Optimizing to make better conservation decisions

Jeffrey Hanson and Richard Schuster

jeffrey.hanson@uqconnect.edu.au

richard.schuster@natureconservancy.ca

Reserve selection

Planning units

- Discrete places for conservation management
- Each planning unit is managed separately
- Commonly include land parcels, islands, spatial grid cells

Reserve selection

Features

- Stuff that we care about
- Each feature is relatively independent
- Commonly include species, ecosystem types, ecosystem services (e.g., water provisioning, carbon sequestration)

Reserve selection

Which planning units should we manage for conservation?

- Comprehensive
- Adequate
- Representative
- Efficient
- Connectivity

- Comprehensive
- Adequate
- Representative
- Efficient
- Connectivity

- Comprehensive
- Adequate
- Representative
- Efficient
- Connectivity

- Comprehensive
- Adequate
- Representative
- Efficient
- Connectivity

- Comprehensive
- Adequate
- Representative
- **Efficient**
- Connectivity

- Comprehensive
- Adequate
- Representative
- Efficient
- Connectivity

Principle complementarity

Protected areas should "complement" each other to maximize the performance of the overall protected area network (including, existing protected areas)

Reserve selection as optimization

- Minimum set formulation
- Objective: min. # of islands
- Constraints: sufficient habitat for each species
- <u>Decisions</u>: create a reserve on an island or not?

1 2 3 4 5 6 7 8 9

Upper 1 <th></th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th>		1	2	3	4	5	6	7	8	9
орре:	V. type	В	В	В	В	В	В	В	В	В
Upper 1 1 1 1 1 1 1 1 1 1	Lower	0	0	0	0	0	0	0	0	0
	Upper	1	1	1	1	1	1	1	1	1

Min \$: +1 +1 +1 +1 +1 +1 +1 +1

В

В

В

В

В

В

4

V. type

В

В

В

Min \$:	+1	+1	+1	+1	+1	+1	+1	+1	+1	
			+1							≥ 1
							+1	+1		≥ 1
			+1	+1						≥ 1
H.	+1									≥ 1
	+1	+1		+1	+1	+1			+1	≥ 1
Upper	1	1	1	1	1	1	1	1	1	
Lower	0	0	0	0	0	0	0	0	0	
V. type	В	В	В	В	В	В	В	В	В	
	1	2	3	4	5	6	7	8	9	

But reality is more complex...

Accounting for existing conservation areas

0

В

0

В

Upper

Lower

V. type

В

В

	+1		≥ 1
F		+1 +1	≥ 1

0

0

В

В

0

0

В

9

Accounting for existing conservation areas

Protected areas + Indigenous Lands

No-take marine reserves

Areas with existing habitat + pastures where grazing rights have already been bought

Accounting for efficiency Min \$: +9 +2 +5 +1 +5 +8 +3 +6 +8

+1 +1

0

В

0

B

+1

В

≥ 1

≥ 1

≥ 1

0

В

9

0

В

8

0

В

4

0

B

3

1

В

Upper

Lower

V. type

0

В

+1 +1

Accounting for efficiency

Land value assessments

Human pressure

Opportunity cost to commercial fisheries

Brito-Morales et al. (2022) DOI:10.1038/s41558-022-01323-7

Min \$: +9 +2 +5 +1 +5 +8 +3 +6

Accounting for adequacy, comprehensiveness, and representativeness

9	+2 +5	≥ 7
CR.		

3-10		+2 +5	2 /
	+3 +7		≥ 3

0

В

0

В

В

0

В

0

В

9

0

В

0

В

Upper

Lower

V. type

В

В

Accounting for adequacy

Get good data...

High resolution estimates of habitat suitability

Hanson et al. (2022) DOI:10.1038/s41586-020-2138-7

Species distribution models

González-Fernández (2022) DOI:10.1016/j.jnc.2022.126235

and set meaningful targets!

Policy

Southee et al. (2021) DOI: 10.1139/facets-2020-0015

Hanson et al. (2022) DOI: 10.1038/s41586-020-2138-7

Jung et al. 2021 DOI :10.1038/s41559-021-01528-7

Taylor et al. (2017) DOI: 10.1371/journal.pone.0169629

Accounting for comprehensiveness

Amphibians, mammals, birds, reptiles, plants, water provisioning, carbon sequestration

Accounting for representativeness

Ecosystems

Flower et al. (2010) DOI: 10.1111/csp2.158

Species

Domisch et al. (2019) DOI: 10.1111/ddi.12891

Genes

Hanson et al. (2022) DOI: 10.1111/1365-2664.13718

Accounting for connectivity

0

В

В

0

B

+2 +5

≥ 10

≥ 3

≥ 1

+3

0

В

9

0

B

8

Min \$: +9 +2 +5 +1 +5 +8 +3 +6

+10

0

В

4

0

B

3

В

(J.)

Upper

Lower

V. type

0

В

What if connectivity = 1/distance?

Min \$: +9 +2 -3*1/5
-1 +1 |
$$\leq 0$$

+1 -1 | ≤ 0
-1 -1 +1 | ≥ -1
Upper 1 1 1
Lower 0 1 0
V. type B B B B
1 2 182

Let's just consider islands 1 and 2

Scaling factor: 3 connectivity units = 1 cost unit

Beyer et al. (2016) DOI:10.1016/j.ecolmodel.2016.02.005

What if connectivity = 1/distance?

Min \$: +9 +2 -3*1/5

(1) -1 +1
$$\leq 0$$

(2) +1 -1 ≤ 0

-1 -1 +1 ≥ -1

Upper 1 1 1

Lower 0 1 0

V. type B B B B
1 2 1&2

So, +1 variable and +2 constraints per pair of planning units.. increases problem size a lot!

Let's just consider islands 1 and 2

E.g., 1k planning = ~500k extra constraints

Accounting for connectivity

Carroll (2021) DOI:10.1016/j.xpro.2021.100882

Other stuff too!

Spatially contiguity

Wang and Önal (2013)

DOI: 10.1016/j.chnaes.2013.07.004

Multiple management zones

Boussarie et al. (2023)
DOI: 10.1016/j.jenvman.2023.117857

Solution portfolios

Brunel et al. (2022) DOI: 10.1007/s10666-022-09862-1

prioritizr

Human readable code

Design your problem

Solve it fast!

Package workflow

Package workflow

Biodiversity data

Land use data

Economic data

Problem formulation

Input to solver Solve problem **Statistics** Maps

Package workflow

- Biodiversity data
- → Land use data ·
- Economic data
- Problem formulation •

Input to solver

Solve problem

Maps

Statistics

Human-readable code

Mental model

Code

```
problem <-</pre>
  data +
  objective +
  constraints +
  penalties +
  decision type +
  solver
solution <- solve(problem)
```

```
problem(areas, feats) %>%
 add min set objective() %>%
 add relative targets(0.1) %>%
 add boundary penalties (5) %>%
 add binary decisions() %>%
 add rsymphony solver()
solution <- solve(p)
```

Study area: Tasmania, Australia

Planning units: 1130 hexagons

Features: 63 vegetation types


```
problem(tas pu, tas features,
        "cost") %>%
add min set objective() %>%
add relative targets(0.1) %>%
add locked in constraints ("in") %>%
add locked out constraints ("out") %>%
add binary decisions() %>%
add gurobi solver(gap = 0) %>%
solve()
```



```
problem(tas pu, tas features,
        "cost") %>%
add min set objective() %>%
add relative targets(0.1) %>%
add locked in constraints ("in") %>%
add locked out constraints("out") %>%
add binary decisions() %>%
add gurobi solver(gap = 0) %>%
solve()
```



```
problem(tas pu, tas features,
        "cost") %>%
add min set objective() %>%
add relative targets(0.1) %>%
add locked in constraints ("in") %>%
add locked out constraints ("out") %>%
add boundary penalties (0.01, 0.5) %>%
add binary decisions() %>%
add gurobi solver(gap = 0) %>%
solve()
```



```
problem (tas pu, tas features,
        "cost") %>%
add min set objective() %>%
add relative targets (0.1) %>%
add locked in constraints ("in") %>%
add locked out constraints ("out") %>%
add proportion decisions() %>%
add gurobi solver(gap = 0) %>%
solve()
```



```
problem (tas pu, tas features,
        "cost") %>%
add max features objective (budget) %>%
add relative targets (0.1) %>%
add locked in constraints ("in") %>%
add locked out constraints ("out") %>%
add proportion decisions() %>%
add gurobi solver(gap = 0) %>%
solve()
```


Solve it fast!

1.5 million planning units & 22,644 species: 76 minutes

Guaranteed quality

Heuristic algorithms

Quality

Different solutions

Meta-heuristic algorithms

Different solutions

Exact algorithms
Estimate of best solution

Different solutions

Solve efficiently + fast

The catch: for complex problems, open-source solvers are a lot slower than Gurobi and IBM CPLEX

https://prioritizr.net/articles/solver_benchmarks.html

Example

Article Open Access | Published: 15 April 2019

Optimizing the conservation of migratory species over their full annual cycle

Richard Schuster [™], Scott Wilson, Amanda D. Rodewald, Peter Arcese, Daniel Fink, Tom Auer & Joseph. R.

Bennett

Nature Communications 10, Article number: 1754 (2019) | Cite this article

7249 Accesses | **30** Citations | **130** Altmetric | Metrics

Optimizing the conservation of migratory species over their full annual cycle

117 species
73 million km²
1.7 million unique locations
14 million checklists

≤ 30,420 features 1.05 million planning units

Analysis powered by:

Schuster et al. (2019) Nature Communications

Where to work?

- Resilient landscapes must include:
 - the full range of Biodiveristy,
 - in a sufficiently large area,
 - areas connected to each other
 - protected areas that are effectively managed
- Canada is a big country with a lot of species. Where should we work?

CARE at the Landscape level (Where To Work)

- 1. Scalable (Property to Country scale)
- 2. Seamless (1km grid across Canada)
- 3. Scientific (best available)

