

Boost Profitability and Efficiency with Mathematical Optimization

Insights from the Forrester Mathematical Optimization Financial Services Study.

Presenters

Ed Rothberg, CEO and Cofounder, Gurobi Optimization

Special Guest - Mike Gualtieri, VP, Principal Analyst, Forrester

AI: The Fastest Growing Technology On The Planet AI = Machine Learning + Mathematical Optimization

Mike Gualtieri Vice President, Principal Analyst

Respondent demographics

*Base: 113 global decision makers of optimization technology in financial services, excluding insurance

**Base: 49 global decision makers of optimization technology in insurance

Source: A commissioned study conducted by Forrester Consulting on behalf of Gurobi, August 2021

Areas of Involvement

- 59% Asset management42% Operations management
- 17% Portfolio risk management

- Final decision-maker
- Part of a team
- Influence decisions

Organizations that implement AI get results

"What type of impact has AI adoption had on your organization?"

Base: 1,466 data and analytics decision-makers whose firm is implementing or expanding use of Al Source: Forrester Analytics Business Technographics[®] Data And Analytics Survey, 2020

We estimate that nearly 100% of enterprises will use AI by 2025.

... there are 5, 50, 500, and 5,000 enterprise use cases yet to be implemented with AI.

© Forrester. Reproduction Prohibited

© Forrester. Reproduction Prohibited.

FORRESTER

Al is software that can mimic or exceed human intelligence to identify patterns, make decisions, and/or formulate new knowledge.

DEFINITION

© Forrester. Reproduction Prohibited.

Machine learning is a popular approach.

© Forrester. Reproduction Prohibited.

Image source: iStock (http://www.istockphoto.com/)

Mathematical optimization makes it better.

.com/)

ML to predict supply-chain issues while there is still time to remediate now.

MO to decide the least costly way to reroute shipments.

ML to predict price movements (B) before the market does.

MO to decide how to allocate capital across all investment vehicles.

© Forrester. Reproduction Prohibited

ML to predict customer propensity to buy more with targeted offers.

SALE

ML to predict imminent machine failure.

MO to decide when to shut the production line down to perform maintenance to minimize cost and customer complaints.

© Forrester. Reproduction Prohibite

ML to predict specific global risks.

MO to decide best way to protect.

Image source: iStockphoto

160

165

170

175

180

1AC

190

AI — decision optimization because...

S Forrester. Reproduction Prohibited

...that's how to maximize the value of Al.

© Forrester. Reproduction Prohibited

It's common for a single enterprise use case to yield millions of dollars in top- and/or bottom-line outcomes.

EDERALRESERVENOTE

JC 46195545 A

24619554

ML predictions can determine the need to make a MO decision. ML predictions can be used as MO decision constraints.

Virtually all face challenges with combining MO with other technologies

Q6-What are the challenges that your organization faces with combining mathematical optimization with other advanced analytics technologies for optimization projects?

46% want to be	We struggle with too much market information	26%
	There are privacy concerns around some of the data we use	23%
able to combine mathematical	Our market information is changing too quickly	22%
optimization	We don't have the right skill set	22%
together with	It doesn't fit our process	20%
other advanced	We have insufficient compute power	20%
analytical	Accessing the right data is too difficult	18%
technologies, but 98% face	We don't have the right data for the models we want to run	18%
challenges	Maximizing ROI on investment on optimization projects	17%
doing so	We struggle with integrating our tools with our existing systems	17%
	We don't have the right technologies or tools	14%
	We aren't fully aware of all available optimization tools	12%

Base: 162 global decision makers of optimization technology Source: A commissioned study conducted by Forrester Consulting on behalf of Gurobi, August 2021

© Forrester. Reproduction Prohibited.

Why is AI the fastest growing technology on the planet?

© Forrester. Reproduction Prohibited

© Forrester. Reproduction Prohibited.

FORRESTER

AI use cases number in the thousands for global enterprises.

© Forrester. Reproduction Prohibited.

There are thousands of enterprise AI use cases in business processes and customer-facing applications.

4

USABILIT
Most enterprise AI use cases remain unimplemented.

The more models the merrier.

Every business process will be infused with AI.

FORRESTER

AI requires data – lots of rich data and more data.

Data represents physical events.

TABLEY.

Data represents digital events.

11

Data represents customer events.

Enterprises are flush industry-specific operational and customer data.

Enterprise data is super rich, as is needed for successful, pervasive AI

- Customer transaction data
- Point-of-sale data
- Customer and supplier contract data •
- Inventory data
- Supply chain data
- Product/service data
- ERP and manufacturing data

- Supplier transactions
- R&D data
 - Sales and CRM data
- Marketing/advertising data
- Human resources data
- Finance/accounting data

Security

Transactions

001

Siloed data must be connected, transformed, and enriched for AI to analyze it.

Historica

ata

Algorithms get all the press, but it's data that leads to success.

The demand for data infrastructure expands at the same rate as the demand for AI.

FORRESTER

AutoML is mainstream.

Machine learning models are the fundamental building blocks of Al applications.

Machine learning algorithms analyze data to create models used in Al solutions.

- Support vector machines (SVM)
- Convolution networks
- Last takeaway
- Gradient boosting (GBM)
- K-means
- Feature selection
- PCA
- Kohonen Networks (SOFM)

Random forests Mars regression splines Linear and logistic regression Naïve Bayes **Recurrent networks**

The ML model building lifecycle is tumultuously iterative and continuous

Lumberjacks can fell about 15 trees per day with an axe . . .

... and with a chainsaw, 400 to 600 per day.

© Forrester. Reproduction

AutoML is the chainsaw of data science.

Using infrastructure is orders of magnitude less expensive than data manually iterating through ML experiments.

Some AutoML solutions enable data-savvy business people (aka citizen data scientists) to build models.

Ring your bell with autoML.

AutoML will lead to at least 10 times productivity to implement enterprise use cases.

FORRESTER

AI must learn in perpetuity.

DRWERS

The world changes....

...and so too must machine models.

ML model performance can decay over time

ML models must be monitored, retrained, and often remodeled

AI models must stay in school to remain cool.

© Forrester. Reproduction Prohibited.

AI Infrastructure needed to train the initial model is needed in perpetuity.

FORRESTER

AI nestles nicely in automation.

DRWERS

"Inferencing" is using AI in the real world – digital and physical.

...every aspect of work.

... every aspect of roboto control.

Agribot

... every aspect of customer engagement.

... every aspect of transportation.

Al is infused in existing as well as new enterprise operational and customer applications.

When AI goes down, business goes down.

That's why AI is the fastest growing technology on the planet.

Firms want to adjust their optimization strategy more frequently

All respondents agree that there are benefits to adjusting their optimization strategy frequently

Only **19%** of respondents assess their optimization strategy **continuously and in near real time**.

45% want to assess and adjust their optimization strategy **more frequently**.

Q8-How frequently does your organization assess and adjust its optimization strategy?

Base: 162 global decision makers of optimization technology

Source: A commissioned study conducted by Forrester Consulting on behalf of Gurobi, August 2021

© Forrester. Reproduction Prohibited.

© Forrester. Reproduction Prohibited.

Thank You.

Mike Gualtieri *Vice President, Principal Analyst*

mgualtieri@forrester.com

© Forrester. Reproduction Prohibited

Overview Mathematical Optimization in Finance

** # #

Ed Rothberg CEO, Gurobi Optimization

......

......

....

Mathematical optimization and computational finance developed in parallel. Worked together at the RAND Corporation in early 1950's.

George DantzigSimplex method: 1947

 Fundamental building block for modern mathematical optimization

Harry Markowitz"Portfolio selection": 1952

- "A Simplex Method for the Portfolio Selection Problem": 1957
- Nobel prize in Economics in 1990

Portfolio optimization a fundamental building block for modern finance

- xy - x + 2x

Diversity of Applications

Mathematical Optimization + Finance = Portfolio Optimization?

© Gurobi Optimization, LLC. Confidential, All Rights Reserved.

Applications Areas for MO

Accounting Advertising Agriculture Airlines ATM provisioning Compilers Defense Electrical power Energy Facility location Finance Food service Forestry

Gas distribution Government Internet applications Logistics/supply chain Medical Mining National research labs Online dating Petroleum Portfolio management Railways Recycling Revenue management Semiconductor Shipping Social networking Sourcing Sports betting Sports scheduling **Statistics** Steel Manufacturing Telecommunications Transportation Utilities Workforce Mgmt.

Applications Areas for MO

Accounting Advertising Agriculture Airlines ATM provisioning Compilers Defense Electrical power Energy **Facility location** Finance Food service Forestry

Gas distribution Government Internet applications Logistics/supply chain Medical Mining National research labs Online dating Petroleum Portfolio management Railways Recycling Revenue management

Semiconductor Shipping Social networking Sourcing Sports betting Sports scheduling **Statistics** Steel Manufacturing Telecommunications Transportation Utilities Workforce Mgmt.

Optimizing a branch Optimizing credit Optimizing appt card offerings scheduling network Marketing campaign Network design optimization Manpower scheduling optimization **Relevance to** Finance Financial firms are multifaceted enterprises and MO Plus... touches lots of different Portfolio optimization **Optimizing field Securitization** corporate functions Portfolio replication Blending optimization Trade settlement service scheduling • Risk management Transportation optimization • Credit swap management • Asset-liability management Payment netting •

The Virtues of Declarative Modeling

Mathematical Optimization is Declarative Modeling

Declarative

Mathematical optimization is **Declarative Modeling**

- You declare a set of facts about your desired solution
 - A set of constraints
 - An objective function
- An optimization solver performs a systematic search for solution that adhere to these facts
 - Satisfy constraints
 - Maximize objective

In contrast to a procedural approach

• Where you specify a process for finding a solution

 $\begin{array}{ll} Minimize & c^T x \\ Subject to & Ax = b \\ & l \le x \le u \\ \text{some or all } x_j \text{ integer} \end{array}$

Modeling

Mathematical optimization is Declarative Modeling

• You build a model of how your system behaves

As opposed to a data-based approach

• Where you draw conclusions about how the system functions from data

Digital Twin

Optimization model acts as a "digital twin" for your business process

• Captures the behavior of the system for all inputs

Explores the entire solution space to find the best solution

- Also provides a "lower bound" on the best possible solution
- Provides a worst-case guarantee on the quality of the computed solution

Tradeoffs Versus Machine Learning

Model-based versus data-based approach

Model-based does not rely on historical data

- No need to gather massive amounts of training data (which may not be available)
- No need to worry about potential input data that isn't captured in training data
- No need to worry about model drift (when important characteristics of input data change)

Model must be built

• Data-based approach can recognize patterns without significant user input

Tradeoffs Versus Heuristics

Declarative versus procedural approach

Declarative approach

- General solution approach not built to solve just your specific problem
 - May not be robust with respect to changes in the problem
- Easier to understand
 - Much easier to understand declarative statements about the solution than thousands of lines of code
- Passive improvements
 - Improvements in the underlying solver produce improvements for your problem
- Systematic
 - Will find the best solution eventually
- Bound information
 - Guarantees about the quality of the solution

Procedural approach

- Can be quicker to find reasonable quality solutions
- Only 'skill' required to build a heuristic is coding

A problem that involves multiple activities competing for scarce resources

f(x)

Available data that captures the current state and upcoming demands of these activities

A well-formed objective function

A data scientist that has the ability to systematically state the objective and constraints in a mathematical form

Process of formulating an optimization model often as valuable as the model itself

ROBECO

WINCOR NIXDORF

Optimizing fixed-income investment portfolios for private and institutional investors Portfolio optimization for private banking customers

"Cash logistics" Restocking ATM machines

Available on our website: www.gurobi.com/customers/case-studies

To Learn More

Get Started with Mathematical Optimization

- Visit www.gurobi.com
- Browse through our "Resources"

Get a free 30-day trial of the Gurobi Optimizer

• www.gurobi.com/eval

Need help leveraging optimization for your business?

• Contact us at info@gurobi.com

Thank You

Questions?

.....

20000