Gurobi Days Paris Advanced Gurobi Algorithms

Roland Wunderling

October 2022

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

- Problem Types
- Presolve
- Algorithms for Continuous Optimization
- Algorithms for Discrete Optimization

1 19 19

Problem Types

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

Problem types and Algorithms

Presolve

Continuous

• LP

- Simplex
- Barrier (+ crossover)
- Convex QP
 - QP Simplex
 - Barrier
- Convex QCP
 - Barrier
- Non-convex QP
 - Same as for non-convex MIQCP

Mixed Integer

- MILP
 - Branch-and-Cut
- MIQP (convex)
- MIQCP (convex)
 - Outer approximation
- MIQCP (non-convex)
 - Spatial branching

Presolve

and an

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

Purpose of Presolve

- Reduce the model size
- Improve linear algebra during solve
- Tighten the formulation (for MIP)
- Identify problem sub-structure

- Some Presolve Reduction
 - Bound tightening
 - Aggregation
 - Coefficient strengthening
 - •

• • •

Presolve – Coefficient Strengthening

Given a constraint

• $ax \leq b$, where $l \leq x \leq u$ and some x_j integral

Replace with $a'x \leq b'$, such that

- It is valid for all $x \in X$
- It dominates the original constraint

Example

• Knapsack constraint with binary variables:

 $10b_1 + 5b_2 + 10b_3 + 11b_4 \leq 23$

• After strengthening:

 $b_1+b_2+b_3+b_4\leq 2$

- Is it Valid?
 - Rewrite as

 $10(b_1 + b_2 + b_3 + b_4) - 5b_2 + b_4 \le 23$

Infeasible for

$$b_1 + b_2 + b_3 + b_4 \ge 3$$

- Is it stronger?
 - Consider

$$(b_1, b_2, b_3, b_4) = (1, \frac{3}{5}, 1, 0)$$

Impact of Presolve

For MIP more powerful than just for LP:

- Exploit integrality
 - Round fractional bounds and right-hand sides
 - Lifting/coefficient strengthening
 - Probing
- · Does not need to preserve duality
 - We only need to "uncrush" a primal solution
 - Neither a dual solution nor a basis needs to be "uncrushed"
- Larger work limits
 - For a given problem size solving a MIP takes much more time than solving an LP
 - We can spend more time in presolve

Presolve – Performance Impact on MIP

Time limit: 10000 sec. Intel Xeon CPUE3-1240 v3 @ 3.40GHz 4 cores, 8 hyper-threads 32 GB RAM

Test set has 3182 models: - degradation measured individually on >10s bracket: ~1200 models Benchmark data based on Gurobi 6.5 Results from Achterberg, Bixby, Gu, Rothberg, Weninger (2020): "Presolve Reductions in Mixed Integer Programming"

Presolve Log

gfd-schedulen180f7d50m30k18: 457985 rows, 227535 columns, 1233372 nonzeros Thread count: 8 physical cores, 16 logical processors, using up to 8 threads Optimize a model with 457985 rows, 227535 columns and 1233372 nonzeros Model fingerprint: 0x14c90069 Variable types: 33102 continuous, 194433 integer (0 binary) Coefficient statistics: Matrix range [1e+00, 2e+02] Objective range [1e+00, 1e+00] Bounds range [1e+00, 1e+05] RHS range [1e+00, 3e+02] Presolve removed 211497 rows and 111352 columns (presolve time = 7s) ... Presolve removed 227114 rows and 113578 columns Presolve time: 7.59s Presolved: 230871 rows, 113957 columns, 661696 nonzeros Model reduction: 50% Variable types: 0 continuous, 113957 integer (113246 binary) Solve time reduction: 8 minutes instead of 15 hours

and counting

Continuous Optimization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Continuous Algorithms

for LP / QP / QCP

Primal & dual simplex method

- Numerically stable (if you are careful)
- Easy to restart after a model modification
- Does not parallelize well
- Basic solutions are often desirable

Barrier method

- Numerically more challenging
- Restart remains open research question
- Can effectively exploit multiple cores
- Crossover to Simplex Solution

Concurrent optimization

- Run both simplex and barrier simultaneously
- Solution is reported by first one to finish
- Great use of multiple CPU cores
- Best mix of speed and robustness
- Deterministic and non-deterministic versions available

n n

Simplex Algorithms

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

Linear Program

• Problem statement

 $\begin{array}{ll} \min \ c'x \\ s.t. \ Ax &= b \\ x &\geq 0 \end{array}$

- Optimal solution can be found at a vertex
 - Intersection of n constraints satisfied with equality
 - Pick Ax = b and $x_N = 0$, |N| = n m
 - Then $x_B = A_B^{-1}(b Nx_N)$, $B = \{1, ..., n\} \setminus N$
- Basis
 - Partition: $\{1, \dots, n\} = B \cup N, B \cap N = \emptyset$
 - Such that A_B is non-singular

Linear Program

- Primal feasibility
 - All constraints must be satisfied
 - $x_B \geq 0$
- Dual feasiblity (optimality)
 - Consider rays of the recession cone
 - Scalar product with objective function are the reduced cost $z_j = c_j c_B^T A_B^{-1} A_j$
 - Dual feasible if $z_N \ge 0$

Primal Simplex

- Start with primal feasible basis
- But dual infeasible

- Start with dual feasible basis
- But primal infeasible

Primal Simplex

- Pricing: Pick an improving direction
- Ratio Test: Pick feasible intersection

- Start with dual feasible basis
- But primal infeasible

Primal Simplex

- Pricing: Pick an improving direction
- Ratio Test: Pick feasible intersection

- Pricing: Pick a violated constraint
- Ratio Test: Pick dual feasible intersection

Primal Simplex

• Update Basis

- Pricing: Pick a violated constraint
- Ratio Test: Pick dual feasible intersection

Primal Simplex

• Update Basis

Dual Simplex

• Update Basis

Primal Simplex

- Update Basis
- Repeat

Dual Simplex

• Update Basis

Primal Simplex

- Update Basis
- Repeat

- Update Basis
- Repeat

Primal Simplex

- Repeat?
- Degeneracy: No progress

- Update Basis
- Repeat

Dual Simplex

Repeat?

•

Primal Simplex

- Repeat?
- **Degeneracy: No progress Degeneracy: No progress in objective** ۲ If you can get stuck due to degeneracy, why not move through the interior?

Computational Steps of the Simplex Algorithms

Simplex Log

- Dual feasible -> Dual Simplex
- Degeneracy is real
 - No more progress in objective
 - Gurobi removes degeneracy by perturbing
 - Gets out of degeneracy and solves the *perturbed* model
 - But needs to solve unperturbed model using primal Simplex
 - Primal also runs into degeneracy and perturbs the problem (but less)
 - Solves primal perturbed model
 - Final basis happens to be primal and dual feasible for unperturbed problem

Iteration	Objective	Primal Inf.	Dual Inf.	Time
0	4.3000000e+01	7.750000e+01	0.000000e+00	37s
[]				
412980	1.8708334e+03	1.382705e+02	0.000000e+00	516s
413737	1.8710001e+03	1.087931e+03	0.000000e+00	521s
414379	1.8710001e+03	1.228713e+02	0.000000e+00	527s
415021	1.8710001e+03	2.513642e+01	0.000000e+00	530s
415481	1.8710001e+03	4.105177e+01	0.000000e+00	538s
415921	1.8710001e+03	1.100249e+02	0.000000e+00	545s
416261	1.8710001e+03	9.163224e+02	0.000000e+00	553s
416621	1.8710001e+03	5.824055e+00	0.000000e+00	560s
416881	1.8710001e+03	5.413714e+00	0.000000e+00	568s
417121	1.8710001e+03	1.704219e+01	0.000000e+00	577s
417351	1.8710001e+03	3.007301e+00	0.000000e+00	585s
Perturb objective with value 0.0006 at iteration 417581				
417581	1.8710001e+03	3.461285e-01	0.000000e+00	594s
417816	1.8710001e+03	0.000000e+00	0.000000e+00	601s
Perturb rhs with value 1e-05				
419742	1.8710000e+03	0.000000e+00	1.960654e-01	608s
420384	1.8710000e+03	0.000000e+00	2.572093e-01	613s
[]				
443092	1.8710000e+03	0.000000e+00	2.761620e-01	807s
Perturbation ends				
443913	1.8710000e+03	0.000000e+00	0.000000e+00	812s

Violations(dual): const 0.000000e+00, bound 0.000000e+00, rc 3.254286e-12 Scaled violations: const 0.000000e+00, bound 0.000000e+00, rc 5.206857e-11

ng n

Barrier Algorithm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

Barrier Algorithm

- Start with an interior point
- Move along central path:
 - Predictor: Take a step of a certain size along the tangent direction of the central path
 - Corrector: Move back to central path
 - Iterate until close enough
- Converges to analytic center of optimal face
- How do we know when we are done?

Crossover

- Basic solutions are often desired since they are much sparser (more variables are at their bounds)
- Crossover:
 - Move from interior point solution to a vertex solution
 - In theory o(n) pivot operations
 - In practice numerical inaccuracies (of barrier solution) may require cleanup with Simplex

Barrier Algorithm

- Dikin's Algorithm: apply affine transformation to stay away from the boundary at each iteration
- Karmarkar's Algorithm: apply projective transformation to re-center the solution at each iteration
- Logarithmic Barrier Algorithm: use a logarithmic penalty function on the variable bounds to stay centered

Foundation: Duality

• Primal Linear Program:

$$\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

• Weighted combination of constraints (y) and bounds (z):

 $y^{T}Ax + z^{T}x \ge y^{T}b$ (with $z \ge 0$) $(y^{T}A + z^{T})x \ge y^{T}b$

• Dual Linear Program:

$$\begin{array}{ll} \max & y^T b \\ \text{s.t.} & y^T A + z^T &= c^T \\ & z &\geq 0 \end{array}$$

Obvious: Weak Duality

$$c^T x^* \ge {y^*}^T b$$

(if primal and dual are both feasible)

Strong Duality Theorem:

$$c^T x^* = y^{*T} b$$

(if primal and dual are both feasible)

#1: Interior Point Method that follows the central path

• Start with linear equations that define the optimality conditions for the primal and dual LPs

$$Ax = b, x \ge 0$$
 (primal feasibility)

$$A^{T}y + z = c, z \ge 0$$
 (dual feasibility)

$$c^{T}x - b^{T}y = 0 \iff c^{T}x - (Ax)^{T}y = 0 \iff (c^{T} - y^{T}A)x \iff z^{T}x = 0$$

strong duality

$$x = Diag(x); z = Diag(z); e = (1, 1, ..., 1)$$

$$F(x, y, z) = \begin{pmatrix} Ax - b \\ A^{T}y + z - c \\ XZe \end{pmatrix} = 0$$
 Can be solved with Newton's method,
but iterates need not be interior points yet...

#1: Interior Point Method that follows the central path

• Adjust complementary slackness conditions to consider only interior point solutions

$$F(x, y, z) = \begin{pmatrix} Ax - b \\ A^T y + z - c \\ XZe - \mu e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$x_j * z_j = \mu > 0,$$
$$j = 1, \dots, n$$

- Start with $\mu > 0$, systematically reduce it to 0 to converge to optimal primal dual pair to of LP
- Now we have an interior point method, but what makes it a barrier method?

#2: Logarithmic Barrier Algorithm

• Dual Barrier Algorithm

• In both cases, differentiate the unconstrained optimization and apply Newton's method

#2: Logarithmic Barrier Algorithm

- Primal Dual Barrier Algorithm
 - Optimality conditions for min $c^T x \mu \sum_{j=1}^n \log x_j y^T (Ax b)$:

$$c - y^{T}A - \mu X^{-1} = 0 \qquad \nabla_{x} \qquad (1) \iff (3+5)$$

$$\underline{Ax - b} = 0 \qquad \nabla_{y} \qquad (2)$$

• Optimality conditions for
$$\max \begin{array}{ll} b^{T}y + \mu \sum_{j=1}^{n} \log z_{j} - x^{T} (A^{T}y + z - c): \\ c - y^{T}A - z &= 0 \\ x^{T}A^{T} - b^{T} &= 0 \\ \mu Z^{-1} - X &= 0 \end{array} \qquad \begin{array}{ll} \nabla_{x} & (3) \\ \nabla_{y} & (4) \bigstar (2) \\ \nabla_{z} & (5) \end{array}$$

• These are duals of each other. From either one can derive (e.g. multiply (5) by Z)

Look
familiar?
$$F(x, y, z) = \begin{pmatrix} Ax - b \\ A^Ty + z - c \\ XZe - \mu e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 boes not matter
how we got here;
we can use
Newton's Method

Applying Newton's Method

Newton's method:

$$x_{k+1} = x_k - [J(x_k)]^{-1} f(x_k), \text{ where } J(x)_{ij} = \frac{\partial f_i}{\partial x_j \partial x_i} (x)$$

Apply to:

$$F(x, y, z) = \begin{pmatrix} Ax - b \\ A^T y + z - c \\ XZe - \mu e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$J(x, y, z) = \begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{pmatrix}$$
$$\nabla_x \quad \nabla_y \quad \nabla_z$$

Starting point
$$(x_0, y_0, z_0) > 0$$
, $F(x_0, y_0, z_0) = \begin{pmatrix} Ax_0 - b \\ A^T y_0 + z_0 - c \\ X_0 Z_0 e - \mu e \end{pmatrix}$

At each iteration solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z_0 & 0 & X_0 \end{pmatrix} \begin{pmatrix} \Delta_x \\ \Delta_y \\ \Delta_z \end{pmatrix} = \begin{pmatrix} Ax_0 - b \\ A^Ty_0 + z_0 - c \\ X_0Z_0e - \mu e \end{pmatrix}$$
Applying Newton's Method

Termination of the Barrier Algorithm

Recall

$$Ax = b, x \ge 0$$

$$A^{T}y + z = c, z \ge 0$$

$$c^{T}x - b^{T}y = 0 \iff z^{T}x = 0$$

(primal feasibility) (dual feasibility) (duality gap \Leftrightarrow complementary slackness)

- At each iteration
 - Duality gap can be shown to reduce
 - · Albeit neither primal nor dual objective needs change monotonicaly
- Terminate when normalized duality gap and complementary slackness within tolerance:

Computational Steps of the Barrier Algorithm

* Lustig, I.J. (1990). "Feasibility issues in a primal-dual interior point method for linear programming," Mathematical Programming, 49(2), 145-162

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 39

Barrier Log

- Statistics about most expensive operation
- Termination when complementarity is small enough
- Continue with crossover
- Finish up with Simplex

Ordering time: 0.00s

```
Barrier statistics:

Dense cols : 1

AA' NZ : 1.056e+03

Factor NZ : 4.200e+03 (roughly 1 MB of memory)

Factor Ops : 8.603e+04 (less than 1 second per iteration)

Threads : 1
```

	Obje	ective	Residual		
	$c^T x$	$b^T y$	$ Ax - b A^Ty + z -$	$-c z^T x $	
Iter	Primal	Dual	Primal Dual	Compl	Time
0	-2.88769591e+03	-0.00000000e+00	5.74e+03 0.00e+0	0 2.93e+01	0s
1	-2.93201530e+03	-2.32719862e+02	6.17e+02 2.33e-0)2 7.21e+00	0s
2	-1.20511641e+03	-2.09346815e+02	0.00e+00 2.08e-1	7.34e-01	0s
3	-3.12189924e+02	-2.58701130e+02	0.00e+00 5.55e-1	7 3.94e-02	0s
4	-3.00241585e+02	-2.99695549e+02	0.00e+00 5.55e-1	7 4.02e-04	0s
5	-3.00000246e+02	-2.99999695e+02	0.00e+00 2.08e-1	7 4.06e-07	0s
6	-3.00000000e+02	-3.00000000e+02	0.00e+00 1.14e-1	.6 4.06e-10	0s
7	-3.00000000e+02	-3.0000000e+02	7.11e-15 1.44e-1	5 4.06e-16	0s

Barrier solved model in 7 iterations and 0.36 seconds (0.83 work units) Optimal objective -3.0000000e+02

Crossover log...

24 0	DPushes DPushes	remaining remaining	with with	DInf DInf	0.0000)000e+0)000e+0	00		0s 0s
1 0	PPushes PPushes	remaining remaining	with with	PInf PInf	0.0000)000e+0)000e+0	00		0s Os
Push ph	nase comp	olete: Pinf	0.00	00000)e+00,	Dinf (.0000000)e+00	0s
Iteration 28	n Obje -3.000	ective)0000e+02	Pri 0.00	lmal])0000e	Inf. e+00	Dual 0.0000	Inf. 000e+00	Time Os	

Essential Differences – Simplex vs Barrier

Simplex	Barrier					
 Thousand/millions of iterations on extremely sparse matrices Each iteration extremely cheap 	Dozens of iterations on denser matricesEach iteration is expensive					
 Few opportunities to exploit parallelism Nonzero structure of matrices changes with every iteration Computational effort spread out over several procedures, none of which typically dominate the work in an iteration 	 Multiple opportunities to exploit parallelism Nonzero structure of matrices is unchanged Computational effort focused in two or three procedures that dominate the overall run time 					
Can be warm-startedEffectively handles problem modifications	Barrier warm-start still an open research topic					
Primal or Dual degeneracy can be problematic	No issues with degenerate extreme points					

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved |41

LP Performance

Performance results:

- Gurobi 9.5, Intel(R) Xeon (R) E3-1240 v5 (4 core at 3.5GHz)
- Simplex on 1 core, Barrier on 4 cores
- Concurrent with 1 thread dual, 3 threads barrier
- Result for models that take >1s

Improving Default Performance

How can I use my newfound knowledge about Gurobi's algorithmic features to get better LP performance?

- Typically, defaults are well suited
 - Uses concurrent LP if problem large enough
 - Using 8-16 threads is often the sweet spot for performance, but you may want to play with that
- If your models are reliably best solved by one of the concurrent algorithms only use that algorithm
 - Avoid contention memory bus
 - Avoid synchronization (for deterministic case)
- Mostly performance issues are due to degeneracy or numerical difficulties – consider your model!
- For problems with special structure:
 - Sifting when cols >> rows: Parameter Sifting=1,2
 - Network Algorithm (new in 10.0.0): Parameter NetworkAlg=1
 - Gurobi heuristically will chose those by default

n n

Discrete Optimization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

LP based Branch-and-Bound

- Solve LP relaxation of the problem (root)
 - Gives rise to first lower bound
 - v = 3.5 (fractional)
 - Branch on v: $v \le 3$ and $v \ge 4$
- Solve child node:
 - *x* = 2.3
 - Branch on $x: x \le 2$ and $x \ge 3$
- Solve child node:
 - Solution is integer feasible
 - Gives rise to first upper bound
 - Gives rise to optimality gap
- Solve child node:
 - *y* = 1.7
 - Branch on $y: y \le 0$ and $y \ge 1$

LP based Branch-and-Bound

- Solve child node:
 - Node is infeasible
- Solve child node:
 - *z* = 0.4
 - Branch on $z: z \le 0$ and $z \ge 1$
- Solve child node:
 - Cutoff the node: Node objective exceeds current upper bound
- Solve child node:
 - *z* = 0.3
 - Branch on $z: z \le 0$ and $z \ge 1$
- Solve child node:
 - Node is infeasible

LP based Branch-and-Bound

- Solve more nodes:
 - Minimum of the objective all active node relaxations gives rise to new lower bound
- When gap reaches 0 current incumbent solution is proven to be optimal
 - In practice, "good" solutions are good enough
 - Since proving optimality may take a long time

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved |49

Each box represents a giant bag of tricks

• To cover everything would take weeks

A sampling of techniques instead

• One from each of the most important boxes

[1] Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

- [2] Achterberg: "Constraint Integer Programming" (2007)
- [3] http://plato.asu.edu/ftp/milpc.html

Presolve

• Tighten formulation and reduce problem size

Node selection

• Select next subproblem to process

Node presolve

Additional presolve for subproblem

Solve continuous relaxations

• Gives a bound on the optimal integral objective

Conflict analysis

Learn from infeasible subproblems

Cutting planes

Cut off relaxation solutions

Primal heuristics

• Find integer feasible solutions

Branching variable selection

• Crucial for limiting search tree size

Presolve

• Tighten formulation and reduce problem size

Node selection

• Select next subproblem to process

Node presolve

Additional presolve for subproblem

Solve continuous relaxations

• Gives a bound on the optimal integral objective

Conflict analysis

Learn from infeasible subproblems

Cutting planes

Cut off relaxation solutions

Primal heuristics

• Find integer feasible solutions

Branching variable selection

Crucial for limiting search tree size

Cutting Planes

- A cut (cutting plane) is a constraint that reduces the feasible region of the continuous relaxation but not its integer hull
- Separation of cuts: Given an x that is feasible for the relaxation, find a cut for which x is infeasible and add it to the relaxation
- Thus, the relaxation more closely approximates the integer hull

The cut menu

Gomory Mixed Integer Rounding (MIR) StrongCG cuts Lift and Project Infeasibility cuts Flow cover Flow path Network MIP separation cuts Relax and Lift User Cuts

Cover Implied bound Projected Implied bound Clique **GUB** Cover Zero-half Mod-K **RIT** BOP SubMIP Outer Approximation

Chvatal-Gomory Cuts

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, consider the rational polyhedron

 $P = \{x \in \mathbb{R}^n | Ax \le b, x \ge 0\}$

We want to find the integer hull

 $P_I = \operatorname{conv}\{x \in \mathbb{Z}^n | Ax \le b, x \ge 0\}$

Chvatal-Gomory procedure:

- <u>Choose non-negative multipliers $\lambda \in \mathbb{R}^{m}_{\geq 0}$ </u>
- Aggregated inequality $\lambda^T Ax \leq \lambda^T b$ is valid for *P* because $\lambda \geq 0$
- Relaxed inequality $[\lambda^T A]x \leq \lambda^T b$ is still valid for *P* because $x \geq 0$
- Rounded Inequality $[\lambda^T A]x \leq [\lambda^T b]$ is still valid for P_I because $x \in \mathbb{Z}^n$

CG procedure suffices to generate all non-dominated valid inequalities for *P*_{*I*} in a finite number of iterations!

- $P^{(0)} = P, P^{(k)} = P^{(k-1)} \cap \{CG \text{ cuts for } P^{(k-1)}\}: k-th CG \text{ closure of } P \text{ is a polyhedron!} \}$
- CG rank of a valid inequality for P_I : minimum k s.t. inequality is valid for $P^{(k)}$
- Higher rank cuts get more and more dense and numerically unstable

Knapsack Cover Cuts

A (binary) knapsack is a constraint $ax \le b$ with

- $a_i \ge 0$ the weight of item i, i = 1, ..., n
- $b \ge 0$ the capacity of the knapsack

An index set $C \subseteq \{1, ..., n\}$ is called a cover, if $\sum_{i \in C} a_i > b$

• You can't fit all items from C in the knapsack

A cover *C* implies a cover inequality: $\sum_{i \in C} x_i \le |C| - 1$

• You must leave out at least one of them

Interesting for cuts: minimal covers

• $\sum_{i \in C} a_i > b$ and $\sum_{i \in C'} a_i \le b$ for all $C' \subset C, C' \neq C$

Consider knapsack $3x_1 + 5x_2 + 8x_3 + 10x_4 + 17x_5 \le 24$, $x \in \{0,1\}^5$ A minimal cover is C = $\{1,2,3,4\}$

Resulting cover inequality: $x_1 + x_2 + x_3 + x_4 \le 3$

Lifting

- If $x_5 = 1$, then $x_1 + x_2 + x_3 + x_4 \le 1$
- Hence, $x_1 + x_2 + x_3 + x_4 + 2x_5 \le 3$ is valid

Consider (1,1,1,0,1/17)

- Need to solve knapsack problem $\alpha_j := d_0 max\{dx \mid ax \le b a_j\}$ to find lifting coefficient for variable x_i
 - Use dynamic programming to solve knapsack problem

Cutting Planes – Performance

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013) benchmark data based on CPLEX 12.5

Cuts Statistics Log

 At the end of a MIP log we usually find statistics about which cuts have been added to the LP relaxation:

> 43287 0 cutoff 56 4.7096e+07 4.7092e+07 0.01% 375 1366s Cutting planes: Gomory: 37 Lift-and-project: 3 Cover: 8 Implied bound: 19 MIR: 326 StrongCG: 14 Flow cover: 624 Inf proof: 4 Zero half: 19 Mod-K: 1 Explored 44197 nodes (16447802 simplex iterations) in 1366.22 seconds (2785.50 work units) Thread count was 8 (of 16 available processors)

Presolve

• Tighten formulation and reduce problem size

Node selection

Select next subproblem to process

Node presolve

Additional presolve for subproblem

Solve continuous relaxations

• Gives a bound on the optimal integral objective

Conflict analysis

Learn from infeasible subproblems

Cutting planes

Cut off relaxation solutions

Primal heuristics

• Find integer feasible solutions

Branching variable selection

Crucial for limiting search tree size

Branching variable selection

Given node relaxation solution x^*

- Any integer variable with fractional x_i*can be branched on
 - Branching on *j* creates two child nodes with
 - $x_j \leq \lfloor x_j^* \rfloor$
 - $x_j \ge \left[x_j^*\right]$
- How to choose j?
 - Choice has a dramatic impact on the size of the search tree

What's a good branching variable?

- Superb: fractional variable infeasible in both branch directions
 - Immediately prune the node as infeasible
- Great: infeasible in one direction
- Good: both directions move the objective

Expensive to predict which branches lead to infeasibility or big objective moves

- Strong branching
 - Truncated LP solve for every possible branch at every node
 - Rarely cost effective
- Need a quick estimate

Pseudo-Costs

Use historical data to predict impact of a branch:

- Record $cost(x_j) = \Delta obj / \Delta x_j$ for each branch in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
- Use table to predict cost of a future branch

Pseudo-Costs

Use historical data to predict impact of a branch:

- Record $cost(x_j) = \Delta obj / \Delta x_j$ for each branch in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
- Use table to predict cost of a future branch

Pseudo-Costs

Use historical data to predict impact of a branch:

- Record $cost(x_j) = \Delta obj / \Delta x_j$ for each branch in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
- Use table to predict cost of a future branch

What do you do when there is no history?

• E.g., at the root node

Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]

- Always compute up/down cost (using strong branching) for new fractional variables
 - Initialize pseudo-costs for every fractional variable at root

Reliability branching [Achterberg, Koch & Martin, 2005]

• Do not rely on historical data until pseudo-cost for a variable has been recomputed r times

Branching Rules – Performance

Presolve

• Tighten formulation and reduce problem size

Node selection

Select next subproblem to process

Node presolve

Additional presolve for subproblem

Solve continuous relaxations

• Gives a bound on the optimal integral objective

Conflict analysis

Learn from infeasible subproblems

Cutting planes

Cut off relaxation solutions

Primal heuristics

• Find integer feasible solutions

Branching variable selection

• Crucial for limiting search tree size

MIP solvers find new feasible solutions in two ways

- Branching
- Primal heuristics

Properties of a good heuristic

- Quick
 - Finds solutions earlier than branching
- Captures problem structure
 - Exploits structure more effectively than branching
- General
 - Finds solutions for lots of models

Gurobi has more than 30 heuristic types

• Adaptive strategies decide when to apply each

Types of MIP Heuristics

Constructive heuristics

- No knowledge about other solutions needed
- Goal is to find solution early and to define "starting" point for improvement heuristics
- May produce poor quality solutions
- Typically fast (but not always, e.g. NoRel, ZeroObj)

Improvement heuristics

- Can be more expensive
- Need at least one known to solution to work on
- High quality solutions
- Provide better cutoff bound to prune tree
- Can be effective even on low quality solutions

Example MIP Heuristic - Rounding

Rounding Heuristic

- Start with:
 - Solution of relaxation
- Round integer variables

Quick?

• Very quick

Captures problem structure?

• No

General?

• Finds solutions to lots of easy models

Example MIP Heuristic - RINS

Relaxation Induced Neighborhood Search

- Start with:
 - Node relaxation solution
 - Best known integer feasible solution
- Fix integer variables whose values agree in both
- Solve a MIP on the rest

Quick?

- No solves a MIP
 - Integer infeasibilities at a node where RINS is called is the minimum number of unfixed variables

Captures problem structure?

- Yes searches a neighborhood of the relaxation
- No neighborhood considers mathematical calculations, not problem structure

General?

Yes – effective on a variety of models

Example MIP Heuristic - NoRel

No Relaxation Heuristic

- Start from some (feasible or infeasible) vector
 - Constructed by quick heuristic
- Solve smaller sub-MIPs (with fixed variables) to decrease infeasibility or objective value
 - Use multiple threads to solve sub-MIPs in parallel
- Various neighborhood strategies
 - adaptive to spend more time on more successful ones

Quick?

• No - runs "forever", until work (NoRelHeurWork) or time (NoRelHeurTime) limit is reached

Captures problem structure?

• No – ad-hoc generation of sub-MIPs

General?

- No main use when relaxations solve too slowly
- Yes can be successful to find good solution in limited time

Heuristic Log Lines

Found heuristic solution: objective 1.377283e+07 Presolve removed 918 rows and 26705 columns Presolve time: 2.50s Presolved: 1269 rows, 21712 columns, 398388 nonzeros Found heuristic solution: objective 2770423.8600 Variable types: 0 continuous, 21712 integer (21709 binary) Found heuristic solution: objective 2762983.8600

Root relaxation: objective 1.010525e+06, 1504 iterations, 0.06 seconds (0.13 work units)

Nodes		Cu	rrent 1	Node	e		Obje	ecti	ve Bounds		Wor}	Σ
ol Une:	xpl	Obj	Depth	In	tInf		Incumber	nt	BestBd	Gap	It/Node	Time
0	0 10	10524	.73	0	269	27	62983.8	5 10	10524.73	63.4%	_	3s
0	0			-	2	736	029.710) 10	10524.73	63.1%	_	3s
0	0				27	727	449.4800) 10	10524.73	62.9%	-	3s
0	0				26	593	681.7100) 10	11189.12	62.5%	-	3s
0	0 10	38921	.12	0	<u>523</u>	26	93681.73	. 10	38921.12	61.4%	-	3s
0	0				8	670	522.0600) 10	38921.12	61.1%	-	4s
Heuristic found better							inte	_OW	er bound o variables i	on # unfi o RINS be	xed euristic	
	Nodes ol Une: 0 0 0 0 0 0 0 0	Nodes ol Unexpl 0 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0	Nodes Cu: 0 0 1010524 0 0 0 0 0 0 0 0 0 0 0 1038921 0 0 1038921 0 0 1038921 0 0 1038921 0 0 1038921	Nodes Current I 0 0 1010524.73 0 0 0 0 0 0 0 0 1038921.12 0 0 0 Heuristic found better incumbent solution	Nodes Current Node 0 0 1010524.73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1038921.12 0 0 0 0 0 Heuristic found better incumbent solution	Nodes Current Node 0 0 1010524.73 0 269 0 0 27 0 27 0 0 27 0 27 0 0 27 0 27 0 0 27 0 27 0 0 1038921.12 0 523 0 0 1038921.12 0 523 0 0 0 80 Heuristic found better incumbent solution	Nodes Current Node ol Unexpl Obj Depth IntInf 0 0 1010524.73 0 269 27 0 0 2736 2727 0 0 2693 2693 0 0 1038921.12 0 523 26 0 0 0 8670 Heuristic found better incumbent solution 1000000000000000000000000000000000000	Nodes Current Node Object 0 0 1010524.73 0 269 2762983.86 0 0 1010524.73 0 269 2762983.86 0 0 0 2736029.7100 2727449.4800 0 0 2727449.4800 2693681.7100 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 0 523 2693681.710 0 0 1038921.12 10 10 10 10	Nodes Current Node Objection 0 0 1010524.73 0 269 2762983.86 10 0 0 1010524.73 0 269 2762983.86 10 0 0 0 2736029.7100 10 0 0 2727449.4800 10 0 0 2693681.7100 10 0 0 1038921.12 0 523 2693681.71 10 0 0 0 2670522.0600 10 Heuristic found better incumbent solution Lowe	Nodes Current Node Objective Bounds ol Unexpl Obj Depth IntInf Incumbent BestBd 0 0 1010524.73 0 269 2762983.86 1010524.73 0 0 0 2736029.7100 1010524.73 0 0 2727449.4800 1010524.73 0 0 2693681.7100 1011189.12 0 0 1038921.12 0 523 2693681.71 1038921.12 0 0 0 1038921.12 0 523 2693681.71 1038921.12 Heuristic found better Incumbent solution Lower bound of integer variables integer variab	Nodes Current Node Objective Bounds ol Obj Depth IntInf Incumbent BestBd Gap 0 0 1010524.73 0 269 2762983.86 1010524.73 63.4% 0 0 0 2736029.7100 1010524.73 63.4% 0 0 2727449.4800 1010524.73 62.9% 0 0 2693681.7100 1011189.12 62.5% 0 0 1038921.12 0 523 2693681.71 1038921.12 61.4% 0 0 0 1038921.12 0 523 2693681.71 1038921.12 61.1% Heuristic found better Kower bound on # unfit Integer variables in RINS here Integer variables in RINS here	Nodes Current Node Objective Bounds Work O 0 Depth IntInf Incumbent BestBd Gap It/Node O 0 1010524.73 0 269 2762983.86 1010524.73 63.4% - O 0 1010524.73 0 269 2762983.86 1010524.73 63.4% - O 0 2736029.7100 1010524.73 63.1% - O 0 2727449.4800 1010524.73 62.9% - O 0 2693681.7100 1011189.12 62.5% - O 0 1038921.12 0 523 2693681.71 1038921.12 61.4% - Neuristic found better 1000000000000000000000000000000000000

Improving Default Performance

How can I use my newfound knowledge about Gurobi's algorithmic features to get better MIP performance? Examine node logs to identify likely areas of performance bottlenecks

- Does the lack of progress involve the upper bound, lower bound or both?
- Assess whether node LP solve time is the primary bottleneck
 - Do not: adjust branching parameters if Gurobi is in the root cut loop
 - Do: consider using Gurobi's No Relaxation Heuristic (NoRelHeur parameter) if node LP solve times are highly problematic.

Distinguish parameters that primarily help upper bound from those that primarily help lower bound

- Example: Don't raise intensity of heuristics when log indicates lack of progress in the lower bound is the performance problem
 - Aggressive cuts, MIPFocus = 2 or 3 more likely to help

Improving Default Performance

How can I use my newfound knowledge about Gurobi's algorithmic features to get better MIP performance? Sometimes reducing or disabling completely default parameter settings can help

- Some features may not succeed, so don't spend time on them
- Some features may be better covered by others
 - Turning off heuristics (or reducing their intensity) even though node log indicates they are effectively finding good solutions.
 - Branching may be able to find equally good solutions, resulting faster node throughput will give branching more opportunity to succeed.
 - Turning off cuts (or reducing their intensity) when finding good solutions is important and progress in the lower bound is modest
- Gurobi's concurrentMIP feature can help
 - 2 or more runs in parallel on the same model with different parameter settings

Consider the fundamental tradeoff between node processing rate and computation in each node

Thank You

For more information: www.gurobi.com

Roland Wunderling Senior Developer

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 74

Parallelization

Parallelization opportunities

- Parallel probing during presolve
 - Almost no improvement
- Use barrier or concurrent LP for initial LP relaxation solve
 - Only helps for large models
- Run heuristics or other potentially useful algorithms in parallel to the root cutting plane loop
 - Moderate performance improvements: 20-25%
 - Does not scale beyond a few threads
- Solve branch-and-bound nodes in parallel
 - Main speed-up for parallel MIP
 - Performance improvement depends a lot on shape of search tree
 - Typically scales relatively well up to 8 to 16 threads

Parallelization

Parallelization issues

- Determinism
- Load balancing
- CPU heat and memory bandwidth
 - Additional threads slow down main thread
- Root node does not parallelize well
 - Sequential runtime of root node imposes limits on parallelization speed-up
 - Amdahl's law
- A dive in the search tree cannot be parallelized
 - Parallelization only helps if significant number of dives necessary to solve model

Parallel MIP – Performance

node count speed-up

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013) benchmark data based on CPLEX 12.5, models with ≥ 10 seconds solve time

Presolve - Coefficient Strengthening

Strictly Stronger?

Consider:

• $5b_1 + 3b_2 + 3b_3 + 3b_4 + 8b_5 \le 8$

Stronger...?

• $4b_1 + 4b_2 + 4b_3 + 4b_4 + 8b_5 \le 8$

Probably, but...

- Doesn't strictly dominate original
 - (1, 0, 0, 0, 0.5) satisfies second, but not first
- Could weaken relaxation
 - No definitive metrics
- Hippocratic oath of presolve
 - "First, do no harm"
 - Lots of cases where it hurts

Presolve - Cost Versus Benefit

Trade off cost of reduction vs benefit Why worry about cost?

• Only one presolve for each MIP model

A few reasons:

- One presolve can still be expensive
- Aggressive use of sub-MIP heuristics (RINS)
 - Lots of "truncated" MIP solves
 - Multiple presolves, on smaller models
 - Presolve can be dominant cost on each
- Strengthening as a cut separator