
Roland Wunderling

October 2022

Gurobi Days Paris

Advanced Gurobi
Algorithms

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

•Problem Types

•Presolve

•Algorithms for Continuous
Optimization

•Algorithms for Discrete Optimization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 2

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

Problem Types

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

Continuous

• LP

• Simplex

• Barrier (+ crossover)

• Convex QP
• QP Simplex

• Barrier

• Convex QCP
• Barrier

• Non-convex QP
• Same as for non-convex MIQCP

Mixed Integer

• MILP

• Branch-and-Cut

• MIQP (convex)

• MIQCP (convex)
• Outer approximation

• MIQCP (non-convex)
• Spatial branching

Problem typesProblem types
and Algorithms

Presolve

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

Presolve

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

• Purpose of Presolve
• Reduce the model size

• Improve linear algebra during solve

• Tighten the formulation (for MIP)

• Identify problem sub-structure

Presolve

Original
Model

Presolved
Model

So
lu

tio
n

So
lu

tio
n

Presolve Optimize Unpresolve

• Some Presolve Reduction
• Bound tightening

• Aggregation

• Coefficient strengthening

• …

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 6

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 7

Given a constraint

• 𝑎𝑥 ≤ 𝑏,
where 𝑙 ≤ 𝑥 ≤ 𝑢 and
some 𝑥𝑗 integral

Replace with 𝑎′𝑥 ≤ 𝑏′, such that

• It is valid for all 𝑥 ∈ 𝑋

• It dominates the original
constraint

Presolve – Coefficient
Strengthening

Example

• Knapsack constraint with binary variables:

10𝑏1+ 5𝑏2 + 10𝑏3 +11𝑏4 ≤ 23

• After strengthening:

𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 ≤ 2

• Is it Valid?
• Rewrite as

10 𝑏1 +𝑏2 + 𝑏3 + 𝑏4 − 5𝑏2 +𝑏4 ≤ 23
• Infeasible for

𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 ≥ 3

• Is it stronger?
• Consider

𝑏1, 𝑏2, 𝑏3, 𝑏4 = (1,
3

5
, 1, 0)

For MIP more powerful than just for LP:

• Exploit integrality

• Round fractional bounds and right-hand sides

• Lifting/coefficient strengthening

• Probing

• Does not need to preserve duality

• We only need to “uncrush” a primal solution

• Neither a dual solution nor a basis needs to be “uncrushed”

• Larger work limits
• For a given problem size solving a MIP takes much more time than solving an LP

• We can spend more time in presolve

Impact of Presolve

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 8

Presolve – Performance Impact on MIP

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 9

0%

5%

10%

15%

20%

25%

30%

35%

40%

45% 42%

17%

14% 13%

10% 9%

6% 6% 6% 5% 4% 4% 3% 3% 3% 3%
1% 1% 1% 0% 0% 0% 0%

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v3 @ 3.40GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 3182 models:
- degradation measured individually on >10s bracket: ~1200 models
Benchmark data based on Gurobi 6.5
Results from Achterberg, Bixby, Gu, Rothberg, Weninger (2020): “Presolve Reductions in Mixed Integer Programming”

Presolve Log

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 10

gfd-schedulen180f7d50m30k18: 457985 rows, 227535 columns, 1233372 nonzeros

Thread count: 8 physical cores, 16 logical processors, using up to 8 threads

Optimize a model with 457985 rows, 227535 columns and 1233372 nonzeros

Model fingerprint: 0x14c90069

Variable types: 33102 continuous, 194433 integer (0 binary)

Coefficient statistics:

Matrix range [1e+00, 2e+02]

Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+05]

RHS range [1e+00, 3e+02]

Presolve removed 211497 rows and 111352 columns (presolve time = 7s) ...

Presolve removed 227114 rows and 113578 columns

Presolve time: 7.59s

Presolved: 230871 rows, 113957 columns, 661696 nonzeros

Variable types: 0 continuous, 113957 integer (113246 binary)
Model reduction: 50%
Solve time reduction:

8 minutes instead of 15 hours
and counting

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Continuous Optimization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Primal & dual simplex method

• Numerically stable (if you are careful)

• Easy to restart after a model
modification

• Does not parallelize well

• Basic solutions are often desirable

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 12

Barrier method

• Numerically more challenging

• Restart remains open research question

• Can effectively exploit multiple cores

• Crossover to Simplex Solution

Continuous Algorithms
for LP / QP / QCP

Concurrent optimization

• Run both simplex and barrier simultaneously

• Solution is reported by first one to finish

• Great use of multiple CPU cores

• Best mix of speed and robustness

• Deterministic and non-deterministic versions available

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

Simplex Algorithms

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

• Problem statement

𝒎𝒊𝒏
𝒔. 𝒕.

𝒄′𝒙
𝑨𝒙 = 𝒃
𝒙 ≥ 𝟎

• Optimal solution can be found at a vertex

• Intersection of n constraints satisfied with
equality

• Pick 𝑨𝒙 = 𝒃 and 𝒙𝑵 = 𝟎, 𝑵 = 𝒏−𝒎

• Then 𝒙𝑩 = 𝑨𝑩
−𝟏 𝒃−𝑵𝒙𝑵 , 𝑩 = 𝟏,… , 𝒏 \𝑵

• Basis

• Partition: 𝟏,… , 𝒏 = 𝑩 ∪𝑵, 𝑩∩𝑵 = ∅

• Such that 𝑨𝑩 is non-singular

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 14

Linear Program

• Primal feasibility

• All constraints must be satisfied

• 𝒙𝑩 ≥ 𝟎

• Dual feasiblity (optimality)

• Consider rays of the recession cone

• Scalar product with objective function are the
reduced cost 𝒛𝒋 = 𝒄𝒋 − 𝒄𝑩

𝑻𝑨𝑩
−𝟏𝑨𝒋

• Dual feasible if z𝑵 ≥ 𝟎

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 15

Linear Program
𝒛𝒋

Primal Simplex

• Start with primal feasible basis

• But dual infeasible

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16

Dual Simplex

• Start with dual feasible basis

• But primal infeasible

Simplex Algorithm

Primal Simplex

• Pricing: Pick an improving direction

• Ratio Test: Pick feasible intersection

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 17

Simplex Algorithm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 17

Dual Simplex

• Start with dual feasible basis

• But primal infeasible

𝑧𝑗 < 0

Primal Simplex

• Pricing: Pick an improving direction

• Ratio Test: Pick feasible intersection

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 18

Dual Simplex

• Pricing: Pick a violated constraint

• Ratio Test: Pick dual feasible
intersection

Simplex Algorithm

𝑥𝐵𝑖 < 0

Primal Simplex

• Update Basis

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

Dual Simplex

• Pricing: Pick a violated constraint

• Ratio Test: Pick dual feasible
intersection

Simplex Algorithm

Primal Simplex

• Update Basis

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 20

Dual Simplex

• Update Basis

Simplex Algorithm

Primal Simplex

• Update Basis

• Repeat

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 21

Dual Simplex

• Update Basis

Simplex Algorithm

Dual Simplex

• Update Basis

• Repeat

Primal Simplex

• Update Basis

• Repeat

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 22

Simplex Algorithm

Dual Simplex

• Update Basis

• Repeat

Primal Simplex

• Repeat?

• Degeneracy: No progress

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 23

Simplex Algorithm

Dual Simplex

• Repeat?

• Degeneracy: No progress in objective

Primal Simplex

• Repeat?

• Degeneracy: No progress

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 24

Simplex Algorithm

If you can get stuck
due to degeneracy,

why not move
through the

interior?

If you can get stuck
due to degeneracy,

why not move
through the

interior?

Primal

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 25

Dual

Computational Steps of the Simplex Algorithms

LU – Decomposition: 𝐴𝐵 = 𝐿𝑈

Primal Vector: 𝐿𝑈𝑥𝐵 = 𝑏 − 𝐴𝑁𝑥𝑁

Dual Vectors: 𝑦𝑇𝐿𝑈 = 𝑐𝐵
𝑇 , 𝑑𝑁 = 𝑦𝑇𝐴𝑁𝑧𝑁 = 𝑦𝑇𝐴𝑁

Dual Update Vectors: Δ𝑦𝑇𝐿𝑈 = 𝑒𝐵𝑖
𝑇 xΔ𝑧𝑁 = Δ𝑦𝑇𝐴𝑁

Pricing: select 𝑗, with 𝑧𝑗 < 0 Pricing: select 𝑖, with 𝑥𝐵𝑖 < 0

Primal Update Vector: Δ𝑥𝐵
𝑇𝐿𝑈 = 𝐴𝑗

Primal Update Vector: Δ𝑥𝐵
𝑇𝐿𝑈 = 𝐴𝑗

Dual Update Vectors: Δ𝑦𝑇𝐿𝑈 = 𝑒𝐵𝑖
𝑇 xΔ𝑧𝑁 = Δ𝑦𝑇𝐴𝑁

Update LU – Decomposition: 𝐿𝑈 → 𝐿𝑈′

Update primal Vector: 𝑥𝐵′ = 𝑥𝐵 + 𝜎Δ𝑥𝐵

Update dual Vector: 𝑧𝑁′ = 𝑧𝑁 + 𝜏Δ𝑧𝑁

Cheap Expensive

Ratio Test: select 𝑖 Ratio Test: select 𝑗

• Dual feasible -> Dual Simplex

• Degeneracy is real

• No more progress in objective

• Gurobi removes degeneracy by perturbing

• Gets out of degeneracy and solves the
perturbedmodel

• But needs to solve unperturbed model using
primal Simplex

• Primal also runs into degeneracy and
perturbs the problem (but less)

• Solves primal perturbed model

• Final basis happens to be primal and dual
feasible for unperturbed problem

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 26

Simplex Log

Iteration Objective Primal Inf. Dual Inf. Time

0 4.3000000e+01 7.750000e+01 0.000000e+00 37s

[...]

412980 1.8708334e+03 1.382705e+02 0.000000e+00 516s

413737 1.8710001e+03 1.087931e+03 0.000000e+00 521s

414379 1.8710001e+03 1.228713e+02 0.000000e+00 527s

415021 1.8710001e+03 2.513642e+01 0.000000e+00 530s

415481 1.8710001e+03 4.105177e+01 0.000000e+00 538s

415921 1.8710001e+03 1.100249e+02 0.000000e+00 545s

416261 1.8710001e+03 9.163224e+02 0.000000e+00 553s

416621 1.8710001e+03 5.824055e+00 0.000000e+00 560s

416881 1.8710001e+03 5.413714e+00 0.000000e+00 568s

417121 1.8710001e+03 1.704219e+01 0.000000e+00 577s

417351 1.8710001e+03 3.007301e+00 0.000000e+00 585s

Perturb objective with value 0.0006 at iteration 417581

417581 1.8710001e+03 3.461285e-01 0.000000e+00 594s

417816 1.8710001e+03 0.000000e+00 0.000000e+00 601s

Perturb rhs with value 1e-05

419742 1.8710000e+03 0.000000e+00 1.960654e-01 608s

420384 1.8710000e+03 0.000000e+00 2.572093e-01 613s

[...]

443092 1.8710000e+03 0.000000e+00 2.761620e-01 807s

Perturbation ends

443913 1.8710000e+03 0.000000e+00 0.000000e+00 812s

Violations(dual): const 0.000000e+00, bound 0.000000e+00, rc 3.254286e-12

Scaled violations: const 0.000000e+00, bound 0.000000e+00, rc 5.206857e-11

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

Barrier Algorithm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

• Start with an interior point

• Move along central path:

• Predictor: Take a step of a certain size along
the tangent direction of the central path

• Corrector: Move back to central path

• Iterate until close enough

• Converges to analytic center of optimal face

• How do we know when we are done?

Barrier Algorithm

o
b

jective

Central
path

Degeneracy
does no harm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 28

• Basic solutions are often desired since they
are much sparser (more variables are at their
bounds)

• Crossover:

• Move from interior point solution to a vertex
solution

• In theory o(n) pivot operations

• In practice numerical inaccuracies (of barrier
solution) may require cleanup with Simplex

Crossover

o
b

jective

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 29

• Dikin’s Algorithm:
apply affine transformation to stay away
from the boundary at each iteration

• Karmarkar’s Algorithm:
apply projective transformation to re-center
the solution at each iteration

• Logarithmic Barrier Algorithm:
use a logarithmic penalty function on the
variable bounds to stay centered

Barrier Algorithm

o
b

jective

Central
path

Degeneracy
does no harm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 30

• Primal Linear Program:

• Weighted combination of constraints (y) and bounds (z):

𝑦𝑇𝐴𝑥 + 𝑧𝑇𝑥 ≥ 𝑦𝑇𝑏 (with 𝑧 ≥ 0)

(𝑦𝑇𝐴 + 𝑧𝑇)𝑥 ≥ 𝑦𝑇𝑏

• Dual Linear Program:

Foundation: Duality

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 31

Obvious: Weak Duality

𝑐𝑇𝑥∗ ≥ 𝑦∗𝑇𝑏

(if primal and dual are both feasible)

Strong Duality Theorem:

𝑐𝑇𝑥∗ = 𝑦∗𝑇𝑏

(if primal and dual are both feasible)

𝐴𝑥 = 𝑏, 𝑥 ≥ 0 (primal feasibility)
𝐴𝑇𝑦 + 𝑧 = 𝑐, z ≥ 0 (dual feasibility)
𝑐𝑇𝑥 - 𝑏𝑇𝑦 = 0

𝐴𝑥 = 𝑏, 𝑥 ≥ 0 (primal feasibility)
𝐴𝑇𝑦 + 𝑧 = 𝑐, z ≥ 0 (dual feasibility)
𝑐𝑇𝑥 - 𝑏𝑇𝑦 = 0 ⟺ 𝑐𝑇𝑥 - (𝐴𝑥)𝑇𝑦 = 0 ⟺ (𝑐𝑇- 𝑦𝑇𝐴)𝑥 ⟺ 𝑧𝑇𝑥 = 0

#1: Interior Point Method that follows the central path
• Start with linear equations that define the optimality conditions for the primal and dual LPs

2 Interpretations of the Barrier Algorithm

32

strong duality complementary
slackness

𝑋 = 𝐷𝑖𝑎𝑔 𝑥 ; 𝑍 = 𝐷𝑖𝑎𝑔 𝑧 ; 𝑒 = (1, 1, … , 1)

Can be solved with Newton’s method,
but iterates need not be interior points yet…

#1: Interior Point Method that follows the central path

• Adjust complementary slackness conditions to consider only interior point solutions

• Start with 𝜇 > 0, systematically reduce it to 0 to converge to optimal primal dual pair to of LP

• Now we have an interior point method, but what makes it a barrier method?

2 Interpretations of the Barrier Algorithm

33

𝑥𝑗 ∗ 𝑧𝑗 = 𝜇 > 0,

𝑗 = 1, … , 𝑛

#2: Logarithmic Barrier Algorithm

• Primal Barrier Algorithm

• Dual Barrier Algorithm

• In both cases, differentiate the unconstrained optimization and apply Newton’s method

2 Interpretations of the Barrier Algorithm

34

min 𝑐𝑇𝑥
𝑠. 𝑡. 𝐴𝑥 = 𝑏

𝑥 ≥ 0

min 𝑐𝑇𝑥 − μσ𝑗=1
𝑛 log𝑥𝑗

𝑠. 𝑡. 𝐴𝑥 = 𝑏

Introduce barrier
function to force
Interior point

min 𝑐𝑇𝑥 − μσ𝑗=1
𝑛 log𝑥𝑗 − 𝑦𝑇(𝐴𝑥 − 𝑏)

Lagrange to
create unconstrained
optimization

max 𝑏𝑇𝑦
𝑠. 𝑡. 𝐴𝑇𝑦 + 𝑧 = 𝑐

z ≥ 0

max 𝑏𝑇𝑦 + μ σ𝑗=1
𝑛 log𝑧𝑗

𝑠. 𝑡. 𝐴𝑇𝑦 + 𝑧 = 𝑐 max 𝑏𝑇𝑦 + μ σ𝑗=1
𝑛 log𝑧𝑗 −𝑥𝑇(𝐴𝑇𝑦 + 𝑧 − 𝑐)

= -∞ if xj= 0

#2: Logarithmic Barrier Algorithm

• Primal Dual Barrier Algorithm

• Optimality conditions for

• Optimality conditions for

• These are duals of each other. From either one can derive (e.g. multiply (5) by 𝑍)

2 Interpretations of the Barrier Algorithm

35

min 𝑐𝑇𝑥 − μσ𝑗=1
𝑛 log𝑥𝑗 − 𝑦𝑇(𝐴𝑥 − 𝑏):

max 𝑏𝑇𝑦 + μ σ𝑗=1
𝑛 log𝑧𝑗 −𝑥𝑇(𝐴𝑇𝑦 + 𝑧 − 𝑐) :

c − 𝑦𝑇𝐴 − μ𝑋−1 = 0

𝐴𝑥 − 𝑏 = 0 ∇𝑦

∇𝑥

∇𝑧

c − 𝑦𝑇𝐴− 𝑧 = 0

𝑥𝑇𝐴𝑇 − 𝑏𝑇 = 0

μ𝑍−1 − 𝑋 = 0

∇𝑥
∇𝑦

(1)
(2)

(3)

(4) (2)

(5)

Look
familiar?

Does not matter
how we got here;

we can use
Newton’s Method

(3+5)

Applying Newton’s Method

36

𝑥𝑘+1= 𝑥𝑘- [J 𝑥𝑘]−1𝑓(𝑥𝑘), where 𝐽(𝑥)𝑖𝑗 =
𝜕 𝑓𝑖

𝜕𝑥𝑗𝜕𝑥𝑖
(𝑥)

∇𝑥 ∇𝑦 ∇𝑧

Starting point

At each iteration

J 𝑥0

∆𝑥

∆𝑥 𝑓(𝑥0)

Newton’s method: Apply to:

At each iteration:

1. Solve 𝑨𝒁𝟎
−𝟏𝑿𝟎𝑨

𝑻 ∆𝒚= 𝑏 − 𝑍0
−1𝜇𝑒 − 𝐴𝑍0

−1𝑋0(𝐴𝑇𝑦0 + 𝑧0 − 𝑐)

2. Compute ∆𝑧= 𝐴𝑇𝑦0 + 𝑧0 − 𝑐 - 𝐴𝑇∆𝑦

3. Compute ∆𝑥= 𝑍0
−1(𝑋0𝑍0𝑒 − 𝜇𝑒 − 𝑋0∆𝑧)

4. Update 𝑥1 = 𝑥0 − ∆𝑥 , 𝑦1 = 𝑥0 − ∆𝑦 , 𝑧1= 𝑧0 − ∆𝑧; reduce 𝜇

Applying Newton’s Method

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 37

At each iteration

Most of the work

Everything else cheap:
• Matrix vector mult.
• Vector additions
• Vector subtractions

• Recall
𝐴𝑥 = 𝑏, 𝑥 ≥ 0 (primal feasibility)
𝐴𝑇𝑦 + 𝑧 = 𝑐, z ≥ 0 (dual feasibility)
𝑐𝑇𝑥 − 𝑏𝑇𝑦 = 0 ⟺ 𝑧𝑇𝑥 = 0 (duality gap ⟺ complementary slackness)

• At each iteration

• Duality gap can be shown to reduce

• Albeit neither primal nor dual objective needs change monotonicaly

• Terminate when normalized duality gap and complementary slackness within tolerance:

•
𝐴𝑥−𝑏

𝑥
< 𝜀 and

𝐴𝑇𝑦+𝑧−𝑐

𝑦
< 𝜀

•
𝑐𝑇𝑥−𝑏𝑇𝑦

1+𝑏𝑇𝑦
< 𝜀 and

𝑧𝑇𝑥

1+𝑏𝑇𝑦
< 𝜀

Termination of the Barrier Algorithm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 38

Gurobi BarConvTol
parameter, default 1e-8

Qualitatively different
than Simplex tolerances

Computational Steps of the Barrier Algorithm

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 39

Compute fill-reducing ordering of 𝐴𝑇𝐴 Cheap Expensive

Compute starting point 𝑥0, 𝑧0 > 0 (*)

* Lustig, I.J. (1990). "Feasibility issues in a primal-dual interior point method for linear programming,” Mathematical Programming, 49(2), 145-162

Form 𝐴𝑍𝑘
−1𝑋𝑘𝐴

𝑇

Solve 𝐿𝐷𝐿𝑇Δ𝑥 = w

Factor 𝐴𝑍𝑘
−1𝑋𝑘𝐴

𝑇 = 𝐿𝐷𝐿𝑇

Compute Δ𝑧 and Δ𝑥

Update x, y, and z

𝑍𝑘
−1, 𝑋𝑘 are diagonal matrices

Gurobi BarOrder,
GURO_PAR_BARDENSETHRESH

parameters

Gurobi Threads parameter

Nonzero structure unchanged
throughout the solve

• Statistics about most expensive operation

• Termination when complementarity is small
enough

• Continue with crossover

• Finish up with Simplex

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 40

Barrier Log

Ordering time: 0.00s

Barrier statistics:

Dense cols : 1

AA' NZ : 1.056e+03

Factor NZ : 4.200e+03 (roughly 1 MB of memory)

Factor Ops : 8.603e+04 (less than 1 second per iteration)

Threads : 1

Objective Residual

Iter Primal Dual Primal Dual Compl Time

0 -2.88769591e+03 -0.00000000e+00 5.74e+03 0.00e+00 2.93e+01 0s

1 -2.93201530e+03 -2.32719862e+02 6.17e+02 2.33e-02 7.21e+00 0s

2 -1.20511641e+03 -2.09346815e+02 0.00e+00 2.08e-17 7.34e-01 0s

3 -3.12189924e+02 -2.58701130e+02 0.00e+00 5.55e-17 3.94e-02 0s

4 -3.00241585e+02 -2.99695549e+02 0.00e+00 5.55e-17 4.02e-04 0s

5 -3.00000246e+02 -2.99999695e+02 0.00e+00 2.08e-17 4.06e-07 0s

6 -3.00000000e+02 -3.00000000e+02 0.00e+00 1.14e-16 4.06e-10 0s

7 -3.00000000e+02 -3.00000000e+02 7.11e-15 1.44e-15 4.06e-16 0s

Barrier solved model in 7 iterations and 0.36 seconds (0.83 work units)

Optimal objective -3.00000000e+02

Crossover log...

24 DPushes remaining with DInf 0.0000000e+00 0s

0 DPushes remaining with DInf 0.0000000e+00 0s

1 PPushes remaining with PInf 0.0000000e+00 0s

0 PPushes remaining with PInf 0.0000000e+00 0s

Push phase complete: Pinf 0.0000000e+00, Dinf 0.0000000e+00 0s

Iteration Objective Primal Inf. Dual Inf. Time

28 -3.0000000e+02 0.000000e+00 0.000000e+00 0s

|𝑧𝑇𝑥|| 𝐴𝑥 − 𝑏 | ||𝐴𝑇𝑦+ 𝑧 − 𝑐||𝑐𝑇𝑥 𝑏𝑇𝑦

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 41

Essential Differences – Simplex vs Barrier

Simplex Barrier

• Thousand/millions of iterations on extremely sparse
matrices

• Each iteration extremely cheap

• Dozens of iterations on denser matrices

• Each iteration is expensive

• Few opportunities to exploit parallelism
• Nonzero structure of matrices changes with

every iteration
• Computational effort spread out over several

procedures, none of which typically dominate
the work in an iteration

• Multiple opportunities to exploit parallelism
• Nonzero structure of matrices is unchanged
• Computational effort focused in two or three

procedures that dominate the overall run time

• Can be warm-started
• Effectively handles problem modifications

• Barrier warm-start still an open research topic

• Primal or Dual degeneracy can be problematic • No issues with degenerate extreme points

2.65

1.68

1.21

1
1.09

1.83

LP ALGORITHMS

Primal Dual Barrier Concurrent Det. Concurrent Det. Concurrent Simplex

LP Performance

Performance results:

• Gurobi 9.5, Intel(R) Xeon (R) E3-1240 v5
(4 core at 3.5GHz)

• Simplex on 1 core, Barrier on 4 cores

• Concurrent with 1 thread dual, 3 threads
barrier

• Result for models that take >1s

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 42

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 43

How can I use my newfound
knowledge about Gurobi’s
algorithmic features to get
better LP performance?

Improving Default
Performance

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 43

• Typically, defaults are well suited
• Uses concurrent LP if problem large enough
• Using 8-16 threads is often the sweet spot for

performance, but you may want to play with that

• If your models are reliably best solved by one of
the concurrent algorithms only use that algorithm
• Avoid contention memory bus
• Avoid synchronization (for deterministic case)

• Mostly performance issues are due to degeneracy
or numerical difficulties – consider your model!

• For problems with special structure:
• Sifting when cols >> rows:

Parameter Sifting=1,2
• Network Algorithm (new in 10.0.0):

Parameter NetworkAlg=1
• Gurobi heuristically will chose those by default

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

Discrete Optimization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

• Solve LP relaxation of the problem (root)

• Gives rise to first lower bound

• v = 3.5 (fractional)

• Branch on v: 𝑣 ≤ 3 and 𝑣 ≥ 4

• Solve child node:

• 𝑥 = 2.3

• Branch on 𝑥: 𝑥 ≤ 2 and 𝑥 ≥ 3

• Solve child node:

• Solution is integer feasible

• Gives rise to first upper bound

• Gives rise to optimality gap

• Solve child node:

• 𝑦 = 1.7

• Branch on 𝑦: 𝑦 ≤ 0 and 𝑦 ≥ 1

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

LP based Branch-and-
Bound Root:

𝑣 = 3.5

Integer

Upper Bound

Lower Bound𝑥 = 2.3

G

A

P

𝑦 = 0.7

• Solve child node:

• Node is infeasible

• Solve child node:

• 𝑧 = 0.4

• Branch on 𝑧: z ≤ 0 and z ≥ 1

• Solve child node:

• Cutoff the node:
Node objective exceeds current upper bound

• Solve child node:

• 𝑧 = 0.3

• Branch on 𝑧: z ≤ 0 and z ≥ 1

• Solve child node:

• Node is infeasible

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 46

LP based Branch-and-
Bound Root:

𝑣 = 3.5

Integer

Cutoff

Infeas

Upper Bound

Infeas

Lower Bound𝑥 = 2.3

G

A

P

𝑦 = 0.7

𝑧 = 0.4

𝑧 = 0.3

• Solve more nodes:

• Minimum of the objective all active node
relaxations gives rise to new lower bound

• When gap reaches 0 current incumbent
solution is proven to be optimal

• In practice, „good“ solutions are good enough

• Since proving optimality may take a long time

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 47

LP based Branch-and-
Bound

G

A

P

Root:
𝑣 = 3.5

Integer

Cutoff

Infeas

Upper Bound

Infeas

𝑥 = 2.3

𝑦 = 0.7

𝑧 = 0.4

𝑧 = 0.3 Lower Bound

G

A

P

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 48

Presolve
• Tighten formulation and reduce problem size

Node selection
• Select next subproblem to process

Node presolve
• Additional presolve for subproblem

Solve continuous relaxations
• Gives a bound on the optimal integral objective

Conflict analysis
• Learn from infeasible subproblems

Cutting planes
• Tighten relaxation by cutting relaxation solutions

Primal heuristics
• Find integer feasible solutions

Branching variable selection
• Crucial for limiting search tree size

Presolve, PrePasses, AggFill , Aggregate, DualReductions, PreSparsify, ...

Method, NodeMethod, DegenMoves

Cuts, CutPasses, GomoryPasses, CliqueCuts, ...

VarBranch, BranchDir

Heuristics, MinRelNodes, PumpPasses, RINS, SubMIPNodes, ZeroObjNodes, Var Hints, (NoRel)

BranchDir, Var Hints

Symmetry

Presolve Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 49

Each box represents a giant bag of tricks
• To cover everything would take weeks

A sampling of techniques instead
• One from each of the most important boxes

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

[1]

[1]

[1]

[1]

[1]

[2]

[3]

[2]

[1] Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

[2] Achterberg: "Constraint Integer Programming" (2007)

[3] http://plato.asu.edu/ftp/milpc.html

Conflict Analysis

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 50

Presolve
• Tighten formulation and reduce problem size

Node selection
• Select next subproblem to process

Node presolve
• Additional presolve for subproblem

Solve continuous relaxations
• Gives a bound on the optimal integral objective

Conflict analysis
• Learn from infeasible subproblems

Cutting planes
• Cut off relaxation solutions

Primal heuristics
• Find integer feasible solutions

Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 51

Presolve
• Tighten formulation and reduce problem size

Node selection
• Select next subproblem to process

Node presolve
• Additional presolve for subproblem

Solve continuous relaxations
• Gives a bound on the optimal integral objective

Conflict analysis
• Learn from infeasible subproblems

Cutting planes
• Cut off relaxation solutions

Primal heuristics
• Find integer feasible solutions

Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

Cutting Planes

Cover

Implied bound

Projected Implied bound

Clique

GUB Cover

Zero-half

Mod-K

RLT

BQP
SubMIP

Outer Approximation

The cut menu

Gomory

Mixed Integer Rounding (MIR)

StrongCG cuts

Lift and Project

Infeasibility cuts

Flow cover

Flow path

Network

MIP separation cuts

Relax and Lift

User Cuts

• A cut (cutting plane) is a
constraint that reduces the
feasible region of the continuous
relaxation but not its integer hull

• Separation of cuts:
Given an x that is feasible for the
relaxation, find a cut for which x is
infeasible and add it to the
relaxation

• Thus, the relaxation more closely
approximates the integer hull

Given 𝐴 ∈ ℚ𝑚×𝑛, 𝑏 ∈ ℚ𝑚, consider the rational polyhedron

𝑃 = 𝑥 ∈ ℝ𝑛 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0

We want to find the integer hull

𝑃𝐼 = conv 𝑥 ∈ ℤ𝑛 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0

Chvatal-Gomory procedure:

• Choose non-negative multipliers 𝝀 ∈ ℝ≥𝟎
𝒎

• Aggregated inequality 𝜆𝑇𝐴𝑥 ≤ 𝜆𝑇𝑏 is valid for 𝑃 because 𝜆 ≥ 0

• Relaxed inequality 𝜆𝑇𝐴 𝑥 ≤ 𝜆𝑇𝑏 is still valid for 𝑃 because 𝑥 ≥ 0

• Rounded Inequality 𝜆𝑇𝐴 𝑥 ≤ 𝜆𝑇𝑏 is still valid for 𝑃𝐼 because 𝑥 ∈ ℤ𝑛

CG procedure suffices to generate all non-dominated valid inequalities for 𝑃𝐼 in a finite number of
iterations!

• P(0) = P, P(k) = P(k-1) ∩ {CG cuts for P(k-1)}: k-th CG closure of P - is a polyhedron!

• CG rank of a valid inequality for PI: minimum k s.t. inequality is valid for P(k)

• Higher rank cuts get more and more dense and numerically unstable

Chvatal-Gomory Cuts

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 53

A (binary) knapsack is a constraint 𝑎𝑥 ≤ 𝑏 with

• 𝑎𝑖 ≥ 0 the weight of item 𝑖, 𝑖 = 1, … , 𝑛

• 𝑏 ≥ 0 the capacity of the knapsack

An index set 𝐶 ⊆ 1,… , 𝑛 is called a cover, if σ𝑖∈𝐶 𝑎𝑖 > 𝑏

• You can’t fit all items from 𝐶 in the knapsack

A cover C implies a cover inequality: σ𝑖∈𝐶 𝑥𝑖 ≤ 𝐶 −1

• You must leave out at least one of them

Interesting for cuts: minimal covers

• σ𝑖∈𝐶 𝑎𝑖 > 𝑏 and σ𝑖∈𝐶 ′𝑎𝑖 ≤ 𝑏 for all 𝐶′ ⊂ 𝐶, 𝐶′ ≠ 𝐶

Knapsack Cover Cuts

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 54

Consider knapsack 3x1 + 5x2 + 8x3 + 10x4 + 17x5 ≤ 24, x ∈ {0,1}5

A minimal cover is C = {1,2,3,4}

Resulting cover inequality: x1 + x2 + x3 + x4 ≤ 3

Lifting
• If x5 = 1, then x1 + x2 + x3 + x4 ≤ 1

• Hence, x1 + x2 + x3 + x4 + 2x5 ≤ 3 is valid

• Need to solve knapsack problem αj := d0 - max{dx | ax ≤ b - aj} to find lifting
coefficient for variable xj

• Use dynamic programming to solve knapsack problem

Knapsack Cover Cuts – Example

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 55

Consider (1,1,1,0,1/17)

0

0.1

0.2

0.3

0.4

0.5
48%

28%

14%

8% 7% 6%
4% 4% 3% 2%

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)
benchmark data based on CPLEX 12.5

Cutting Planes – Performance

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 56

• At the end of a MIP log we usually find statistics about which cuts have been added to the LP
relaxation:

Cuts Statistics Log

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 57

43287 0 cutoff 56 4.7096e+07 4.7092e+07 0.01% 375 1366s

Cutting planes:

Gomory: 37

Lift-and-project: 3

Cover: 8

Implied bound: 19

MIR: 326

StrongCG: 14

Flow cover: 624

Inf proof: 4

Zero half: 19

Mod-K: 1

Explored 44197 nodes (16447802 simplex iterations) in 1366.22 seconds

(2785.50 work units)

Thread count was 8 (of 16 available processors)

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 58

Presolve
• Tighten formulation and reduce problem size

Node selection
• Select next subproblem to process

Node presolve
• Additional presolve for subproblem

Solve continuous relaxations
• Gives a bound on the optimal integral objective

Conflict analysis
• Learn from infeasible subproblems

Cutting planes
• Cut off relaxation solutions

Primal heuristics
• Find integer feasible solutions

Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis

Given node relaxation solution 𝑥∗

• Any integer variable with fractional
𝑥𝑗
∗can be branched on

• Branching on 𝑗 creates two child
nodes with

• 𝑥𝑗 ≤ 𝑥𝑗
∗

• 𝑥𝑗 ≥ 𝑥𝑗
∗

• How to choose 𝑗?
• Choice has a dramatic impact on the

size of the search tree

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 59

Branching variable
selection

What’s a good branching variable?

• Superb: fractional variable infeasible in both
branch directions

• Immediately prune the node as infeasible

• Great: infeasible in one direction

• Good: both directions move the objective

Expensive to predict which branches lead to
infeasibility or big objective moves

• Strong branching

• Truncated LP solve for every possible branch
at every node

• Rarely cost effective

• Need a quick estimate

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 60

Use historical data to predict
impact of a branch:

• Record cost(xj) = Δobj / Δxj for
each branch in a pseudo-cost
table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a
future branch

Pseudo-Costs

c*=13

c*=20 c*=19

x* = 2.7

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 61

Use historical data to predict
impact of a branch:

• Record cost(xj) = Δobj / Δxj for
each branch in a pseudo-cost
table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a
future branch

Pseudo-Costs

c*=13

c*=20 c*=19

x* = 2.7

down pseudo-cost update:

∆obj/∆x = 7/0.7 = 10

up pseudo-cost update:

∆obj/∆x = 6/0.3 = 20

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 62

Use historical data to predict
impact of a branch:

• Record cost(xj) = Δobj / Δxj for
each branch in a pseudo-cost
table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a
future branch

Pseudo-Costs

c*=13

c*=20 c*=19

c*=17

pseudo costs:

downcost(x) = 10

upcost(x) = 20

x* = 5.4

down estimate:
c' = 17 + 0.4 ⋅ 10 = 21

up estimate:
c' = 17 + 0.6 ⋅ 20 = 29

x* = 2.7

What do you do when there is no history?

• E.g., at the root node

Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]

• Always compute up/down cost (using strong branching) for new fractional
variables

• Initialize pseudo-costs for every fractional variable at root

Reliability branching [Achterberg, Koch & Martin, 2005]

• Do not rely on historical data until pseudo-cost for a variable has been recomputed
r times

Pseudo-Costs

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 63

0

1

2

3

4

5

6

7

8

most fractional
(baseline)

random pseudo-costs with SB init reliability

0% 2%

548%

736%

Branching Rules – Performance

© 2022 Gurobi Optimization, LLC. Confidential, A ll R ights Reserved | 64

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)
benchmark data based on CPLEX 12.5

Achterberg, Koch, and Martin: "Branching Rules Revisited" (2005)

MIP Building Blocks

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 65

Presolve
• Tighten formulation and reduce problem size

Node selection
• Select next subproblem to process

Node presolve
• Additional presolve for subproblem

Solve continuous relaxations
• Gives a bound on the optimal integral objective

Conflict analysis
• Learn from infeasible subproblems

Cutting planes
• Cut off relaxation solutions

Primal heuristics
• Find integer feasible solutions

Branching variable selection
• Crucial for limiting search tree size

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis

MIP solvers find new feasible solutions in two ways

• Branching

• Primal heuristics

Properties of a good heuristic

• Quick

• Finds solutions earlier than branching

• Captures problem structure

• Exploits structure more effectively than branching

• General

• Finds solutions for lots of models

Gurobi has more than 30 heuristic types

• Adaptive strategies decide when to apply each

MIP Heuristics

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 66

Constructive heuristics
• No knowledge about other solutions needed

• Goal is to find solution early and to define “starting” point for improvement
heuristics

• May produce poor quality solutions

• Typically fast (but not always, e.g. NoRel, ZeroObj)

Improvement heuristics
• Can be more expensive

• Need at least one known to solution to work on

• High quality solutions

• Provide better cutoff bound to prune tree

• Can be effective even on low quality solutions

Types of MIP Heuristics

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 67

Rounding Heuristic
• Start with:

• Solution of relaxation

• Round integer variables

Quick?
• Very quick

Captures problem structure?
• No

General?

• Finds solutions to lots of easy models

Example MIP Heuristic - Rounding

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 68

Relaxation Induced Neighborhood Search

• Start with:

• Node relaxation solution

• Best known integer feasible solution

• Fix integer variables whose values agree in both

• Solve a MIP on the rest

Quick?
• No – solves a MIP

• Integer infeasibilities at a node where RINS is called is the minimum number of unfixed variables

Captures problem structure?
• Yes – searches a neighborhood of the relaxation

• No – neighborhood considers mathematical calculations, not problem structure

General?

• Yes – effective on a variety of models

Example MIP Heuristic - RINS

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 69

No Relaxation Heuristic
• Start from some (feasible or infeasible) vector

• Constructed by quick heuristic

• Solve smaller sub-MIPs (with fixed variables) to decrease infeasibility or objective value

• Use multiple threads to solve sub-MIPs in parallel

• Various neighborhood strategies

• adaptive to spend more time on more successful ones

Quick?
• No – runs “forever”, until work (NoRelHeurWork)or time (NoRelHeurTime) limit is reached

Captures problem structure?
• No – ad-hoc generation of sub-MIPs

General?
• No – main use when relaxations solve too slowly

• Yes – can be successful to find good solution in limited time

Example MIP Heuristic - NoRel

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 70

Heuristic Log Lines

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 71

Found heuristic solution: objective 1.377283e+07

Presolve removed 918 rows and 26705 columns

Presolve time: 2.50s

Presolved: 1269 rows, 21712 columns, 398388 nonzeros

Found heuristic solution: objective 2770423.8600

Variable types: 0 continuous, 21712 integer (21709 binary)

Found heuristic solution: objective 2762983.8600

Root relaxation: objective 1.010525e+06, 1504 iterations, 0.06 seconds (0.13 work units)

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 1010524.73 0 269 2762983.86 1010524.73 63.4% - 3s

H 0 0 2736029.7100 1010524.73 63.1% - 3s

H 0 0 2727449.4800 1010524.73 62.9% - 3s

H 0 0 2693681.7100 1011189.12 62.5% - 3s

0 0 1038921.12 0 523 2693681.71 1038921.12 61.4% - 3s

H 0 0 2670522.0600 1038921.12 61.1% - 4s

Lower bound on # unfixed
integer variables in RINS heuristic

Heuristic found better
incumbent solution

How can I use my newfound
knowledge about Gurobi’s
algorithmic features to get
better MIP performance?

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 72

Improving Default
Performance

Examine node logs to identify likely areas of performance
bottlenecks
• Does the lack of progress involve the upper bound, lower

bound or both?
• Assess whether node LP solve time is the primary bottleneck

• Do not: adjust branching parameters if Gurobi is in the root cut
loop

• Do: consider using Gurobi’s No Relaxation Heuristic (NoRelHeur
parameter) if node LP solve times are highly problematic.

Distinguish parameters that primarily help upper bound
from those that primarily help lower bound
• Example: Don’t raise intensity of heuristics when log indicates

lack of progress in the lower bound is the performance
problem
• Aggressive cuts, MIPFocus = 2 or 3 more likely to help

How can I use my newfound
knowledge about Gurobi’s
algorithmic features to get
better MIP performance?

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 73

Improving Default
Performance

Sometimes reducing or disabling completely default
parameter settings can help
• Some features may not succeed, so don’t spend time

on them
• Some features may be better covered by others

• Turning off heuristics (or reducing their intensity) even
though node log indicates they are effectively finding
good solutions.

• Branching may be able to find equally good solutions, resulting
faster node throughput will give branching more opportunity to
succeed.

• Turning off cuts (or reducing their intensity) when finding
good solutions is important and progress in the lower
bound is modest

• Gurobi’s concurrentMIP feature can help
• 2 or more runs in parallel on the same model with different

parameter settings

Consider the fundamental tradeoff between node
processing rate and computation in each node

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 74

For more information: www.gurobi.com

Roland Wunderling
Senior Developer

Thank You

Parallelization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 75

Parallelization opportunities

• Parallel probing during presolve

• Almost no improvement

• Use barrier or concurrent LP for initial LP relaxation solve

• Only helps for large models

• Run heuristics or other potentially useful algorithms in parallel to the
root cutting plane loop

• Moderate performance improvements: 20-25%

• Does not scale beyond a few threads

• Solve branch-and-bound nodes in parallel

• Main speed-up for parallel MIP

• Performance improvement depends a lot on shape of search tree

• Typically scales relatively well up to 8 to 16 threads

Parallelization

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 76

Parallelization issues

• Determinism

• Load balancing

• CPU heat and memory bandwidth

• Additional threads slow down main thread

• Root node does not parallelize well

• Sequential runtime of root node imposes limits on parallelization speed-up

• Amdahl's law

• A dive in the search tree cannot be parallelized

• Parallelization only helps if significant number of dives necessary to solve
model

Parallel MIP – Performance

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 77

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2 threads 4 threads 6 threads 8 threads 10 threads 12 threads

5%

19%
25%

31%
37% 39%

54%

113%

144%

178%
186%

194%

node count speed-up

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)
benchmark data based on CPLEX 12.5, models with ≥ 10 seconds solve time

Strictly Stronger?

Consider:

• 5 b1 + 3 b2 + 3 b3 + 3 b4 + 8 b5 ≤ 8

Stronger…?

• 4 b1 + 4 b2 + 4 b3 + 4 b4 + 8 b5 ≤ 8

Probably, but…

• Doesn't strictly dominate original

• (1, 0, 0, 0, 0.5) satisfies second, but not first

• Could weaken relaxation

• No definitive metrics

• Hippocratic oath of presolve

• "First, do no harm"

• Lots of cases where it hurts

Presolve - Coefficient Strengthening

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 78

Trade off cost of reduction vs benefit
Why worry about cost?

• Only one presolve for each MIP model

A few reasons:
• One presolve can still be expensive

• Aggressive use of sub-MIP heuristics (RINS)

• Lots of “truncated” MIP solves

• Multiple presolves, on smaller models

• Presolve can be dominant cost on each

• Strengthening as a cut separator

Presolve - Cost Versus Benefit

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 79

