Non-Convex Quadratic Optimization

Gurobi 9.0

The World's Fastest Solver

Speaker Introduction

Dr. Tobias Achterberg

- Director of R&D at Gurobi Optimization
- Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6
- Obtained his degree in mathematics and computer science from the Technical University of Berlin and the Zuse Institute Berlin, then finished doctorate in mathematics with Prof. Martin Grötschel in 2007
- Dr. Achterberg is the author of SCIP which is regarded as the best academic MIP solver

Speaker Introduction

Dr. Eli Towle

- Optimization Support Engineer at Gurobi
- Dr. Eli Towle has a PhD in Industrial and Systems
 Engineering from the University of Wisconsin Madison
- His research focused on stochastic network interdiction models and polyhedral relaxations of certain nonconvex sets

Mixed Integer Quadratically Constrained Programming

S

GUROBI

A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as

$$\begin{array}{rclrcl} \min & c^T x & + & x^T Q_0 x \\ \text{s.t.} & a_1^T x & + & x^T Q_1 x & \leq & b_1 \\ & & & & \\ & & & \\ & & & & \\ &$$

- Q_k are symmetric matrices
- For $Q = Q_k$, any non-zero element $Q_{ij} \neq 0$ gives rise to a product term $Q_{ij}x_ix_j$ in the constraint or objective
- If all Q_k are positive semi-definite, then QCP relaxation is convex
 - MIQCPs with positive semi-definite Q_k can be solved by Gurobi since version 5.0
- What if quadratic constraints or objective are non-convex?

Non-Convex QP, QCP, MIQP, and MIQCP

Applications

- Pooling problem
- Petrochemical industry
- Wastewater treatment
- Emissions regulation
- Agricultural / food industry
- Mining
- Energy
- Production planning
- Logistics
- Water distribution
- Engineering design
- Finance

General MINLP

- Non-convex MIQCP solves (in theory) polynomial problems of arbitrary degree
- Solve general MINLPs by approximating as polynomial problem
 - but: will often fail for higher degrees due to numerical issues

(blending problem is LP, pooling introduces intermediate pools \rightarrow bilinear) (oil refinery: constraints on ratio of components in tanks)

(blending based on pre-mix products)

(constraints on ratio between internal and external workforce)(restrictions from free trade agreements)(Darcy-Weisbach equation for volumetric flow)

(constraints on exchange rates)

Non-Convex QP, QCP, MIQP, and MIQCP

Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex

If Q is positive semi-definite (PSD) then $x^T Q x \le b$ is convex

• Q is PSD if and only if $x^T Q x \ge 0$ for all x

But $x^T Qx \le b$ can also be convex in certain other cases, e.g., second order cones (SOCs)

SOC:
$$x_1^2 + \dots + x_n^2 - z^2 \le 0$$

 $x^2 + y^2 - z^2 \le 0, z \ge 0$: at level z, (x, y) is a disc with radius z

Non-Convex QP, QCP, MIQP, and MIQCP

Prior Gurobi versions could deal with two types of non-convexity

- Integer variables
- SOS constraints

Gurobi 9.0 can deal with a third type of non-convexity

• Bilinear constraints

These non-convexities are treated by

- Cutting planes
- Branching

Translation of non-convex quadratic constraints into bilinear constraints

$$3x_{1}^{2} - 7x_{1}x_{2} + 2x_{1}x_{3} - x_{2}^{2} + 3x_{2}x_{3} - 5x_{3}^{2} = 12$$
 (non-convex Q constraint)

$$z_{11} \coloneqq x_{1}^{2}, z_{12} \coloneqq x_{1}x_{2}, z_{13} \coloneqq x_{1}x_{3}, z_{22} \coloneqq x_{2}^{2}, z_{23} \coloneqq x_{2}x_{3}, z_{33} \coloneqq x_{3}^{2}$$
 (6 bilinear constraints)

$$3z_{11} - 7z_{12} + 2z_{13} - z_{22} + 3z_{23} - 5z_{33} = 12$$
 (linear constraint)

More Details on Bilinear Transformation

For each term $a_{ij}x_ix_j$ in a non-convex quadratic constraint:

- If x_i and/or x_j are fixed, move to linear part or right hand side of constraint;
- Else if i = j and x_i is binary, replace x_i^2 by x_i and move term to linear part of constraint;
- Else if x_i or x_j is binary, introduce $z_{ij} \coloneqq x_i x_j$, move $a_{ij} x_i x_j = a_{ij} z_{ij}$ to linear part, and
 - if possible, add big-M linearization for $z_{ij} \coloneqq x_i x_j$
 - otherwise, add SOS1 formulation for $z_{ij} \coloneqq x_i x_j$;
- Else if i = j, $a_{ij} > 0$, and the Q constraint is a \leq inequality, keep term in quadratic part;
- Else: introduce $z_{ij} \coloneqq x_i x_j$, move $a_{ij} x_i x_j = a_{ij} z_{ij}$ to linear part, and add the bilinear constraint
 - $z_{ij} = x_i x_j$, if the Q constraint is an equation;
 - $z_{ij} \ge x_i x_j$, if the Q constraint is a \le inequality, and $a_{ij} > 0$;
 - $z_{ij} \le x_i x_j$, if the Q constraint is a \le inequality, and $a_{ij} < 0$.

More sophisticated partitions into convex and non-convex parts are possible and may work better!

Performance Impact of Bilinear Translation

^{- 14} discarded due to inconsistent answers

32 GB RAM

^{- 54} discarded that none of the versions can solve

⁻ speed-up measured on >10s bracket: 116 models

General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

Consider square case (x = y):

non-convex $-z - x^2 \le 0$

easy: add tangent cuts

General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

LP Relaxation of Bilinear Constraints

LP Relaxation of Bilinear Constraints

Copyright © 2020, Gurobi Optimization, LLC

Adaptive Constraints in LP Relaxation

Coefficients and right hand sides of McCormick constraints depend on local bounds of variables

- Whenever local bounds change, LP coefficients and right hand sides are updated
- May lead to singular or ill-conditioned basis
 - in worst case, simplex needs to start from scratch

Alternative to adaptive constraints: locally valid cuts

- Add tighter McCormick relaxation on top of weaker, more global one, to local node
- Advantages:
 - old simplex basis stays valid in all cases
 - more global McCormick constraints will likely become slack and basic
 - should lead to fewer simplex iterations
- Disadvantages:
 - basis size (number of rows) changes all the time during solve
 - refactorization needed
 - complicated (and potentially time and memory consuming) data management needed
 - redundant more global McCormick constraints stay in LP
 - LP solver performs useless calculations in linear system solves

Spatial Branching

Branching variable selection

- What most solvers do: first branching on fractional integer variables as usual
- If no fractional integer variable exists, select continuous variable in violated bilinear constraint
- Our variable selection rule is a combination of:
 - sum of absolute bilinear constraint violations
 - reduce McCormick volume as much as possible
 - big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution x^*
 - sum of smaller volumes is smaller than big volume
 - shadow costs of variable for linear constraints

Branching value selection

- We use a standard way
 - a convex combination of LP value and mid point of current domain
- Avoid numerical pitfalls
 - large branching values for unbounded variables
 - tiny child domains if LP value is very close to bound
 - very deep dives (node selection)

Performance Impact of Branching

Copyright © 2020, Gurobi Optimization, LLC

32 GB RAM

Cutting Planes for Mixed Bilinear Programs

All MILP cutting planes apply

Special cuts for bilinear constraints

- RLT Cuts
 - Reformulation Linearization Technique (Sherali and Adams, 1990)
 - multiply linear constraints with single variable, linearize resulting product terms
 - very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs
- BQP Cuts
 - facets from Boolean Quadric Polytope (Padberg 1989)
 - equivalent to Cut Polytope
 - currently implemented: triangle inequalities (special case of Padberg's clique cuts for BQP)
- PSD Cuts
 - tangents of PSD cone defined by $Z = xx^T$ relationship: $Z xx^T \ge 0$ (Sherali and Fraticelli, 2002)
 - not yet implemented in Gurobi

Performance Impact of Cutting Planes

32 GB RAM

Thank You – Questions?

The World's Fastest Solver

Your Next Steps

- Try Gurobi 9.0 Now!
 - Get a 30-day commercial trial license of Gurobi at <u>www.gurobi.com/free-trial</u>
 - Academic and research licenses are free!
- For questions about Gurobi pricing, please contact sales@gurobi.com or <a href="mailto:sales
- A recording of this webinar, including the slides, will be available in about one week
- Upcoming webinars with more details on individual features
 - January 28 and 29: How to Choose a Math Solver
 - February: Compute Server and Cluster Manager
 - See <u>www.gurobi.com/events</u>