenario with no changes from the base model). When you decrease the count, existing scenarios are discarded. When you set the count to zero, the model is no longer treated as a multi-scenario model.

We have extended the LP and MPS file formats, so writing a model with multiple scenarios to a file will capture those scenarios. Similarly, if you read a model file that contains multiple scenarios, then NumScenarios and the various scenario attributes will capture the scenarios stored in the file. See the file format section for details.

### 22.3 Logging

When solving a multi-scenario model, logging is somewhat different from standard MIP logging. You should consult this section for details.
22.4 Retrieving Solutions for Multiple Scenarios

Your first step in retrieving the solutions computed by an optimize call on a multi-scenario model is to query the Status attribute. A status of OPTIMAL indicates that optimal solutions were found (subject to tolerances) for all scenarios that have feasible solutions, and that the other scenarios were determined to be infeasible. If all scenarios were found to be infeasible, the status will be INFEASIBLE. If any scenario is unbounded, the status will be UNBOUNDED. An early termination status code (e.g., TIME_LIMIT) indicates that the outcomes may vary across the different scenarios, and you will have to look at individual scenarios for more information.

Results for individual scenarios can be found in three attributes:

- ScenNObjVal: The objective value for the solution for scenario number \( n \).
- ScenNObjBound: The best known bound on the optimal objective value for scenario number \( n \).
- ScenNX: The solution vector for scenario number \( n \).

The ScenNObjVal and ScenNObjBound attributes are model attributes, while ScenNX is a variable attribute. Again, use the ScenarioNumber parameter to select the scenario you’d like to query.

If your optimize call terminated early, you should use the ScenNObjBound attribute to interpret the results. This attribute provides a bound on the optimal objective value for the selected scenario (much like ObjBound provides a bound for a single model). For example, if ScenNObjVal is 100 for a scenario and ScenNObjBound is 90 (assuming minimization), then you have a solution with a 10% optimality gap for that scenario.

You can also query the ObjVal and ObjBound attributes for a multi-scenario model. The former gives the best objective value for any solution found in any scenario. The latter provides a lower bound on the objective value for any solution that was not found.

Note that ScenNObjVal and ScenNObjBound are computed using the objective function for the corresponding scenario, which you may have changed from the base model.

If you query the ScenNX attribute and no feasible solution has been found for that scenario, you will get a DATA_NOT_AVAILABLE error.

22.5 Tips and Tricks

Through clever use of the features provided in the multi-scenario interface, it is actually possible to do a lot more than it may first appear.

Adding or Deleting Variables or Constraints

The multi-scenario interface provides no way to add or remove variables or constraints in a scenario, but the same effect can be achieved by changing variable bounds and constraint right-hand side values. To remove a variable in a scenario, simply change its lower and upper bounds to zero. To add a variable, set its bounds to zero in the base model and change them to their true values in the scenario. To remove a less-than constraint, change the right-hand-value in the scenario to GRB.INFINITY. To add one, set its right-hand side to GRB.INFINITY in the base model and change it to its true value in the scenario.

Changing the sense of a constraint can also be done using similar tricks. For example, you can transform an equality constraint in the base model into an inequality in a scenario by splitting the
equality into a pair of inequalities. The right-hand side values for both inequalities in the base model would be equal to the true value in the equality. The right-hand side value on one of the two inequalities can then be relaxed to \texttt{GRB.INFINITY} in the scenario.

You can also change the type of a variable. For example, to transform an integer variable in the base model into a continuous variable in a scenario, you can add both variables in the base model, along with a split equality constraint that sets them equal to each other. That equality constraint could then be relaxed in the scenario (using the techniques just described).

This isn’t meant to be an exhaustive list of all of the ways that you can use supported multi-scenario features to achieve seemingly unsupported outcomes. The set of building blocks that we have provided can be assembled in a variety of different ways.

If all scenarios in your multi-scenario model are infeasible, your \texttt{optimize} call will produce an \texttt{INFEASIBLE} (or \texttt{INF_OR_UNBD}) status code. While you can’t compute an IIS on a multi-scenario model, you can extract individual scenarios as Gurobi model objects using the \texttt{singleScenarioModel} method (see below) and then compute an IIS on each scenario individually.

**Solving The Base Model**

As noted earlier, an \texttt{optimize} call on a multi-scenario model will not solve the base model. If you’d like to solve that model too, include an empty scenario among your scenarios.

**Extracting One Scenario**

If you’d like to extract one scenario from a multi-scenario model, you can use the \texttt{singleScenarioModel} method (in C, C++, Java, .NET, and Python).

**Performance Considerations**

While it may appear to be important to minimize the number of scenarios in your model, note that some scenarios are trivial to solve and thus have no impact on overall solution cost. The main thing to keep in mind is that, if (1) the solution for one scenario is feasible for another scenario, and (2) the bounds and right-hand side values for the first scenario are never tighter than the bounds for the other scenario, then the optimal solution for the first scenario is also optimal for the other scenario. This means that some scenarios won’t increase solution cost significantly.

### 22.6 Limitations and Additional Considerations

We should note a few additional considerations for solving multi-scenario models.

Nearly any model can serve as the base model in a multi-scenario model. The base model can be continuous or discrete, and it can contain quadratic constraints, general constraints, SOS constraints, semi-continuous variables, etc. One important exception is multiple objectives; a multi-scenario model can only have a single objective.

The \texttt{IsMIP} attribute will always be 1 for a multi-scenario model, even if the model is otherwise continuous.

Multi-scenario models can have lazy constraints, specified either through a user callback or through the \texttt{Lazy} attribute. Those that are provided through a callback must be valid across all scenarios. Those that are specified through the \texttt{Lazy} attribute can have different right-hand side values in different scenarios.

You can also add your own cutting planes to multi-scenario models through a user callback. Cuts must be valid across all scenarios.
Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client program to build an optimization model, submit it to a Compute Server cluster (through a Cluster Manager), and later check on the status of the model and retrieve its solution. Once a batch is submitted to the Cluster Manager, it is identified through a unique BatchID. The client program (or any other program) can use this ID to query the BatchStatus of the batch (submitted, completed, etc.). Once the batch has completed and a solution is available, the client can retrieve that solution as a JSON string.

This section explains the steps required to perform the various tasks listed above. We’ll use the batchmode.py Python example, which is included with the distribution, to illustrate these steps.

23.1 Setting Up a Batch Environment

Recall that the first step in building an optimization model is to create a Gurobi environment. An environment provides a number of configuration options; among them is an option to indicate where the model should be solved. You can solve a model locally, on a Compute Server, or using a Gurobi Instant Cloud server. If you have a Cluster Manager installed, you also have the option of using batch optimization.

To use batch optimization, you should configure your environment as if you will be using a Compute Server through a Cluster Manager. You’ll need to set the CSManager parameter to point to your Cluster Manager, and provide a valid UserName and ServerPassword. The difference is that you will also need to set the CSBatchMode parameter to 1. This will cause the client to build the model locally, and only submit it to the server once a call to the optimizeBatch method is made. This is in contrast to a standard Compute Server job, where the connection to the server is established immediately and the model is actually built on the server.

The following shows how you might set up your environment for batch optimization (in Python):

```python
env = gp.Env(empty=True)
env.setParam('LogFile', 'batchmode.log')
env.setParam('CSManager', 'http://localhost:61080')
env.setParam('UserName', 'gurobi')
env.setParam('ServerPassword', 'pass')
env.setParam('CSBatchMode', 1)
```

Note that you can also use CSAPIAccessID and CSAPISecret (instead of UserName and ServerPassword) to connect to a Cluster Manager.

23.2 Tagging Variables or Constraints

Batch optimization separates the process of building a model from the process of retrieving and acting on its solution. For example, you can build your model on one machine, submit a batch
request, and then use the resulting BatchID to retrieve the solution on a completely different machine.

Of course, disconnecting a model from its solution introduces a mapping problem: the process that retrieves the solution needs to know how to map the elements of the solution back to the corresponding elements of the model. This is done through tags. When a model is built, the user associates unique strings with the variables and constraints of interest in the model. Solution values are then associated with these strings. If the user doesn’t provide a tag for a model element, no solution information is stored or returned for that element.

You can tag variables (using the VTag attribute), linear constraints (using the CTag attribute), and quadratic constraints (using the QCTag attribute). We should point out that solutions to mixed-integer models don’t contain any constraint information, so constraint tags have no effect for such models.

For details on the information that is available in the solution in different situations, please refer to the JSON solution format section.

Here’s a simple example that tags the first 10 variables in a model:

```python
Define tags for some variables in order to access their values later
for count, v in enumerate(model.getVars()):
 v.VTag = "Variable{}".format(count)
 if count >= 10:
 break
```

### 23.3 Submitting a Batch Optimization Request

Once you have built your model and tagged the elements of interest, you are ready to submit your batch request. This is done by invoking the `optimizeBatch` method (e.g., `optimizeBatch` in Python). This method returns a BatchID string which is used for later queries. Here’s a simple example:

```python
Submit batch request
batchID = model.optimizeBatch()
```

### 23.4 Interacting with Batch Requests

You can use a BatchID string to ask the Cluster Manager for more information about the corresponding batch. Specifically, you can query the `BatchStatus` for that batch, and if the batch is complete you can retrieve the computed solution as a JSON string.

Your first step in using a BatchID to gather more information is to create a Gurobi environment that enables you to connect to your Cluster Manager. This is done in this line of our Python example:

```python
with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
```

The `setupbatchenv` method creates an environment with the `CSManager`, `UserName`, and `ServerPassword` parameters set to appropriate values.

With this environment and our BatchID, we can now create a Batch object (by calling the `Batch` constructor in the above code segment) that holds information about the batch.

That Batch object can be used to query the `BatchStatus`:
with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:

    starttime = time.time()
    while batch.BatchStatus == GRB.BATCH_SUBMITTED:
        # Abort this batch if it is taking too long
        curtime = time.time()
        if curtime - starttime > maxwaittime:
            batch.abort()
            break

        # Wait for two seconds
        time.sleep(2)

        # Update the resident attribute cache of the Batch object with the
        # latest values from the cluster manager.
        batch.update()

        # If the batch failed, we retry it
        if batch.BatchStatus == GRB.BATCH_FAILED:
            batch.retry()

It can also be used to perform various operations on the batch, including aborting or retrying the batch.

Once a batch has been completed, you can query the solution and all related attributes for tagged elements in the model by retrieving the associated JSON solution string (or by saving it into a file):

    print("JSON solution:")
    # Get JSON solution as string, create dict from it
    sol = json.loads(batch.getJSONSolution())

    By default, the Cluster Manager will keep the solution for the model and other information for a while (the exact retention policy is set by the Cluster Manager). You can ask the Cluster Manager to discard information for a batch by explicitly calling the discard method:

    # Remove batch request from manager
    batch.discard()

No further queries on that batch are possible after this has been done.

### 23.5 Interpreting the JSON Solution

Once you have retrieved a JSON solution string, you can use a JSON parser to retrieve solution information for individual variables and constraints. This parser isn’t included in the Gurobi library. Rather, programming languages have libraries for doing this. The appropriate package in Python is (not surprisingly) called json. The following provides a simple example of how this library can be used to parse a JSON solution string and extract a few pieces of solution information:

    # Get JSON solution as string, create dict from it
    sol = json.loads(batch.getJSONSolution())

    # Pretty printing the general solution information
    print(json.dumps(sol["SolutionInfo"], indent=4))
23.6 A Complete Example

#!/usr/bin/env python3.7
# Copyright 2020, Gurobi Optimization, LLC
# This example reads a MIP model from a file, solves it in batch mode,
# and prints the JSON solution string.
# You will need a Cluster Manager license for this example to work.

import sys
import time
import json
import gurobipy as gp
from gurobipy import GRB

# Set up the environment for batch mode optimization.
# The function creates an empty environment, sets all necessary parameters,
# and returns the ready-to-be-started Env object to caller. It is the
# caller's responsibility to dispose of this environment when it's no
# longer needed.
def setupbatchenv():
    env = gp.Env(empty=True)
    env.setParam('LogFile', 'batchmode.log')
    env.setParam('CSManager', 'http://localhost:61080')
    env.setParam('UserName', 'gurobi')
    env.setParam('ServerPassword', 'pass')
    env.setParam('CSBatchMode', 1)

    # No network communication happened up to this point. This will happen
    # once the caller invokes the start() method of the returned Env object.
    return env

# Print batch job error information, if any
def printbatcherrorinfo(batch):
    if batch is None or batch.BatchErrorCode == 0:
        return

    print("Batch ID {}: Error code {} ({}).format(

# Create a batch request for given problem file
def newbatchrequest(filename):
    # Start environment, create Model object from file
    # By using the context handlers for env and model, it is ensured that
# model.dispose() and env.dispose() are called automatically
with setupbatchenv().start() as env, gp.read(filename, env=env) as model:
    # Set some parameters
    model.Params.MIPGap = 0.01
    model.Params.JSONSolDetail = 1

    # Define tags for some variables in order to access their values later
    for count, v in enumerate(model.getVars()):
        v.VTag = "Variable{}".format(count)
        if count >= 10:
            break

    # Submit batch request
    batchID = model.optimizeBatch()

    return batchID

# Wait for the final status of the batch.
# Initially the status of a batch is "Submitted"; the status will change
# once the batch has been processed (by a compute server).
def waitforfinalstatus(batchID):
    # Wait no longer than one hour
    maxwaittime = 3600

    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
        starttime = time.time()
        while batch.BatchStatus == GRB.BATCH_SUBMITTED:
            # Abort this batch if it is taking too long
            curtime = time.time()
            if curtime - starttime > maxwaittime:
                batch.abort()
                break

            # Wait for two seconds
            time.sleep(2)

            # Update the resident attribute cache of the Batch object with the
            # latest values from the cluster manager.
            batch.update()

            # If the batch failed, we retry it
            if batch.BatchStatus == GRB.BATCH_FAILED:
                batch.retry()

            # Print information about error status of the job that processed the batch
            printbatcherrorinfo(batch)

def printfinalreport(batchID):
    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
        if batch.BatchStatus == GRB.BATCH_CREATED:
            print("Batch status is 'CREATED'")
elif batch.BatchStatus == GRB.BATCH_SUBMITTED:
    print("Batch is 'SUBMITTED'")
elif batch.BatchStatus == GRB.BATCH_ABORTED:
    print("Batch is 'ABORTED'")
elif batch.BatchStatus == GRB.BATCH_FAILED:
    print("Batch is 'FAILED'")
elif batch.BatchStatus == GRB.BATCH_COMPLETED:
    print("Batch is 'COMPLETED'")

print("JSON solution:")
# Get JSON solution as string, create dict from it
sol = json.loads(batch.getJSONSolution())

# Pretty printing the general solution information
print(json.dumps(sol["SolutionInfo"], indent=4))

# Write the full JSON solution string to a file
batch.writeJSONSolution('batch-sol.json.gz')

else:
    # Should not happen
    print("Batch has unknown BatchStatus")

printbatcherrorinfo(batch)

# Instruct the cluster manager to discard all data relating to this BatchID

def batchdiscard(batchID):
    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
        # Remove batch request from manager
        batch.discard()

# Solve a given model using batch optimization
if __name__ == '__main__':

    # Ensure we have an input file
    if len(sys.argv) < 2:
        print("Usage: {} filename".format(sys.argv[0]))
        quit()

    # Submit new batch request
    batchID = newbatchrequest(sys.argv[1])

    # Wait for final status
    waitforfinalstatus(batchID)

    # Report final status info
    printfinalreport(batchID)

    # Remove batch request from manager
    batchdiscard(batchID)

    print('Batch optimization OK')
The Gurobi Optimizer provides the option to record the set of Gurobi commands issued by your program and store them to a file. The commands can be played back later using the Gurobi Command-Line Tool. If you replay the commands on a machine with the same specs (operating system, core count, and instruction set) as the machine where you created the recording, your Gurobi calls will take the exact same computational paths that they took when you ran your original program.

Recording can be useful in a number of situations...

- If you want to understand how much time is being spent in Gurobi routines, the replay will show you the total time spent in Gurobi API routines, and the total time spent in Gurobi algorithms.

- If you want to check for leaks of Gurobi data, the replay will show you how many Gurobi models and environments were never freed by your program.

- If you run into a question or an issue and you would like to get help from Gurobi, your recording will allow Gurobi technical support to reproduce the exact results that you are seeing without requiring you to send your entire application.

### 24.1 Recording

To enable recording, you simply need to set the `Record` parameter to 1 as soon as you create your Gurobi environment. The easiest way to do this is with a `gurobi.env` file. This file should contain the following line:

```
Record 1
```

If you put this file in the same directory as your application, Gurobi will pick up the setting when your applications makes its first Gurobi call. You can also set this parameter through the standard parameter modification routines in your program.

Once this parameter is set, you should see the following in your log:

```plaintext
*** Start recording in file recording000.grbr
```

If your application creates more than one Gurobi environment, you may see more than one of these messages. Each will write to a different file:

```plaintext
*** Start recording in file recording001.grbr
```

As your program runs, Gurobi will write the commands and data that are passed into Gurobi routines to these files. Recording continues until you free your Gurobi environment (or until your program ends). When you free the environment, if Gurobi logging is enabled you will see the following message:
 *** Recording complete - close file recording000.grbr

At this point, you have a recording file that is ready for later replay.

24.2 Replay

To replay a Gurobi recording, you issue the following command:

> gurobi_cl recording000.grbr

You should adjust the file name to match the file you wish to replay. If your program generated multiple recording files, you will need to replay each one separately.

When the replay starts, the first output you will see will look like this:

Replay* Replay of file 'recording000.grbr'
Replay* Recording captured Tue Sep 13 19:28:48 2020
Replay* Recording captured with Gurobi version 9.0.1 (linux64)

After this output, the replay will start executing the commands issued by your program...

*Replay* Load new Gurobi environment
*Replay* Create new Gurobi model (0 rows, 0 cols)
*Replay* Update Gurobi model
*Replay* Change objective sense to -1
*Replay* Add 3 new variables

This continues until the recording file ends. At that point, the replay will print out a final runtime accounting...

*Replay* Replay complete

*Replay* Gurobi API routine runtime: 0.05s
*Replay* Gurobi solve routine runtime: 2.31s

If your program leaked any Gurobi models or environments, you may also see that in the output:

*Replay* Models leaked: 2
*Replay* Environments leaked: 1

24.3 Limitations

Recording works with most programs that call Gurobi. There are a few Gurobi features that aren’t supported, though:

- Recording won’t capture calls to the Gurobi tuning tool.
- You can’t use recording if you are a client of a Gurobi Compute Server.
- Recording won’t capture data passed into control callbacks. In other words, you can’t record a program that adds lazy constraints, user cuts, or solutions through callbacks.
Concurrent optimization is a simple approach for exploiting multiple processors. It starts multiple, independent solves on a model, using different strategies for each. Optimization terminates when the first one completes. By pursuing multiple different strategies simultaneously, the concurrent optimizer can often obtain a solution faster than it would if it had to choose a single strategy.

Concurrent optimization is our default choice for solving LP models, and a user-selectable option for solving MIP models. The concurrent optimizer can be controlled in a few different ways. These will be discussed in this section. To avoid confusion when reporting results from multiple simultaneous solves, we’ve chosen to produce simplified logs and callbacks when performing concurrent optimization. These will also be discussed in this section.

**Controlling Concurrent Optimization**

If you wish to use the concurrent optimizer to solve your model, the steps you need to take depend on the model type. As mentioned earlier, the concurrent optimizer is the default choice for LP models. This choice is controlled by the Method parameter. For MIP models, you can select the concurrent optimizer by modifying the ConcurrentMIP parameter.

When controlling the concurrent optimizer using these parameters, the strategies used for the different independent solves are chosen automatically. While we reserve the right to change our choices in the future, for LP models we currently devote the first concurrent thread to dual simplex, the second through fourth to a single parallel barrier solve, and the fifth to primal simplex. Additional threads are devoted to the one parallel barrier solve. Thus, for example, a concurrent LP solve using four threads would devote one thread to dual simplex and three to parallel barrier. For MIP, we divide available threads evenly among the independent solves, and we choose different values for the MIPFocus and Seed parameters for each.

If you want more control over concurrent optimization (e.g., to choose the exact strategies used for each independent solve), you can do so by creating two or more concurrent environments. These can be created via API routines (in C, C++, Java, .NET, or Python), or they can be created from .prm files using the ConcurrentSettings parameter if you are using our command-line interface. Once these have been created, subsequent optimization calls will start one independent solve for each concurrent environment you created. To control the strategies used for each solve, you simply set the parameters in each environment to the values you would like them to take in the corresponding solve. For example, if you create two concurrent environments and set the MIPFocus parameter to 1 in the first and 2 in the second, subsequent MIP optimize calls will perform two solves in parallel, one with MIPFocus=1 and the other with MIPFocus=2.

**Logging**

Your first indication that the concurrent optimizer is being used is output in the Gurobi log that looks like this...

Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...
Concurrent MIP optimizer: 2 concurrent instances (2 threads per instance)

These log lines indicate how many independent solves will be launched. For the LP case, the lines also indicate which methods will be used for each.

Since it would be quite confusing to see results from multiple solves interleaved in a single log, we've chosen to use a simplified log format for concurrent optimization. For concurrent LP, we only present the log for a single solve. For concurrent MIP, the log is similar to our standard MIP log, except that it only provides periodic summary information (see the MIP logging section if you are unfamiliar with our standard MIP log). Each concurrent MIP log line shows the objective for the best feasible solution found by any of the independent solves to that point, the best objective bound proved by any of the independent solves, and the relative gap between these two values:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Current Node</th>
<th>Objective Bounds</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expl</td>
<td>Unexpl</td>
<td>Obj</td>
<td>Depth</td>
</tr>
<tr>
<td>0 0 - - -</td>
<td>24.00000</td>
<td>13.00000</td>
<td>45.8%</td>
</tr>
<tr>
<td>0 0 - - -</td>
<td>16.50000</td>
<td>13.21154</td>
<td>19.9%</td>
</tr>
<tr>
<td>0 0 - - -</td>
<td>16.50000</td>
<td>13.25000</td>
<td>19.7%</td>
</tr>
<tr>
<td>310 149 - - -</td>
<td>15.00000</td>
<td>13.66923</td>
<td>8.87%</td>
</tr>
<tr>
<td>3873 1634 - - -</td>
<td>15.00000</td>
<td>14.00000</td>
<td>6.67%</td>
</tr>
<tr>
<td>9652 4298 - - -</td>
<td>15.00000</td>
<td>14.12500</td>
<td>5.83%</td>
</tr>
<tr>
<td>16535 6991 - - -</td>
<td>15.00000</td>
<td>14.18056</td>
<td>5.46%</td>
</tr>
<tr>
<td>23610 9427 - - -</td>
<td>15.00000</td>
<td>14.22333</td>
<td>5.18%</td>
</tr>
</tbody>
</table>

...We also include node counts from one of the independent solves, as well as elapsed times, to give some indication of forward progress.

**Determinism**

Concurrent optimization essentially sets up a race between multiple threads to solve your model, with the winning thread returning the solution that it found. In cases where multiple threads solve the model in roughly the same amount of time, small variations in runtime from one run to the next could mean that the winning thread is not the same each time. If your model has multiple optimal solutions (which is quite common in LP and MIP), then it is possible that running a concurrent solver multiple times on the same model could produce different optimal solutions. This is known as non-deterministic behavior.

By default, the Gurobi concurrent solvers all produce non-deterministic behavior. You can obtain deterministic behavior for the concurrent LP solver by setting the Method parameter to value 4. This setting typically increases runtimes slightly, but if your application is dependent on deterministic behavior, deterministic concurrent LP is often your best option. There is no similar setting for the concurrent MIP solver.
Callbacks

Rather than providing callbacks from multiple independent solves simultaneously, we’ve again chosen to simplify behavior for the concurrent optimizer. In particular, we only supply callbacks from a single solve. A few consequences of this choice:

- Information retrieved by your callback (solutions, objective bounds, etc.) will come from a single model.
- User cutting planes are only applied to a single model.
- You aren’t allowed to use lazy constraints with concurrent MIP, since they would only be applied to one model.
The Gurobi Optimizer provides a wide variety of parameters that allow you to control the operation of the optimization engines. The level of control varies from extremely coarse-grained (e.g., the Method parameter, which allows you to choose the algorithm used to solve continuous models) to very fine-grained (e.g., the MarkowitzTol parameter, which allows you to adjust the tolerances used during simplex basis factorization). While these parameters provide a tremendous amount of user control, the immense space of possible options can present a significant challenge when you are searching for parameter settings that improve performance on a particular model. The purpose of the Gurobi tuning tool is to automate this search.

The Gurobi tuning tool performs multiple solves on your model, choosing different parameter settings for each solve, in a search for settings that improve runtime. The longer you let it run, the more likely it is to find a significant improvement. If you are using a Gurobi Compute Server, you can harness the power of multiple machines to perform distributed parallel tuning in order to speed up the search for effective parameter settings.

The tuning tool can be invoked through two different interfaces. You can either use the grbtune command-line tool, or you can invoke it from one of our programming language APIs. Both approaches share the same underlying tuning algorithm, and both allow you to modify the same set of tuning parameters.

A number of tuning-related parameters allow you to control the operation of the tuning tool. The most important is probably TuneTimeLimit, which controls the amount of time spent searching for an improving parameter set. Other parameters include TuneTrials (which attempts to limit the impact of randomness on the result), TuneCriterion (which specifies the tuning criterion), TuneResults (which controls the number of results that are returned), and TuneOutput (which controls the amount of output produced by the tool).

Before we discuss the actual operation of the tuning tool, let us first provide a few caveats about the results. While parameter settings can have a big performance effect for many models, they aren’t going to solve every performance issue. One reason is simply that there are many models for which even the best possible choice of parameter settings won’t produce an acceptable result. Some models are simply too large and/or difficult to solve, while others may have numerical issues that can’t be fixed with parameter changes.

Another limitation of automated tuning is that performance on a model can experience significant variations due to random effects (particularly for MIP models). This is the nature of search. The Gurobi algorithms often have to choose from among multiple, equally appealing alternatives. Seemingly innocuous changes to the model (such as changing the order of the constraint or variables), or subtle changes to the algorithm (such as modifying the random number seed) can lead to different choices. Often times, breaking a single tie in a different way can lead to an entirely different search. We’ve seen cases where subtle changes in the search produce 100X performance swings. While the tuning tool tries to limit the impact of these effects, the final result will typically still be heavily influenced by such issues.

The bottom line is that automated performance tuning is meant to give suggestions for param-
eters that could produce consistent, reliable improvements on your models. It is not meant to be a replacement for efficient modeling or careful performance testing.

26.1 Command-Line Tuning

The `grbtune` command-line tool provides a very simple way to invoke parameter tuning on a model (or a set of models). You specify a list of `parameter=value` arguments first, followed by the name of the file containing the model to be tuned. For example, you can issue the following command (in a Windows command window, or in a Linux/Mac terminal window)...

```
> grbtune TuneTimeLimit=10000 c:\gurobi901\win64\examples\data\misc07
```

(substituting the appropriate path to a model, stored in an MPS or LP file). The tool will try to find parameter settings that reduce the runtime on the specified model. When the tuning run completes, it writes a set of `.prm` files in the current working directory that capture the best parameter settings that it found. It also writes the Gurobi log files for these runs (in a set of `.log` files).

You can also invoke the tuning tool through our programming language APIs. That will be discussed shortly.

If you specify multiple model files at the end of the command line, the tuning tool will try to find settings that minimize the total runtime for the listed models.

Running the Tuning Tool

The first thing the tuning tool does is to perform a baseline run. The parameters for this run are determined by your choice of initial parameter values. If you set a parameter, it will take the chosen value throughout tuning. Thus, for example, if you set the `Method` parameter to 2, then the baseline run and all subsequent tuning runs will include this setting. In the example above, you’d do this by issuing the command:

```
> grbtune Method=2 TuneTimeLimit=100 misc07
```

For a MIP model, you will note that the tuning tool actually performs several baseline runs, and captures the mean runtime over all of these trials. In fact, the tool will perform multiple runs for each parameter set considered. This is done to limit the impact of random effects on the results, as discussed earlier. Use the `TuneTrials` parameter to adjust the number of trials performed.

Once the baseline run is complete, the time for that run becomes the time to beat. The tool then starts its search for improved parameter settings. Under the default value of the `TuneOutput` parameter, the tool prints output for each parameter set that it tries...

```
Testing candidate parameter set 7...
Method 2
MIPFocus 1
Solving with random seed #1 ... runtime 3.63s
Solving with random seed #2 ... runtime 4.12s+
```
Progress so far: baseline runtime 3.38s, best runtime 2.88s
Total elapsed tuning time 34s (66s remaining)

This output indicates that the tool has tried 7 parameter sets so far. For the seventh set, it changed the value of the MIPFocus parameter (the Method parameter was changed in our initial parameter settings, so this change will appear in every parameter set that the tool tries). The first trial solved the model in 3.63 seconds, while the second hit a time limit that was set by the tuning tool (as indicated by the + after the runtime output). If any trial hits a time limit, the corresponding parameter set is considered worse any set that didn’t hit a time limit. The output also shows that the best parameter set found so far gives a runtime of 2.88s. Finally, it shows elapsed and remaining runtime.

Tuning normally proceeds until the elapsed time exceeds the tuning time limit. However, hitting CTRL-C will also stop the tool.

When the tuning tool finishes, it prints a summary...

Tested 20 parameter sets in 97.89s

Baseline parameter set: runtime 3.38s

Improved parameter set 1 (runtime 1.62s):
Method 2
Heuristics 0
VarBranch 1
CutPasses 3
GomoryPasses 0

Improved parameter set 2 (runtime 2.03s):
Method 2
Heuristics 0
VarBranch 1
CutPasses 3

Improved parameter set 3 (runtime 2.38s):
Method 2
VarBranch 1

Wrote parameter files tune1.prm through tune3.prm
Wrote log files: tune1.log through tune3.log

The summary shows the number of parameter sets it tried, and provides details on a few of the best parameter sets it found. It also shows the names of the .prm and .log files it writes. You can change the names of these files using the ResultFile parameter. If you set ResultFile=model.prm, for example, the tool would write model1.prm through model3.prm and model1.log through model3.log.
The number of sets that are retained by the tuning tool is controlled by the `TuneResults` parameter. The default behavior is to keep the sets that achieve the best trade-off between runtime and the number of changed parameters. In other words, we report the set that achieves the best result when changing one parameter, when changing two parameters, etc. We actually report a Pareto frontier, so for example we won’t report a result for three parameter changes if it is worse than the result for two parameter changes.

**Other Tuning Parameters**

So far, we’ve only talked about using the tuning tool to minimize the time to find an optimal solution. For MIP models, you can also minimize the optimality gap after a specified time limit. You don’t have to take any special action to do this; you just set a time limit. Whenever a baseline run hits this limit, the tuning tool will automatically try to minimize the MIP gap. To give an example, the command...

```bash
> grbtune TimeLimit=100 glass4
```

...will look for a parameter set that minimizes the optimality gap achieved after 100s of runtime on model `glass4`. If the tool happens to find a parameter set that solves the model within the time limit, it will then try to find settings that minimize mean runtime.

For models that don’t solve to optimality in the specified time limit, you can gain more control over the criterion used to choose a winning parameter set with the `TuneCriterion` parameter. This parameter allows you to tell the tuning tool to search for parameter settings that produce the best incumbent solution or the best lower bound, rather than always minimizing the MIP gap.

You can modify the `TuneOutput` parameter to produce more or less output. The default value is 2. A setting of 0 produces no output; a setting of 1 only produces output when an improvement is found; a setting of 3 produces a complete Gurobi log for each run performed.

If you would like to use a MIP start with your tuning run, you can include the name of the start file immediately after the model name in the argument list. For example:

```bash
> grbtune misc07.mps misc07.mst
```

You can also use MIP starts when tuning over multiple models; any model that is immediately followed by a start file in the argument list will use the corresponding start. For example:

```bash
> grbtune misc07.mps misc07.mst p0033.mps p0548.mps p0548.mst
```

### 26.2 Tuning API

The tuning tool can be invoked from our C, C++, Java, .NET, and Python interfaces. The tool behaves slightly differently when invoked from these interfaces. Rather than writing the results to a set of files, upon completion the tool populates a `TuneResultCount` attribute, which gives a count of the number of improving parameter sets that were found and retained. The user program can then query the value of this attribute, and then use the `GetTuneResult` method to copy any of these parameter sets into a model (using C, C++, Java, .NET, or Python). Once loaded into the model, the parameter set can be used to perform a subsequent optimization, or the list of changed parameters can be written to a `.prm` file using the appropriate `Write` routine (from C, C++, Java, .NET, or Python).
Gurobi Instant Cloud allows you to start and stop Gurobi Compute Servers on the cloud. You can start multiple machines without the need for your own hardware or local Gurobi licenses. Computations are seamlessly offloaded to these servers. Depending on your cloud license type, these machines provide the full set of Compute Server features, including queuing, load balancing, and distributed parallel computing.

Overview

When using the Instant Cloud, there are always three systems involved: your client machine, the Instant Cloud Manager, and a cloud Compute Server.

The program that requests a Gurobi Instant Cloud machine and submits optimization models to this server runs on your client machine. Note, however, that this program does not actually need to be aware that it will be using Gurobi Instant Cloud. You have a few options for configuring the client to use the Instant Cloud. The simplest and most seamless is to set up a cloud license file. The alternative is to use a programming language API, which gives your program additional control over how it uses the cloud. Details on launching cloud machines from your client program follow shortly.

The Instant Cloud Manager manages the configuration and launching of cloud machines. Your client program will send credential information to this website, along with a request to launch an Instant Cloud machine. The specific action taken in response to this request depend on configuration information that you manage through the website. For each license, you set up things like the number of servers to launch, the types and geographic regions of these machines, the maximum number of simultaneous jobs to run on each server, etc.

Once the Instant Cloud Manager launches the requested Compute Servers, it passes information about these servers back to your client program. The client program then directly interacts with the servers, sending the Gurobi model, launching a solve on the model, requesting solution information, etc. As with any Gurobi Compute Server, this process is entirely transparent to the client program.

Now that we’ve given a high-level description of the overall process, we need to cover a few important details.

27.1 Client Setup

As noted previously, a client program that wishes to launch a Gurobi Instant Cloud machine must pass credential information to the Instant Cloud Manager. Every Instant Cloud license has such credentials associated with it. This information is captured in a pair strings, an access ID and a secret key. These strings can be retrieved from your account on the Instant Cloud Manager. Note that you shouldn’t share these credentials with others, since anyone who knows these two strings can launch Instant Cloud machines in your account.

Once you have the credentials associated with your license, there are two ways to configure your client program to use them. The simplest is to use a cloud license file. This is just like any other
Gurobi license file, except that its fields are specific to the cloud. A cloud license file will contain two lines with credential information:

```
CLOUDACCESSID=312e9gef-e0bc-4114-b6fb-26ed7klaeff9
CLOUDKEY=ae32L0H321dgaL
```

It may also contain an optional third line:

```
CLOUDPOOL=pool1
```

We’ll discuss cloud pools a bit later. You can download a `gurobi.lic` file containing this information from the Instant Cloud website, or you can create one yourself in a text editor. If you follow the standard process for setting up a Gurobi license file (refer to the Quick Start Guide for details), then Gurobi will automatically use the Instant Cloud rather than running locally.

The other option for passing credential information to the Instant Cloud Manager is to call a Gurobi API routine. The appropriate routine depends on your programming language. Our C and Python APIs have calls devoted to launching cloud servers. Our C++, Java, and .NET APIs each have a special GRBEnv constructor (look for the one that accepts an access ID and secret key in its argument list). In all cases, you pass the access ID and secret key to the method or constructor, and the method creates a Gurobi environment that you can use like any other Gurobi environment (to build, solve, and modify optimization models, to retrieve solutions, etc.).

### 27.2 Instant Cloud Setup

As noted previously, cloud configuration is done via the Instant Cloud Manager. The client program requests that a cloud machine be launched, but the Instant Cloud Manager determines exactly how to respond to that request.

One essential concept when configuring your Instant Cloud license is the notion of a cloud pool. Pools allow you to create multiple configurations within a single cloud license. For example, you may set up one pool for jobs in the US and another for jobs in Europe, or one for short-running jobs and another for long-running jobs, or one for single-machine jobs and another for distributed parallel jobs. For each of the available cloud configuration options (which will be discussed below), you can select different values for different pools. Every license always has a default pool, which comes pre-configured with what we consider to be reasonable default values. Thus, you always have the option of ignoring cloud pools and simply using the default pool if you don’t need multiple configurations.

The main things that a user may want to configure on the Instant Cloud website are the idle shutdown time, the number of machines to launch, the number of distributed workers to launch, the machine region, and the machine type. These can take different values in different pools.

The idle shutdown time is a vital concept in the Instant Cloud. When a client program requests a cloud server, it takes some time (typically less than 2 minutes) to launch that server. Rather than forcing client programs to incur this delay each time they run, the Gurobi Instant Cloud leaves a server running until it has been idle for the specified idle shutdown time. In this way, later client programs may find a cloud server already available. You can set this to a small value if you want your server to shut down immediately after your job finishes, or to a very large value if you want your server to always be available.

Another configuration option is the number of machines associated with the pool. Gurobi Compute Server automatically handles queuing and load balancing between servers, so launching
multiple machines allows you to distribute the work of many simultaneous client programs among them. A pool can also be configured to launch any number of distributed workers, if you want to use distributed computing.

Cloud machines can be launched in multiple geographic regions, including the US, Europe, Asia, and South America. You should visit the website to see the full list. We offer several options for machine type, although we’ve chosen what we believe is the best general-purpose machine for running Gurobi as the default, so you are unlikely to want to change this setting.

27.3 Copyright Notice for 3rd Party Libraries

Gurobi Instant Cloud uses the libcurl library, which utilizes a number of other libraries. In particular, this product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/).

Here is the copyright notice for libcurl:

COPYRIGHT AND PERMISSION NOTICE

Here is the copyright notice for OpenSSL:

The OpenSSL toolkit stays under a double license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts.

OpenSSL License

---

/ * Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved. *
/ * Redistribution and use in source and binary forms, with or without *
/ * modification, are permitted provided that the following conditions *
/ * are met:
/ *
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:
   "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
   "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

   THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT \"AS IS\" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Original SSLeay License
-----------------------

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
   All rights reserved.

   This package is an SSL implementation written
   by Eric Young (eay@cryptsoft.com).
   The implementation was written so as to conform with Netscape SSL.*/
This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
   "This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
   The word 'cryptographic' can be left out if the routines from the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:
   "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]
Numerical instability is a generic label often applied to situations where solving an optimization model produces results that are erratic, inconsistent, or unexpected, or when the underlying algorithms exhibit poor performance or are unable to converge. There are many potential causes of this behavior; however, most can be grouped into four categories:

- Rounding coefficients while building the model.
- Limitations of floating-point arithmetic.
- Unrealistic expectations about achievable precision.
- Ill conditioning, or geometry-induced issues.

This section explains these issues and how they affect both performance and solution quality. We also provide some general rules and some advanced techniques to help avoid them. Although we will treat each of these four sources separately, it is important to remember that their effects often feed off of each other. We also provide tips on how to diagnose numerical instability in your models.

Finally, we discuss the Gurobi parameters that can be modified to improve solution accuracy. We should stress now, however, that the best way to improve numerical behavior and performance is to reformulate your model. Parameters can help to manage the effects of numerical issues, but there are limits to what they can do, and they typically come with a substantial performance cost.

### 28.1 Avoid rounding of input

A common source of numerical issues is numerical rounding in the numbers that are used to represent constraint matrix coefficients. To illustrate the issue, consider the following example:

\[
x - 6y = 1 \\
0.333x - 2y = .333
\]

It may be tempting to say that the two equations are equivalent, but adding both to a model will lead to an incorrect result. This is an important point for our users: Gurobi will always trust the input numbers that they provide, and will never change them unless the change can be shown to not affect the solution.

So, with this in mind, during presolve Gurobi can use the second constraint to determine:

\[
y := 0.1665x - 0.1665
\]

When substituted into the first constraint, this yields

\[
x - 6 \cdot (0.1665x - 0.1665) = 1 \\
\Leftrightarrow 0.001x = 0.001
\]
and thus \( x = 1, \ y = 0 \) as the only solution.

If user had provided these two equations instead:

\[
\begin{align*}
x - 6y &= 1 \\
0.3333333333333333x - 2y &= 0.3333333333333333
\end{align*}
\]

this would give:

\[
y := 0.1666666666666667x - 0.1666666666666667
\]

which yields:

\[
x - 6 \cdot (0.1666666666666667x - 0.1666666666666667) = 1
\]

\[
\Leftrightarrow 2 \cdot 10^{-16} x + 1 + 2 \cdot 10^{-16} \approx 1
\]

Even with a very small threshold for treating a coefficient as zero, the result here is that the first constraint is truly redundant. Any solution with \( x = 6y + 1 \) would be accepted as feasible.

The main point is that constraints that are exactly parallel, or linearly dependent (within double-precision floating-point and small tolerances) are harmless, but constraints that are almost parallel to each other produce tiny coefficients in the linear system solves and in preprocessing, which can wreak havoc on the solution process. In the next section, we expand on the limits double-precision floating-point numbers, and in particular why \( 1 \approx 1 + 2 \cdot 10^{-16} \).

## 28.2 Real numbers are not real

To say that real numbers aren’t real is not just a play on words, but a computational reality. Let’s do a simple experiment: try the following in your favorite number-crunching tool. In Excel:

\[
=IF(1+1E-016 = 1,1,0)
\]

will print 1. In Python:

\[
>>> 1 == 1+1e-16
True
\]

In C, the code

```c
#include <stdio.h>
int main(void) {
 if (1+1e-16 == 1) printf("True\n");
 else printf("False\n");
 return 0;
}
```

will print True. In R:

\[
> 1 == 1+1e-16
[1] TRUE
\]

Note that this behavior is not restricted to small numbers; it also happens with larger numbers. For example:

\[
>>> 1+1e16 == 1e16
True
\]
This shows that the \textit{precision} of the result depends on the relative scale of the involved numbers. Although this behavior is typical, there are some exceptions. One is the GNU-\texttt{bc} command line tool:

```
$ bc
1.0 == 1.0+10^{-(-16)}
1
scale=20
1.0 == 1.0+10^{-(-16)}
0
1.0 == 1.0+10^{-(-21)}
1
```

When we set the \texttt{scale} parameter to 20, the code is able to recognize that the numbers are different. This just shifts the bar, though; \texttt{bc} still fails to recognize the difference between the last two numbers. Another library that allows for extended, or even \textit{unlimited} (up to memory) precision is the GNU Multiple Precision Arithmetic Library, but its details are beyond the scope of this document.

The reason for these failures is that computers must store numbers as a sequence of bits, and most common implementations adhere to the IEEE 754 standard. In particular, IEEE-754 sets the standard for \textit{double-precision} format. This standard is so pervasive that almost all computers have specialized hardware to improve performance for operations on numbers represented as such. One consequence is that mathematical operations on alternative extended number representations tend to be significantly slower than operations on numbers represented following the IEEE 754 standard. Degradation of 10X or even 100X are common.

Due to the performance obtained from hardware support for double-precision arithmetic, Gurobi relies on this standard (as does most software). However, this speed comes at a cost: computed results often differ from what mathematics may dictate. For example, the associative property \((a + (b + c)) = (a + b) + c\) is a fundamental property of arithmetic, but double-precision arithmetic gives (in Python):

```
>>> (1+1e-16)+1e-16 == 1 + (1e-16 + 1e-16)
False
```

Furthermore, many common numbers (e.g. 0.1) cannot be represented exactly.

Consequently, simple questions like whether two numbers are equal, or whether a number is equal zero, or whether a number is integral, can be quite complicated when using floating-point arithmetic.

### 28.3 Tolerances and user-scaling

Gurobi will solve the model as defined by the user. However, when evaluating a candidate solution for feasibility, in order to account for possible round-off errors in the floating-point evaluations, we must allow for some \textit{tolerances}.

To be more precise, satisfying \textit{Optimality Conditions} requires us to test at least the following three criteria:

\textbf{IntFeasTol}: Integrality of solutions, i.e., whether a integer variable \(x\) takes an integer value or not.

More precisely, \(x\) will be considered \textit{integral} if \(\text{abs}(x - \text{floor}(x + 0.5)) \leq \text{IntFeasTol}\)
FeasibilityTol: Feasibility of primal constraints, i.e., whether \( a \cdot x \leq b \) holds for the primal solution. More precisely, \( a \cdot x \leq b \) will be considered to hold if \( (a \cdot x) - b \leq \text{FeasibilityTol} \).

OptimalityTol: Feasibility of dual constraints, i.e., whether \( a \cdot y \leq c \) holds for the dual solution. More precisely, \( a \cdot y \leq c \) will be considered to hold if \( (a \cdot y) - c \leq \text{OptimalityTol} \).

Note that these tolerances are **absolute**; they do not depend on the scale of the quantities involved in the computation. This means that when formulating a problem, these tolerances should be taken into account, specially to select the units in which variables and constraints will be expressed.

It is very important to note that the usage of these tolerances implicitly defines a *gray zone* in the search space in which solutions that are very slightly infeasible can still be accepted as feasible. However, the solver will not explicitly search for such solutions.

For this reason, it is actually possible (although highly unlikely for well-posed problems) for a model to be reported as being both feasible and infeasible (in the sense stated above). This can occur if the model is infeasible in exact arithmetic, but there exists a solution that is feasible within the solver tolerances. For instance, consider:

\[
\begin{align*}
\text{min} & \quad 0 \\
\text{s.t.} & \quad x \leq 0 \\
& \quad x \geq 10^{-10}
\end{align*}
\]

**Gurobi tolerances and the limitations of double-precision arithmetic**

The default values for these primal and dual feasibility tolerances are \( 10^{-6} \), and the default for the integrality tolerance is \( 10^{-5} \). If you choose the range for your inequalities and variables correctly, you can typically ignore tolerance issues entirely.

To give an example, if your constraint right-hand side is on the order of \( 10^3 \), then relative numeric errors from computations involving the constraint (if any) are likely to be less than \( 10^{-9} \), i.e., less than one in a billion. This is usually far more accurate than the accuracy of input data, or even of what can be measured in practice.

However, if you define a variable \( x \in [-10^{-6}, 10^{-6}] \), then relative numeric error may be as big as 50% of the variable range.

If, on the other hand, you have a variable \( x \in [-10^{10}, 10^{10}] \), and you are using default primal feasibility tolerances; then what you are really asking is for the relative numeric error (if any) to be less than \( 10^{-16} \). However, this is beyond the limits of comparison for double-precision numbers. This implies that you are not allowing any round-off error at all when testing feasible solutions for this particular variable. And although this might sound as a good idea, in fact, it is really bad, as any round-off computation may result in your truly optimal solution being rejected as infeasible.

**Why scaling and geometry is relevant**

This section provides a simple example of how scaling problems can slow down problem solving and, in extreme cases, result in unexpected answers. Consider the problem:

\[
(P) \max \{cx : Ax = b, l \leq x \leq u\}
\]

and let \( D \) be a diagonal matrix where \( D_{ii} > 0, \forall i \). In theory, solving \( P \) should be equivalent to solving the related problem \( (PD) \):
$$\max \{ cDx' : ADx' = b, D^{-1}l \leq x' \leq D^{-1}u \}$$

However, in practice, the two models behave very differently. To demonstrate this, we use a simple script `rescale.py` that randomly rescales the columns of the model. Let’s consider the impact of rescaling on the problem `pilotnov.mps.bz2`. Solving the original problem gives the following output:

Using license file /opt/gurobi900/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.0.0 build v9.0.0rc0 (linux64)
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0x67f9a529
Coefficient statistics:
Matrix range [1e-06, 1e+07]
Objective range [3e-03, 2e+00]
Bounds range [5e-06, 9e+04]
RHS range [1e-05, 9e+04]
Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.
Presolve removed 254 rows and 513 columns
Presolve time: 0.01s
Presolved: 721 rows, 1659 columns, 11454 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -3.2008683e+05 1.550962e+05 0.000000e+00 0s
1002 -4.4972762e+03 0.000000e+00 0.000000e+00 0s
Solved in 1002 iterations and 0.06 seconds
Optimal objective -4.497276188e+03
Kappa: 7.363754e+06

Note the log message regarding the matrix coefficient range in the log (which in this case shows a range of [1e-06, 1e+07]).

If we run `rescale.py -f pilotnov.mps.bz2 -s 1e3` (randomly rescaling columns up or down by as much as $10^3$), we obtain:

Using license file /opt/gurobi900/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.0.0 build v9.0.0rc0 (linux64)
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0x94586000
Coefficient statistics:
Matrix range [6e-09, 8e+09]
Objective range [1e-05, 8e+02]
Bounds range [5e-09, 6e+07]
RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.
Presolve removed 100 rows and 255 columns
Presolve time: 0.00s

913
Presolved: 875 rows, 1917 columns, 11899 nonzeros

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Primal Inf.</th>
<th>Dual Inf.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6.3809076e+32</td>
<td>7.332854e+31</td>
<td>6.380908e+02</td>
<td>0s</td>
</tr>
<tr>
<td>Extra 2 simplex iterations after uncrush</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1556</td>
<td>-4.4972762e+03</td>
<td>0.0000000e+00</td>
<td>0.0000000e+00</td>
<td>0s</td>
</tr>
</tbody>
</table>

Solved in 1556 iterations and 0.11 seconds
Optimal objective -4.497276188e+03
Kappa: 1.581381e+18

This time, the optimization process takes a more iterations, and also, we get an extra warning:

Extra 2 simplex iterations after uncrush,

This indicates that extra simplex iterations were performed on the unpresolved model. Also, note the very large value for Kappa; its meaning will be discussed in this section.

If we run rescale.py -f pilotnov.mps.bz2 -s 1e6, we obtain:

Using license file /opt/gurobi900/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.0.0 build v9.0.0rc0 (linux64)
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0x34ce763e
Coefficient statistics:
  Matrix range [4e-12, 1e+13]
  Objective range [2e-08, 1e+06]
  Bounds range [6e-12, 1e+11]
  RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds
  Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.
Presolve removed 101 rows and 255 columns
Presolve time: 0.00s
Presolved: 874 rows, 1917 columns, 11897 nonzeros

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Objective</th>
<th>Primal Inf.</th>
<th>Dual Inf.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-7.0386115e+34</td>
<td>6.844498e+31</td>
<td>7.038611e+04</td>
<td>0s</td>
</tr>
<tr>
<td>Extra 58 simplex iterations after uncrush</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1552</td>
<td>-4.4972762e+03</td>
<td>0.0000000e+00</td>
<td>0.0000000e+00</td>
<td>0s</td>
</tr>
</tbody>
</table>

Solved in 1552 iterations and 0.10 seconds
Optimal objective -4.497276188e+03
Warning: unscaled primal violation = 5.65274e-05 and residual = 5.65274e-05
Kappa: 2.969003e+24

Now we get a much larger number of extra simplex iterations, and more troublingly, we get a warning about the quality of the resulting solution:

Warning: unscaled primal violation = 5.65274e-05 and residual = 5.65274e-05,
This message indicates that the solver had trouble finding a solution that satisfies the default tolerances.

Finally, if we run `rescale.py -f pilotnov.mps.bz2 -s 1e8`, we obtain:

```
Using license file /opt/gurobi900/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.0.0 build v9.0.0rc0 (linux64)
Optimize a model with 975 rows, 2172 columns and 13053 nonzeros
Model fingerprint: 0x5138e90c
Coefficient statistics:
 Matrix range [3e-13, 1e+15]
 Objective range [3e-11, 2e+08]
 Bounds range [4e-14, 9e+12]
 RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds
 Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.
Presolve removed 93 rows and 247 columns
Presolve time: 0.00s
Presolved: 882 rows, 1925 columns, 11753 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -1.0060982e+37 7.198909e+31 1.006098e+07 0s

Solved in 128 iterations and 0.01 seconds
Infeasible model
```

In this case, the optimization run terminates almost instantly, but with the unexpected Infeasible result.

As you can see, as we performed larger and larger rescalings, we continued to obtain the same optimal value, but there were clear signs that the solver struggled. We see warning messages, as well increasing iteration counts, runtimes, and Kappa values. However, once we pass a certain rescaling value, the solver is no longer able to solve the model and instead reports that it is Infeasible.

Note that this is not a bug in Gurobi. It has to do with changing the meaning of numbers depending on their range, the use of fixed tolerances, and in the changing geometry of the problem due to scaling. We will discuss this topic further in a later section.

**Recommended ranges for variables and constraints**

Keeping the lessons of the previous section in mind, we recommended that right-hand sides of inequalities representing physical quantities (even budgets) should be scaled so that they are on the order of $10^4$ or less. The same applies to variable domains, as variable bounds are again linear constraints.

In the case of objective functions, we recommend that good solutions should have an optimal value that is less than $10^4$, and ideally also above one (unless the objective coefficients are all zero). This is because the OptimalityTol is used to ensure that reduced cost are close enough to zero. If coefficients are too large, we again face difficulties in determining whether an LP solution truly
satisfies the optimality conditions or not. On the other hand, if the coefficients are too small, then it may be too easy to satisfy the feasibility conditions.

The coefficients of the constraint matrix are actually more important than the right-hand side values, variable bounds, and objective coefficients mentioned here. We’ll discuss those shortly.

**Improving ranges for variables and constraints**

There are three common ways to improve ranges for objectives, constraints and variables:

- **Use problem-specific information to tighten bounds:**
  Although presolve, and, in particular, bound strengthening, is quite good at deriving implied variables bounds, it may not have access to all of the information known to the modeler. Incorporating tighter bounds directly into the model can not only improve the numerical behavior, but it can also speed up the optimization process.

- **Choose the right units to express your variables and constraints:**
  When defining your variables and constraints, it is important to choose units that are consistent with tolerances. To give an example, a constraint with a $10^{10}$ right-hand side value is not going to work well with the default $10^{-6}$ feasibility tolerance. By changing the units (e.g., replacing pounds with tons, or dollars with millions of dollars, or ...), it is often possible to significantly improve the numerics of the problems.

- **Disaggregate multiple objectives:**
  A common source for very large range of objective coefficients is the practice of modeling hierarchical objectives as an aggregation of objective functions with large multipliers. For example, if the user wants to optimize a problem $P$ with objective function $f_1(x)$ and then, subject to $f_1(x)$ being optimal, optimize $f_2(x)$, a common trick is to use as surrogate objective $\bar{f}(x) = Mf_1(x) + f_2(x)$ where $M$ is a large constant. When you combine a large $M$ with a relatively tight dual feasibility tolerance, it becomes much harder for the solver to find solutions that achieve dual feasibility. We recommend that you either use as small a constant $M$ as possible or reformulate your model using a hierarchical objective (which is made easier by our multi-objective optimization features).

These techniques are usually sufficient to eliminate the problems that arise from bad scaling.

**Advanced user scaling**

In the previous sections, we presented some simple strategies to limit the ranges of variable bounds, constraint right-hand sides, objective values, and constraint matrix coefficients. However, it could happen that by scaling constraints or variables, some constraint coefficients become too small. Note that Gurobi will treat any constraint coefficient with absolute value under $10^{-13}$ as zero. Consider the following example:

\[
10^{-7}x + 10y \leq 10 \\
x + 10^4z \leq 10^3 \\
x, y, z \geq 0,
\]
In this example, the matrix coefficients range in $[10^{-7}, 10^{4}]$. If we multiply all $x$ coefficients by $10^5$, and divide all coefficients in the second constraint by $10^3$, we obtain:

\[
\begin{align*}
10^{-2}x' + 10y & \leq 10 \\
10^2x' + 10z & \leq 1 \\
x', y, z & \geq 0,
\end{align*}
\]

where $x = 10^5x'$. The resulting matrix coefficients have a range in $[10^{-2}, 10^2]$. Essentially the trick is to simultaneously scale a column and a row to achieve a smaller range in the coefficient matrix.

We recommend that you scale the matrix coefficients so that their range is contained in six orders of magnitude or less, and hopefully within $[10^{-3}, 10^6]$.

**Avoid hiding large coefficients**

As we said before, a typical recommendation for improving numerics is to limit the range of constraint matrix coefficients. The rationale behind this guideline is that terms to be added in a linear expression should be of comparable magnitudes so that rounding errors are minimized. For example:

\[
x - 10^6y \geq 0 \\
y \in [0, 10]
\]

is usually considered a potential source of numerical instabilities due to the wide range of the coefficients in the constraint. However, it is easy to implement a simple (but useless) alternative:

\[
x - 10y_1 \geq 0 \\
y_1 - 10y_2 = 0 \\
y_2 - 10y_3 = 0 \\
y_3 - 10y_4 = 0 \\
y_4 - 10y_5 = 0 \\
y_5 - 10y = 0 \\
y \in [0, 10]
\]

This form certainly has nicer values in the matrix. However, the solution $y = -10^{-6}$, $x = -1$ might still be considered feasible as the bounds on variables and constraints might be violated within the tolerances. A better alternative is to reformulate

\[
x - 10^6y \geq 0 \\
y \in [0, 10]
\]

as

\[
x - 10^3y' \geq 0 \\
y' \in [0, 10^4]
\]

where $10^{-3}y' = y$. In this setting, the most negative values for $x$ which might be considered feasible would be $-10^{-3}$, and for the original $y$ variable it would be $-10^{-9}$, which is a clear improvement over the original situation.
Dealing with big-M constraints

Big-M constraints are a regular source of instability for optimization problems. They are so named because they typically involve a large coefficient $M$ that is chosen to be larger than any reasonable value that a continuous variable or expression may take. Here’s a simple example:

\[
\begin{align*}
x &\leq 10^6 y \\
x &\geq 0 \\
y &\in \{0, 1\},
\end{align*}
\]

Big-M constraints are typically used to propagate the implications of a binary, on-off decision to a continuous variable. For example, a big-M might be used to enforce the condition that an edge can only admit flow if you pay the fixed charge associated with opening the edge, or a facility can only produce products if you build it. In our example, note that the $y = 0.0000099999$ satisfies the default integrality tolerance ($\text{IntFeasTol}=10^{-5}$), which allows $x$ to take a value of 9.999. In other words, $x$ can take a positive value without incurring an expensive fixed charge on $y$, which subverts the intent of only allowing a non-zero value for $x$ when the binary variable $y$ has the value of 1. You can reduce the effect of this behavior by adjusting the $\text{IntFeasTol}$ parameter, but you can’t avoid it entirely.

However, if the modeler has additional information that the $x$ variable will never be larger than $10^3$, then you could reformulate the earlier constraint as:

\[
\begin{align*}
x &\leq 10^3 y \\
x &\geq 0 \\
y &\in \{0, 1\}
\end{align*}
\]

And now, $y = 0.0000099999$ would only allow for $x \leq 0.01$.

For cases when it is not possible to either rescale variable $x$ or tighten its bounds, an SOS constraints or an indicator constraint (of the form $y = 0 \Rightarrow x = 0$) may produce more accurate solutions, but often at the expense of additional processing time.

28.4 Does my model have numerical issues?

You can follow these steps to help determine whether a model is experiencing numerical issues:

1. Isolate the model for testing by exporting a model file and a parameter file. The easiest way to do this is to create a `gurobi.env` file in your working directory that contains the following line:

   ```
 Record 1
   ```

   Then, run your Gurobi program, which will produce `gurobi.rec` files. Afterwards, you can replay this recording file using `gurobi_cl`.

2. Using the Gurobi Interactive shell, run some simple Python code to read the model that the replay produces, and print the summary statistics:

   ```
 m = read('gurobi.rew')
 m.printStats()
   ```
The output will look like:

Statistics for model (null) :
  Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs
  Variable types : 14836 Continuous, 984 Integer
  Matrix coefficient range : [ 0.00099, 6e+06 ]
  Objective coefficient range : [ 0.2, 65 ]
  Variable bound range : [ 1, 5e+07 ]
  RHS coefficient range : [ 1, 5e+07 ]

The range of numerical coefficients is one indication of potential numerical issues. As a very rough guideline, the ratio of the largest to the smallest coefficient should be less than $10^9$; smaller is better.

In this example, the matrix range is

$$6 \cdot 10^6 / 0.00099 = 6.0606 \cdot 10^9.$$ 

3. If possible, re-solve the model using the same parameters and review the logs. With the Python shell, use code like the following:

```python
m.read('gurobi.prm')
m.optimize()
```

Here are some examples of warning messages that suggest numerical issues:

```
Warning: Model contains large matrix coefficient range
 Consider reformulating model or setting NumericFocus parameter
 to avoid numerical issues.
Warning: Markowitz tolerance tightened to 0.5
Warning: switch to quad precision
Numeric error
Numerical trouble encountered
Restart crossover...
Sub-optimal termination
Warning: ... variables dropped from basis
Warning: unscaled primal violation = ... and residual = ...
Warning: unscaled dual violation = ... and residual = ...
```

4. When the `optimize` function completes, print solution statistics. With the Python shell, use code like the following:

```python
m.printQuality()
```

which provides a summary of solution quality:

```
Solution quality statistics for model Unnamed :
 Maximum violation:
 Bound : 2.98023224e-08 (X234)
 Constraint : 9.30786133e-04 (C5)
 Integrality : 0.00000000e+00
```

Violations that are larger than the tolerances are another indication of numerical issues. Also, for a pure LP (without integer variables), print the condition number via the following Python command:
m.KappaExact

The condition number measures the potential for error in linear calculations; a large condition number, such as $10^{12}$, is another indication of possible numerical issues, see this section for more details.

5. If changing parameters (e.g., Method or Seed) leads to a different optimization status (e.g., Infeasible instead of optimal), or if the optimal objective values changes, this is usually a sign of numerical issues. To further assess this you can tighten tolerances (to the order of $10^{-8}$ or even $10^{-9}$), and see if the behavior of the solver becomes consistent again. Note that tightening tolerances usually comes at the price of more computing time, and should not be considered as a solution for numerical issues.

28.5 Solver parameters to manage numerical issues

Reformulating a model may not always be possible, or it may not completely resolve numerical issues. When you must solve a model that has numerical issues, some Gurobi parameters can be helpful. We discuss these now, in descending order of relevance.

Presolve

Gurobi presolve algorithms are designed to make a model smaller and easier to solve. However, in some cases, presolve can contribute to numerical issues. The following Python code can help you determine if this is happening. First, read the model file and print summary statistics for the presolved model:

```python
m = read('gurobi.rew')
p = m.presolve()
p.printStats()
```

If the numerical range looks much worse than the original model, try the parameter `Aggregate=0`:

```python
m.reset()
m.Params.Aggregate = 0
p = m.presolve()
p.printStats()
```

If the resulting model is still numerically problematic, you may need to disable presolve completely using the parameter `Presolve=0`; try the steps above using

```python
m.reset()
m.Params.Presolve = 0
p = m.presolve()
p.printStats()
```

If the statistics look better with `Aggregate=0` or `Presolve=0`, you should further test these parameters. For a continuous (LP) model, you can test them directly. For a MIP, you should compare the LP relaxation with and without these parameters. The following Python commands create three LP relaxations: the model without presolve, the model with presolve, and the model with `Aggregate=0`:

```python
```
m = read('gurobi.rew')
r = m.relax()
r.write('gurobi.relax-nopre.rew')
p = m.presolve()
r = p.relax()
r.write('gurobi.relax-pre.rew')
m.reset()
m.Params.Aggregate = 0
p = m.presolve()
r = p.relax()
r.write('gurobi.relax-agg0.rew')

With these three files, use the techniques mentioned earlier to determine if Presolve=0 or Aggregate=0 improves the numerics of the LP relaxation.

Finally, if Aggregate=0 helps numerics but makes the model too slow, try AggFill=0 instead.

Choosing the right algorithm

Gurobi Optimizer provides two main algorithms to solve continuous models and the continuous relaxations of mixed-integer models: barrier and simplex.

The barrier algorithm is usually fastest for large, difficult models. However, it is also more numerically sensitive. And even when the barrier algorithm converges, the crossover algorithm that usually follows can stall due to numerical issues.

The simplex method is often a good alternative, since it is generally less sensitive to numerical issues. To use dual simplex or primal simplex, set the Method parameter to 1 or 0, respectively.

Note that, in many optimization applications, not all problem instances have numerical issues. Thus, choosing simplex exclusively may prevent you from taking advantage of the performance advantages of the barrier algorithm on numerically well-behaved instances. In such cases, you should use the concurrent optimizer, which uses multiple algorithms simultaneously and returns the solution from the first one to finish. The concurrent optimizer is the default for LP models, and can be selected for MIP by setting the Method parameter to 3 or 4.

For detailed control over the concurrent optimizer, you can create concurrent environments, where you can set specific algorithmic parameters for each concurrent solve. For example, you can create one concurrent environment with Method=0 and another with Method=1 to use primal and dual simplex simultaneously. Finally, you can use concurrent optimization with multiple distinct computers using distributed optimization. On a single computer, the different algorithms run on multiple threads, each using different processor cores. With distributed optimization, independent computers run the separate algorithms, which can be faster since the computers do not compete for access to memory.

Making the algorithm less sensitive

When all else fails, try the following parameters to make the algorithms more robust:

ScaleFlag, ObjScale (All models): It is always best to reformulate a model yourself. However, for cases when that is not possible, these two parameters provide some of the same benefits. Set ScaleFlag=2 for aggressive scaling of the coefficient matrix. ObjScale rescales the objective row; a negative value will use the largest objective coefficient to choose the scaling.
For example, \( \text{ObjScale} = -0.5 \) will divide all objective coefficients by the square root of the largest objective coefficient.

**NumericFocus (All models):** The NumericFocus parameter controls how the solver manages numerical issues. Settings 1-3 increasingly shift the focus towards more care in numerical computations, which can impact performance. The NumericFocus parameter employs a number of strategies to improve numerical behavior, including the use of quad precision and a tighter Markowitz tolerance. It is generally sufficient to try different values of NumericFocus. However, when NumericFocus helps numerics but makes everything much slower, you can try setting Quad=1 and/or larger values of MarkowitzTol such as 0.1 or 0.5.

**NormAdjust (Simplex):** In some cases, the solver can be more robust with different values of the simplex pricing norm. Try setting NormAdjust to 0, 1, 2 or 3.

**BarHomogeneous (Barrier):** For models that are infeasible or unbounded, the default barrier algorithm may have numerical issues. Try setting BarHomogeneous=1.

**CrossoverBasis (Barrier):** Setting CrossoverBasis=1 takes more time but can be more robust when creating the initial crossover basis.

**GomoryPasses (MIP):** In some MIP models, Gomory cuts can contribute to numerical issues. Setting GomoryPasses=0 may help numerics, but it may make the MIP more difficult to solve.

**Cuts (MIP):** In some MIP models, various cuts can contribute to numerical issues. Setting Cuts=1 or Cuts=0 may help numerics, but it may make the MIP more difficult to solve.

Tolerance values (FeasibilityTol, OptimalityTol, IntFeasTol) are generally not helpful for addressing numerical issues. Numerical issues are better handled through model model reformulation.

### 28.6 Instability and the geometry of optimization problems

As we have seen, whenever we solve a problem numerically, we have to accept that the input we provide and the output we obtain may differ from the theoretical or mathematical solution to the given problem. For example, 0.1, in a computer, will be represented by a number that differs from 0.1 by about \( 10^{-17} \). Thus, a natural thing to worry about is if these small differences may induce large differences in the computed solution.

This is the idea behind the notion of the **Condition Number** for a given problem. While it is true that for most practical optimization problems, small perturbations in the input only induce small perturbations in the final answer to the problem, there are some special situations where this is not the case. These ill behaving problems are called **Ill Conditioned or Numerically Unstable**.

This sections aims to show, in the context of linear optimization problems, the most common sources for this behavior, and also how to avoid the behavior altogether. We will review first the problem of solving linear systems with unique solutions, and then move into the more central issue of linear optimization problems, its geometric interpretation, and then describe some of the most common bad cases. We then provide two thought experiments with interactive material to help illustrate the concepts of this section. We conclude with some further thoughts on this topic.
Note that although the notion of the Condition Number has received a lot of attention from the academic community, reviewing this literature is beyond the scope of this document. If you want to start looking into this topic, a good entry point can be the Condition Number page at Wikipedia.

The case of linear systems:

Solving linear systems is a very common sub-routine in any MI(QC)P-solver, as we have to solve many linear systems during the full execution of the algorithm.

So, consider that we have a linear system $Ax = b$ with an unique solution (i.e. $A$ is a square matrix with full rank), and you want to evaluate how the solution to the system might change if we perturb the right-hand side $b$. Since the system has a unique solution, we know that given $b$, the solution will be $A^{-1}b$, and if we perturb $b$ with $\varepsilon$, the solution will be $A^{-1}(b + \varepsilon)$. A measure for the relative change in the solution with respect to the relative change in the input would be the ratio

$$
\eta(b, \varepsilon) := \frac{\|A^{-1}b\|}{\|A^{-1}(b+\varepsilon)\|} / \frac{\|b\|}{\|b+\varepsilon\|}.
$$

Note that the above definition is independent of the magnitudes of $b$ and $\varepsilon$. From there, the worst possible ratio would be the result of

$$
\kappa(A) := \max_{b,\varepsilon} \eta(b, \varepsilon).
$$

This quantity is known as the condition number of the matrix $A$. It is not hard to prove that

$$
\kappa(A) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}},
$$

where $\lambda_{\text{max}}$ and $\lambda_{\text{min}}$ are the maximum and minimum, respectively, eigenvalues of $A$. Equivalently

$$
\kappa(A) = \frac{\|A\|}{\|A^{-1}\|}.
$$

A common interpretation of $\kappa(A) = 10^k$ is that, when solving the system $Ax = b$, you may lose up to $k$ digits of accuracy in $x$ from the accuracy you have in $b$.

The condition number for the optimal simplex basis in an LP is captured in the KappaExact attribute. A very large $\kappa$ value might be an indication that the result might be unstable.

When this is indeed the case, the best advice is to scale the constraint matrix coefficients so that the resulting range of coefficients is small. This transformation will typically reduce the $\kappa$ value of the final basis; please refer to the Scaling section for a discussion on how to perform this rescaling, and also for caveats on scaling in general.

The geometry of linear optimization problems

Before showing optimization models that exhibit bad behavior, we first need to understand the geometry behind them. Consider a problem of the form

$$
\begin{align*}
\max_x & \quad cx \\
\text{s.t.} & \quad Ax \leq b.
\end{align*}
$$

For example:
\[
\begin{align*}
\text{max} & \quad x + y \quad \vec{c} = (1, 1) \\
\text{s.t.} & \quad -x \leq 0 \quad A_1 = (-1, 0) \\
& \quad x \leq 1 \quad A_2 = (1, 0) \\
& \quad -y \leq 0 \quad A_3 = (0, -1) \\
& \quad y \leq 1 \quad A_4 = (0, 1).
\end{align*}
\]

Note that if we denote \(b^t := (0, 1, 0, 1)\), then the problem can be stated as

\[\max_{x \in \mathbb{R}^2} \{\vec{c}x : Ax \leq b\}.\]

The feasible region, direction of improvement \(\vec{c}\), and optimal solution \(x^*\) can be depicted as

Note that whenever we move in the direction of \(\vec{c}\), the value \(\vec{c}x\) increases. Furthermore, since we can not move from \(x^*\) to another feasible point with better objective value, we can conclude that \(x^*\) is indeed the optimal solution for the problem. Note that \(x^*\) is a corner point of the feasible region. This is not a coincidence; you will always find an optimal solution at a corner point if the feasible region is bounded and \(\vec{c}\) is not zero. If the objective is zero then all feasible solutions are optimal; we will talk more about zero objectives and their implications later.

To understand how changes in the input data affect the feasible region and the optimal solution, consider a small modification: \(\tilde{b}^t = (\varepsilon, 1, 0, 1)\), \(\tilde{\vec{c}} = (1 + \varepsilon, 1)\), and \(\tilde{A}_4 = (\varepsilon, 1)\). Then our optimization problem would look like
Note that although we changed the right-hand side, this change had no effect in the optimal solution to the problem, but it did change the feasible region by enlarging the bottom part of the feasible area.

Changing the objective vector tilts the corresponding vector in the graphical representation. This of course also changes the optimal objective value. Perturbing a constraint tilts the graphical representation of the constraint. The change in $A_4$ changes the primal solution itself. The amount of tilting constraint undergoes depends on the relative value of the perturbation. For example, although the constraint $x \leq 1$ and the constraint $100x \leq 100$ induce the same feasible region, the perturbation $x + \varepsilon y \leq 1$ will induce more tilting that the perturbation $100x + \varepsilon y \leq 100$.

**Multiple optimal solutions**

A common misconception among beginners in optimization is the idea that optimization problems really have just one solution. Surprisingly, this is typically not true. For many practical problems, the objective (whether it is cost or revenue or ...) is dominated by a handful of variables, while most variables are just there to ensure that the actual operation of the solution is possible. Consider a staffing problem, for example, where cost is typically driven by the number of people who work on a given day, not by the specific people.

These kind of situations naturally lead to problems similar to

\[
\begin{align*}
\max \quad & y & \mathbf{c}^* = (0, 1) \\
\text{s.t.} \quad & -x \leq 0 & A_1 = (-1, 0) \\
& x \leq 1 & A_2 = (1, 0) \\
& -y \leq 0 & A_3 = (0, -1) \\
& y \leq 1 & A_4 = (0, 1). 
\end{align*}
\]
Graphically this can be depicted as

\[
\begin{array}{c}
\text{Graphically this can be depicted as} \\
\end{array}
\]

In this situation is clear that \( x^1, x^3 \), and all solutions lying on the line between these two points are optimal. The simplex algorithm will return either \( x^1 \) or \( x^3 \) (and may switch if you change parameters). The barrier algorithm (without crossover) will return \( x^2 \). These solutions are all correct; the problem as stated has no reason to prefer one over the other. If you do have a preference, you’ll need to state it in your objective function.

**Dealing with epsilon-optimal solutions**

The previous section considered the case of multiple (true) optimal solutions. What happens when we have several \( \varepsilon \)-optimal solutions? To be more specific, consider

\[
\begin{align*}
\text{max} & \quad \varepsilon x + y & \bar{c} = (\varepsilon, 1) \\
\text{s.t.} & \quad -x \leq 0 & A_1 = (-1, 0) \\
& \quad x \leq 1 & A_2 = (1, 0) \\
& \quad -y \leq 0 & A_3 = (0, -1) \\
& \quad y \leq 1 & A_4 = (0, 1)
\end{align*}
\]

Graphically this can be depicted as
If $\varepsilon$ is zero, then we are in the situation described before. Note, however, that a small perturbation of the objective vector may lead to either $x^1$ or $x^2$ being reported as optimal. And tolerances can play a big role here. If $\varepsilon$ is negative, for example, then $x^1$ would be the mathematically optimal result, but due to the optimality tolerance, simplex might conclude that $x^2$ is optimal. More precisely, if $\varepsilon$ is less than the default optimality tolerance of $10^{-6}$, then simplex is free to declare either solution optimal (within tolerances).

The above statement is true whenever the distance between $x^1$ and $x^2$ is not too large. To see this, consider what happens when we change the right-hand side of $A_4$ from 1 to $10^6$. Then the feasible region would then be a very long rectangular box, with vertices $(0,0), (0,1), (10^6,1)$ and $(10^6,0)$. Perhaps somewhat surprisingly, if $\varepsilon$ is below the dual tolerance, simplex may consider $(10^6,1)$ optimal, even though its objective value is $1 - 10^6\varepsilon$, which can be very relevant in terms of the final objective value.

Note that both situations share one ingredient: The objective function is (almost) parallel to one of the sides of the feasible region. In the first case, this side is relatively short, and thus jumping from $x^2$ to $x^1$ translates into a small change in objective value. In the second case, the side almost parallel to the objective function is very long, and now the jump from $x^2$ to $x^1$ can have a significant impact on the final objective function.

If you take out either of these two ingredients, namely the objective vector being almost parallel to a constraint, or the edge induced by this nearly-parallel constraint being very long, then this problem can not arise. For the reasons discussed at the beginning of this section, it is common for the objective function to be close to parallel to one or more constraints. Thus, the best way to avoid this situation is to avoid the second condition. The simplest way to do this is to ensure that the ranges for your variables are not too large. Please refer to the Scaling section for guidance on this.
Thin feasible regions

We now consider another extreme situation that can lead to unexpected results. Consider the problem defined as

\[
\begin{align*}
\text{max} & \quad y \ c = (0, 1) \\
\text{s.t.} & \quad -x + \epsilon y \leq 1 \quad A_1 = (-1, \epsilon) \\
& \quad x + \epsilon y \leq 1 \quad A_2 = (1, \epsilon) \\
& \quad -y \leq 0 \quad A_3 = (0, -1)
\end{align*}
\]

and its graphical representation

![Graphical representation of the feasible region](image)

It is clear from the graphical representation that the optimal solution for the problem will be at the intersection of constraints $A_1$ with $A_2$; and if we do the algebra, we will get that $x^* = (0, \frac{1}{\epsilon})$. Also note that as you decrease $\epsilon$ the feasible region stretches upwards, leaving its base unchanged. We will consider the case where $\epsilon$ is a very small, positive number (between $10^{-9}$ and $10^{-6}$).

If we perturb the right-hand side vector $b$ from $(1, 1)$ to $(1 + \delta, 1)$, the new solution will be $\tilde{x}^* = (-\frac{\delta}{2}, \frac{1 + \delta}{\epsilon})$. To assess the impact of this perturbation, we compute the $L_1$ distance between this modified solution and the previous solution, which is given by

\[
\|x^* - \tilde{x}^*\|_1 = \frac{|\delta|}{2} + \frac{|\delta|}{\epsilon}
\]

This quantity can be either small or very large, depending on the relative magnitude between $\delta$ and $\epsilon$. If $\delta$ is much smaller than $\epsilon$, then this quantity will be small. However, if $\delta$ is larger than or even the same order of magnitude as $\epsilon$, the opposite will be true. Very small perturbations in the input data can lead to big changes in the optimal solution.
A similar issue arises if we perturb $A_1$ to $(-1, \delta)$; the new optimal solution becomes $\bar{x}^* = (1 - \frac{2\epsilon}{\epsilon + \delta}, \frac{2\epsilon}{\epsilon + \delta})$. But now, if $\delta = \epsilon/2$, then the new solution for $y$ will change from $\frac{1}{\epsilon}$ to $\frac{4}{3\epsilon}$ (a 33% relative difference). Again, small changes in the input can produce big changes in the optimal solution.

What is driving this bad behavior? The problem is that the optimal point is defined by two constraints that are nearly parallel. The smaller $\epsilon$ is, the closer to parallel the are. When the constraints are so close parallel, small changes in the slopes can lead to big movements in the point where they intersect. Mathematically speaking:

$$\lim_{\epsilon \to 0^+} \|x^*\| = \infty$$

Note however that, if the original problem had an additional variable bound of the form $y \leq 10^4$, then neither of these bad behavior would have been possible. For any $\epsilon$ value smaller than $10^{-4}$, the optimal point would be defined by the new constraint and one of the constraints $A_2$ or $A_1$, which would lead again to a well-behaved (i.e. stable) solutions. In summary, this sort of issue can only arise when either the feasible region is either unbounded or very large. See the Scaling section for further guidance on bounding the feasible region.

**Optimizing over the circle:**

Now we provide our first thought experiment: Consider the problem of optimizing a linear function over the feasible region defined by the constraints

$$\sin(2\pi \frac{i}{10^6})x + \cos(2\pi \frac{i}{10^6})y \leq 1, \forall i \in \{1, \ldots, 10^6\},$$

i.e. the feasible region is essentially a unit circle in $\mathbb{R}^2$. Note that for all objective functions, the corresponding optimal point will be defined by two linear constraints that are very close to be parallel. What will happen to the numerical solution to the problem? Can you guess? The situation is depicted in the figure below:
To perform the experiment, we execute the code `circleOpt.py`, where we randomly select an objective vector, find the optimal solution to the resulting optimization problem, and compute several relevant quantities:

- The worst distance between the reported primal solution, and the theoretical solution to the problem of actually optimizing over a perfect circle, over all previous runs.
- The worst bound violation reported by Gurobi over all previous runs.
- The worst constraint violation reported by Gurobi over all previous runs.
- The worst dual violation reported by Gurobi over all previous runs.
- The number of previous experiments.
- Accumulated number of simplex iterations.
- The $\kappa$ (KappaExact attribute) value for the current optimal basis.

Sample output is shown below:

```
Added 2 Vars and 1048576 constraints in 19.19 seconds
Errors: 8.65535e-08 0 2.94137e-07 2.77556e-17 Iter 0 10 Kappa 3150.06
Errors: 4.81978e-07 0 3.22359e-07 2.77556e-17 Iter 1 21 Kappa 3009.12
Errors: 4.81978e-07 0 3.4936e-07 1.11022e-16 Iter 2 33 Kappa 2890.58
Errors: 1.53201e-06 0 9.78818e-07 1.11022e-16 Iter 6 79 Kappa 1727.89
Errors: 1.61065e-06 0 8.26005e-07 1.11022e-16 Iter 46 536 Kappa 1880.73
```
Surprisingly the reported errors are rather small. Why is this? There are at least two contributing factors: the model has a bounded feasible region (in this case the range of both variables is $[-1, 1]$). In addition, the distance from one extreme point (a point at the intersection of two neighboring constraints) to its neighbor is also relatively small, so all $\varepsilon$-optimal solutions are close to each other.

We encourage you to play with this code, perturb some of the input data, and analyze the results. You will see the discrepancies between the theoretical and the numerical optimal solution will be comparable to the sizes of the perturbations.

**Optimizing over thin regions:**

Now we move to our second thought experiment: Consider a feasible region consisting of a triangle in $\mathbb{R}^2$ with a very wide base and very short height, as depicted here:

Consider the case where the ratio of the base to the height is on the order of $10^5$, and that we consider a **nominal** objective function $\vec{c}_1$ as in the figure.

In theory, the optimal solution should be the apex of the triangle, but assume that we randomly perturb both the right-hand side and the objective function with terms in the order of $10^{-6}$. What will happen with the numerical solution?

To perform the experiment, we execute the code `thinOpt.py`, where we perform a series of re-optimizations with different perturbations as described above. To be more precise, whenever the new computed solution is further from the mathematical solution by more than it has been in previous trials, we print:

- The new maximum distance among solutions.
- The current iteration.
- The $\kappa$ (KappaExact attribute) value for the current optimal basis.
- The bound violation as reported by Gurobi for the current solution.
• The constraint violation as reported by Gurobi for the current solution.
• The dual violation as reported by Gurobi for the current solution.

Sample output is shown below:

New maxdiff 4e+16 Iter 0 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 2 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 7 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 83 Kappa 3.31072 Violations: 0 0 2.64698e-23
New maxdiff 4e+16 Iter 194 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1073 Kappa 3.31072 Violations: 0 1.13687e-13 0
New maxdiff 4e+16 Iter 4981 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 19514 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 47117 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 429955 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 852480 Kappa 3.31072 Violations: 0 0 0

Results look very different from what we saw in our first test. The distance between the solution to the unperturbed model and the solution to the perturbed one is huge, even from the very first iteration. Also, the $\kappa$ values are relatively small, and the reported primal, dual, and bound violations are almost zero. So, what happened? Note that when we choose $\vec{c}_1 = (0, 1)$, we are choosing an optimal point where a small tilting of the objective function may move us to another extreme point very far away, and hence the large norm. This is possible because the region is very large and, in principle, without any bounds, i.e. this is related to the case of $\varepsilon$-optimal solutions and very long sides.

Again, we encourage you to play with this example. For example, what would happen if the nominal objective function is $\vec{c}_2 = (1, 0)$?

**Stability and convergence**

The algorithms used to solve linear programming problems are all forced to make an assumption: that tiny changes to the system (e.g., making a small step in barrier) lead to small changes in the solution. If this is not true (due to ill-conditioning), then the algorithm may jump around in the solution space and have a hard time converging.

Finally, one way to improve the geometry of a problem is by suitably scaling variables and constraints as explained in the Scaling section, and working with bounded feasible sets with reasonable ranges for all variables.

### 28.7 Further reading

Source code examples:

Source code for the experiment of optimizing over a circle

```python
from gurobipy import *
from math import *
import random
import time
import sys

Work on a circle defined on a million constraints

t0 = time.time()
n = 1024 * 1024
m = Model('Circle Optimization')
X = m.addVars(2, lb=-2, ub=2)
Wb = 0
Wc = 0
Wd = 0
maxdiff = 0
niter = 0
margin = 1.01

for i in range(n):
 m.addConstrs(X[0]*cos((2*pi*i)/n) + X[1]*sin((2*pi*i)/n) <= 1
 for i in range(n))

print('Added 2 Vars and %d constraints in %.2f seconds' %
 (n, time.time()-t0))
m.Params.OutputFlag = 0
m.Params.Presolve = 0

Now select random objectives and optimize. Resulting optimal
solution must be in the circle
for i in range(4096):
 theta=2*pi*random.random()
a = cos(theta)
b = sin(theta)
m.setObjective(X[0] * a + X[1] * b)
m.optimize()
niter += m.IterCount

See how far is the solution from the boundary of a circle of
radius one, if we minimize (a,b) the optimal solution should be (-a,-b)
error = (X[0].X+a)*(X[0].X+a) + (X[1].X+b)*(X[1].X+b)

Display most inaccurate solution
if (error > margin * maxdiff or
 m.BoundVio > margin * Wb or
 m.BoundVio > margin * Wc or
 m.BoundVio > margin * Wd or
 m.ObjVio > margin * maxdiff or
 m.ObjVio > margin * Wb or
 m.ObjVio > margin * Wc or
 m.ObjVio > margin * Wd or
 m.OptimalityVio > margin * maxdiff or
 m.OptimalityVio > margin * Wb or
 m.OptimalityVio > margin * Wc or
 m.OptimalityVio > margin * Wd or
 m.RHSVio > margin * maxdiff or
 m.RHSVio > margin * Wb or
 m.RHSVio > margin * Wc or
 m.RHSVio > margin * Wd or
 m.RouteVio > margin * maxdiff or
 m.RouteVio > margin * Wb or
 m.RouteVio > margin * Wc or
 m.RouteVio > margin * Wd or
 m.Violation > margin * maxdiff or
 m.Violation > margin * Wb or
 m.Violation > margin * Wc or
 m.Violation > margin * Wd):
 print('Solution is inaccurate')
```

Source code for the experiment on a thin feasible region

```python
from gurobipy import *
import random
import sys

Test the effect of small perturbations on the optimal solutions
for a problem with a thin feasible region
rhs = 1e3
m = Model('Thin line Optimization')
x = m.addVar(obj=1)
y = m.addVar(obj=0, lb=-GRB.INFINITY, ub=GRB.INFINITY)
c1 = m.addConstr(1e-5 * y + 1e-0 * x <= rhs)
c2 = m.addConstr(- 1e-5 * y + 1e-0 * x <= rhs)
m.Params.OutputFlag = 0
m.Params.Presolve = 0
m.optimize()
xval = x.X
yval = y.X
maxdiff = 0
for i in range(1024*1024):
c1.Rhs = rhs + 2e-6 * random.random()
c2.Rhs = rhs + 2e-6 * random.random()
x.Obj = 1 + 2e-6 * random.random()
y.Obj = 0 + 2e-6 * random.random()
m.optimize()
x2val = x.X
y2val = y.X
error = (xval-x2val)*(xval-x2val) + (yval-y2val)*(yval-y2val)
if error > 1e-5 + maxdiff:
 print('New maxdiff %g Iter %d Kappa %g Violations: %g %g %g' %
 (maxdiff, Wb, Wc, Wd, i, niter, m.KappaExact))
sys.stdout.flush()
maxdiff = error
```

Source code for the experiment with column scalings

```python
import sys
import random
import argparse
from gurobipy import *

Use parameters for greater flexibility
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-f', '--infile', help='Problem File',
```
parser.add_argument('-s', '--scale', help='Scaling Factor',
                    type=float, default=10000.0)
parser.add_argument('-w', '--outfile', help='Save scaled model',
                    default=None)
parser.add_argument('-o', '--optimize', help='Optimize scaled problem',
                    type=int, default=1)
args = parser.parse_args()

# Load input problem
m = read(args.infile)

# Scale domain of all columns randomly in the given domain
for var in m.getVars():
    if var.vtype == GRB.CONTINUOUS:
        scale = random.uniform(args.scale/2.0, args.scale*2.0)
        flip = random.randint(0,3)
        if flip == 0:
            scale = 1.0
        elif flip == 1:
            scale = 1.0/scale
        col = m.getCol(var)
        for i in range(col.size()):
            coeff = col.getCoeff(i)
            row = col.getConstr(i)
            m.chgCoeff(row, var, coeff*scale)
        var.obj = var.obj*scale
        if var.lb > -GRB.INFINITY:
            var.lb = var.lb/scale
        if var.ub < GRB.INFINITY:
            var.ub = var.ub/scale

if args.outfile != None:
    m.write(args.outfile)

# Optimize
if args.optimize:
    m.optimize()
    if m.Status == GRB.OPTIMAL:
        print('Kappa: %e\n' % m.KappaExact)