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Speaker Introduction

Dr. Tobias Achterberg

• Director of R&D at Gurobi Optimization

• Formerly a developer at ILOG, where he worked on 
CPLEX 11.0 to 12.6

• Obtained his degree in mathematics and computer 
science from the Technical University of Berlin and the 
Zuse Institute Berlin, then finished doctorate in 
mathematics with Prof. Martin Grötschel in 2007 

• Dr. Achterberg is the author of SCIP which is regarded 
as the best academic MIP solver
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Speaker Introduction

Dr. Eli Towle

• Optimization Support Engineer at Gurobi

• Dr. Eli Towle has a PhD in Industrial and Systems
Engineering from the University of Wisconsin – Madison

• His research focused on stochastic network interdiction 
models and polyhedral relaxations of certain nonconvex 
sets
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Mixed Integer Quadratically Constrained 
Programming

A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as
min 𝑐"𝑥 + x"𝑄'x
s.t. 𝑎)"𝑥 + 𝑥"𝑄)x ≤ 𝑏)

…
𝑎-" 𝑥 + 𝑥"𝑄-x ≤ 𝑏-
𝑙 ≤ 𝑥 ≤ u

𝑥0 ∈ ℤ for all 𝑗 ∈ 𝐼

• 𝑄5 are symmetric matrices
• For 𝑄 = 𝑄5 , any non-zero element 𝑄70 ≠ 0 gives rise to a product term 𝑄70𝑥7𝑥0 in the constraint or 

objective
• If all 𝑄5 are positive semi-definite, then QCP relaxation is convex

• MIQCPs with positive semi-definite 𝑄! can be solved by Gurobi since version 5.0

• What if quadratic constraints or objective are non-convex?
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Non-Convex QP, QCP, MIQP, and MIQCP
Applications

• Pooling problem (blending problem is LP, pooling introduces intermediate pools ® bilinear)
• Petrochemical industry (oil refinery: constraints on ratio of components in tanks)
• Wastewater treatment
• Emissions regulation
• Agricultural / food industry (blending based on pre-mix products)
• Mining
• Energy
• Production planning (constraints on ratio between internal and external workforce)
• Logistics (restrictions from free trade agreements)
• Water distribution (Darcy-Weisbach equation for volumetric flow)
• Engineering design
• Finance (constraints on exchange rates)

General MINLP
• Non-convex MIQCP solves (in theory) polynomial problems of arbitrary degree
• Solve general MINLPs by approximating as polynomial problem

• but: will often fail for higher degrees due to numerical issues
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Non-Convex QP, QCP, MIQP, and MIQCP
Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex

If 𝑄 is positive semi-definite (PSD) then 𝑥"𝑄𝑥 ≤ 𝑏 is convex
• 𝑄 is PSD if and only if 𝑥"𝑄𝑥 ≥ 0 for all 𝑥

But 𝑥"𝑄𝑥 ≤ 𝑏 can also be convex in certain other cases, e.g., second order cones (SOCs)
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convex
−𝑧 + 𝑥= ≤ 0

𝑥"𝑄𝑥 ≤ 𝑏

non-convex
−𝑧 − 𝑥= ≤ 0

𝑥= + 𝑦= − 𝑧= ≤ 0, 𝑧 ≥ 0: at level 𝑧, 𝑥, 𝑦 is a disc with radius 𝑧

SOC: 𝑥)= + ⋯+ 𝑥A= − 𝑧= ≤ 0



Non-Convex QP, QCP, MIQP, and MIQCP
Prior Gurobi versions could deal with two types of non-convexity

• Integer variables
• SOS constraints

Gurobi 9.0 can deal with a third type of non-convexity
• Bilinear constraints

These non-convexities are treated by
• Cutting planes
• Branching

Translation of non-convex quadratic constraints into bilinear constraints

3𝑥)= − 7𝑥)𝑥= + 2𝑥)𝑥E − 𝑥== + 3𝑥=𝑥E − 5𝑥E= = 12 (non-convex Q constraint)

z)) ≔ 𝑥)=, z)= ≔ 𝑥)𝑥=, z)E ≔ 𝑥)𝑥E, z== ≔ 𝑥==, z=E ≔ 𝑥=𝑥E, zEE ≔ 𝑥E= (6 bilinear constraints)

3z)) − 7z)= + 2z)E − z== + 3z=E − 5zEE = 12 (linear constraint)

Copyright © 2020, Gurobi Optimization, LLC7



More Details on Bilinear Transformation
For each term 𝑎70𝑥7𝑥0 in a non-convex quadratic constraint:

• If 𝑥7 and/or 𝑥0 are fixed, move to linear part or right hand side of constraint;
• Else if 𝑖 = 𝑗 and 𝑥7 is binary, replace 𝑥7= by 𝑥7 and move term to linear part of constraint;
• Else if 𝑥7 or 𝑥0 is binary, introduce 𝑧70 ≔ 𝑥7𝑥0 , move 𝑎70𝑥7𝑥0 = 𝑎70𝑧70 to linear part, and

• if possible, add big-M linearization for 𝑧"# ≔ 𝑥"𝑥#
• otherwise, add SOS1 formulation for 𝑧"# ≔ 𝑥"𝑥#;

• Else if 𝑖 = 𝑗, 𝑎70 > 0, and the Q constraint is a ≤ inequality, keep term in quadratic part;
• Else: introduce 𝑧70 ≔ 𝑥7𝑥0 , move 𝑎70𝑥7𝑥0 = 𝑎70𝑧70 to linear part, and add the bilinear constraint

• 𝑧"# = 𝑥"𝑥#, if the Q constraint is an equation;
• 𝑧"# ≥ 𝑥"𝑥#, if the Q constraint is a ≤ inequality, and 𝑎"# > 0;
• 𝑧"# ≤ 𝑥"𝑥#, if the Q constraint is a ≤ inequality, and 𝑎"# < 0.

More sophisticated partitions into convex and non-convex parts are possible and may work better!

Copyright © 2020, Gurobi Optimization, LLC8



Performance Impact of Bilinear Translation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Default No Binary Linearization Linearize Positive Square
Terms

1.00
1.11

0.94

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v3 @ 3.40GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 444 models, using 5 random seeds:
- 14 discarded due to inconsistent answers
- 54 discarded that none of the versions can solve
- speed-up measured on >10s bracket: 116 models
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Dealing With Bilinear Constraints
General form: 𝑎"𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex
−𝑧 + 𝑥= ≤ 0

non-convex
−𝑧 − 𝑥= ≤ 0
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Dealing With Bilinear Constraints
General form: 𝑎"𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex
−𝑧 + 𝑥= ≤ 0

non-convex
−𝑧 − 𝑥= ≤ 0

easy: add tangent cuts
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Dealing With Bilinear Constraints
General form: 𝑎"𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥= ≤ 0
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Dealing With Bilinear Constraints
General form: 𝑎"𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥= ≤ 0
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Dealing With Bilinear Constraints
General form: 𝑎"𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex
−𝑧 − 𝑥= ≤ 0

branching
𝑥 ≤ 0 or 𝑥 ≥ 0

update relaxation locally
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LP Relaxation of Bilinear Constraints
Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙P𝑦 + 𝑙Q𝑥 ≤ 𝑙P 𝑙Q
−𝑧 + 𝑢P𝑦 + 𝑢Q𝑥 ≤ 𝑢P𝑢Q

−𝑧 + 𝑢P𝑦 + 𝑙Q𝑥 ≥ 𝑢P𝑙Q
−𝑧 + 𝑙P𝑦 + 𝑢Q𝑥 ≥ 𝑙P𝑢Q

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"
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LP Relaxation of Bilinear Constraints
Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙P𝑦 + 𝑙Q𝑥 ≤ 𝑙P 𝑙Q
−𝑧 + 𝑢P𝑦 + 𝑢Q𝑥 ≤ 𝑢P𝑢Q

−𝑧 + 𝑢P𝑦 + 𝑙Q𝑥 ≥ 𝑢P𝑙Q
−𝑧 + 𝑙P𝑦 + 𝑢Q𝑥 ≥ 𝑙P𝑢Q

coefficients depend
on local bounds

pictures from Costa and Liberti: "Relaxations of multilinear
convex envelopes: dual is better than primal"
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Adaptive Constraints in LP Relaxation
Coefficients and right hand sides of McCormick constraints depend on local bounds of variables

• Whenever local bounds change, LP coefficients and right hand sides are updated
• May lead to singular or ill-conditioned basis

• in worst case, simplex needs to start from scratch

Alternative to adaptive constraints: locally valid cuts
• Add tighter McCormick relaxation on top of weaker, more global one, to local node
• Advantages:

• old simplex basis stays valid in all cases
• more global McCormick constraints will likely become slack and basic

• should lead to fewer simplex iterations
• Disadvantages:

• basis size (number of rows) changes all the time during solve
• refactorization needed
• complicated (and potentially time and memory consuming) data management needed

• redundant more global McCormick constraints stay in LP
• LP solver performs useless calculations in linear system solves
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Spatial Branching
Branching variable selection

• What most solvers do: first branching on fractional integer variables as usual
• If no fractional integer variable exists, select continuous variable in violated bilinear constraint
• Our variable selection rule is a combination of:

• sum of absolute bilinear constraint violations
• reduce McCormick volume as much as possible

• big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution 𝑥∗
• sum of smaller volumes is smaller than big volume

• shadow costs of variable for linear constraints

Branching value selection
• We use a standard way

• a convex combination of LP value and mid point of current domain
• Avoid numerical pitfalls

• large branching values for unbounded variables
• tiny child domains if LP value is very close to bound
• very deep dives (node selection)
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Performance Impact of Branching
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Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v3 @ 3.40GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 444 models, using 5 random seeds:
- 4 discarded due to inconsistent answers
- 54 discarded that none of the versions can solve
- speed-up measured on >10s bracket: 143 models
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Cutting Planes for Mixed Bilinear Programs
All MILP cutting planes apply

Special cuts for bilinear constraints
• RLT Cuts

• Reformulation Linearization Technique (Sherali and Adams, 1990)
• multiply linear constraints with single variable, linearize resulting product terms
• very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs

• BQP Cuts
• facets from Boolean Quadric Polytope (Padberg 1989)

• equivalent to Cut Polytope
• currently implemented: triangle inequalities (special case of Padberg's clique cuts for BQP)

• PSD Cuts
• tangents of PSD cone defined by 𝑍 = 𝑥𝑥% relationship: 𝑍 − 𝑥𝑥% ≽ 0 (Sherali and Fraticelli, 2002)
• not yet implemented in Gurobi
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Performance Impact of Cutting Planes
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Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v3 @ 3.40GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 444 models, using 5 random seeds:
- 10 discarded due to inconsistent answers
- 53 discarded that none of the versions can solve
- speed-up measured on >10s bracket: 152 models
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Thank You – Questions?



Your Next Steps

• Try Gurobi 9.0 Now!

• Get a 30-day commercial trial license of Gurobi at www.gurobi.com/free-trial

• Academic and research licenses are free! 

• For questions about Gurobi pricing, please contact sales@gurobi.com or sales@gurobi.de

• A recording of this webinar, including the slides, will be available in about one week

• Upcoming webinars with more details on individual features

• January 28 and 29: How to Choose a Math Solver

• February: Compute Server and Cluster Manager

• See www.gurobi.com/events
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