


Speaker Introduction

Dan Gusfield

 Distinguished Professor Emeritus in the department of
computer science at the University of California, Davis

 Fellow of the IEEE, the ACM, and the International
Society of Computational Biology

 Author of “Integer Linear Programming in
Computational and Systems Biology: An entry-level
text and course’, recently published by Cambridge
University Press.



Integer Linear Programming in Computational
and Systems Biology
Dan Gusfield

Gurobi Webinar March, 2020



This webinar is adapted from a chapter in the book Integer Linear
Programming in Computational and Systems Biology: An

entry-level text and course, published by Cambridge University
Press, 2019

| will assume that most attendees are familiar with ILP



Why Integer Programming in Computational Biology?

ILP is Increasingly used in computational and systems biology in
non-traditional ways.

ILP is very often (but not always) effective in solving instances of
hard biological problems.

Moreover, it is simpler to develop ILP formulations than to develop
a special algorithm for each problem type.



Why ILP?

ILP is now used to address a wide range of problems in biological
science - Distinct from biological management.
My interest is in ILP used for biological science.

Exploiting optimization (via ILP), some biological problems can be
modeled in a way that allows a solution in seconds on a laptop,
while more common (statistically-based) models require days,
weeks or months of computation on large clusters.

There is a growing literature (a few hundred papers over the last
15 years) using ILP in computational biology.



The 2-D RNA Folding Problem

| will illustrate the use of ILP to model and solve a particular class
of problems - Predicting RNA 2-D folding, given only the RNA
sequence.



A 2-D RNA Structure



RNA folding via ILP

Predicting 2-D structure is an important, classic problem in
computational biology, that is often solved with variants of
dynamic programming.

However, integer linear programming is easier (but slower).

More important, ILP can be extended to model more complex
versions of the folding problem, that are difficult to model and
solve with dynamic programming.

We start with an ILP formulation for a simplified version of the
RNA problem.



A Crude First Model of RNA Folding

We are given a sequence S of characters (nucleotides) from the
RNA alphabet {A, C, U, G}. For example, S = ACGUGCCACGAU.

A pairing is set of disjoint pairs of positionsin S. A pair in a
pairing is called a matched pair.

A position can be in at most one matched pair.

Note that some positions might not be in any matched pair in a
pairing.



A Pairing

A Pairing

Figure : The lines show a pairing.



Crude First Model

Two characters are called complementary if they are: {A,U} or
{C,G}. In our first model, all matched pairs must have
complementary characters.

A nested pairing (also called non-crossing) drawn on a circle: A
pairing of complementary characters where each matched pair is
connected by a line inside the circle, and where none of the lines
Cross.



A Nested Pairing

A Nested Pairing

Figure : The lines show a nested pairing.



We Can Display a Nested Pairing on a Line






A Simple RNA Structure

Figure : A Nested Pairing on the RNA Structure



Fold Stability

As a first approximation, it is generally accepted that the true 2-D
fold of an RNA molecule corresponds to the most stable nested
pairing.

In the simple model, we measure the stability of a nested pairing
by the number of matched pairs it has. Then, the most stable

nested pairing is the one with the largest number of matched pairs.
So, we have

The Simple RNA Folding Problem: Given the
sequence S of an RNA molecule, find a nested pairing
with the maximum number of matched pairs.



Formulating and Solving the Simple RNA Folding Problem
via ILP

We create one binary ILP variable, P(i, ), for each pair (i,j) of
positions in S, where / < j.

P(i,j) will be set to 1 if and only if position i is paired with
position j.

If the ordered pair of characters in any positions / and j are not
complementary, i.e., not (A, U) or (U, A) or (C, G) or (G, C), then
we create and include the equality:

P(i,j) =0,

to disallow the pairing of the characters in positions i and j.



Each site in at most one matched pair

The requirement that each character can be in at most one
matched pair:

for each j ZP(j, k)—i—ZP(kJ) <1l (1)

k>j k<j

Note that this is an inequality, not an equality, meaning that it is
permissible for a position j to not be in any matched pair.



Implementing Nested Pairing
To implement the requirement that the pairing be nested, the key
is to note that a pairing that is not nested, must contain some
matched pairs (/,/) and (7, /') where i < " <j <.

i <PP<j <]
Crossing matched pairs



To Forbid Crossing Pairs

We have the inequalities:

For every four positions i < i’ < j < j/,
P(i.j)+ P(i",j) <1
Finally, the objective function is:

Maximize Z P(i,J)
i<j



A Toy Example
S = ACUGU. Then the ILP is:
Maximize P(1,2)+ P(1,3) + P(1,4) + P(1,5) + P(2,3) +
P(2,4) + P(2,5) + P(3,4) + P(3,5) + P(4,5) s.t.

P(1,2) =0
P(1,4) =0
P(2,3) =0
P(2,5) =0
P(3,4) =0
P(3,5) =0
P(4,5) =0
P(1,2) + P(1,3) + P(1,4) + P(1,5) <=1
P(1,2) + P(2,3) + P(2,4) + P(2,5) <=1
P(1,3) + P(2,3) + P(3,4) + P(3,5) <=1
P(1,4) + P(2,4) + P(3,4) + P(4,5) <=1
P(1,5) + P(2,5) + P(3,5) + P(4,5) <=1



Continuing

P(1,3) + P(2,4) <=1
P(1,3) + P(2,5) <= 1
P(1,4) + P(2,5) <=1
P(1,4) + P(3,5) <= 1
P(2,4) + P(3,5) <=1

All variables are binary.



Simple Biological Enhancements

» Minimum distance constraint between matched paired
positions: Trivial to incorporate this constraint. Set
P(i,j) = 0 if characters i and j are too close (e.g., within
three positions).

» Differential binding strengths:
A {C, G} matched pair has three hydrogen bonds, while an
{A, U} matched pair only has two bonds.

So, to find the most stable nested pairing, we need to weight
matched pairs differently and find a maximum weight nested
pairing.

Trivial to incorporate weights into the objective function.



Simple Enhancements

Allowing non-complementary matched pairs:

In some models of RNA folding, a small number of certain
non-complementary characters (mostly {G, U}) are allowed to
form a matched pair.

If we use weights in the objective function, non-complementary
matched pairs can be permitted, but discouraged, so they would
appear in an optimal solution only if no nested pairing has as many
matched pairs.



Simple Enhancements

Or, we can modify the ILP model to bound the number, or the
percentage, of non-complementary matched pairs:

ST P(ij) < ex Y Pi)),

(ij)eNCpairs (i)
where NCpairs is the set of non-complementary pairs, and c is a

chosen bound on the fraction of allowed non-complementary
matched pairs.



More Complex Biological Enhancements

A matched pair (i,/) in a nested pairing is called a stacked pair if
its neighboring positions (i + 1,/ — 1) also form a matched pair (or
(i —1,j 4 1) form a matched pair) in the nested pairing.

If (7,j) and (i +1,j — 1) are stacked pairs, the four positions
(i<i+1<j—1<j)form a stacked quartet.

A stack in a nested pairing consists of a consecutive run of two
or more stacked pairs.



= o
wn @
-~ ®
- @

§ 19 10

12

Stack with six positions, and two stacked quartets:

(1,2,9,10) and (2,3,8,9)



Figure : The pairing contains one stack with three matched pairs, and
two stacked quartets.



Stacks are particularly evident in the folding of transfer RNA
(tRNA), in a distinctive secondary structure called a cloverleaf.



Stacks and Stability

Stacks contribute significantly to the stability of an RNA fold. So
a more realistic ILP formulation for RNA folding must encourage
matched paired characters to be organized into (long-ish) stacks.

As a simple first step, we will extend the objective function of the
ILP to include a count of the number of stacked quartets in the
nested pairing.



Counting Stacked Quartets

We create the binary ILP variable Q(/,/) to indicate whether the
matched pair (i, ) is the first pair in a stacked quartet. We have,
for each i, j, where j > i:

P(i.j)+P(i+1,j—1)— Q(i,j) <1 (3)

2Q(i,j)—P(i,j)—P(i+1,j—1)<0 (4)

The first inequality enforces the condition that if both (7, ) and
(i4+1,j — 1) are in the nested pairing then the value of variable
Q(i,j) must be set to 1.

The second inequality enforces the converse condition, that Q(/, )
is set to 1 only if P(i,j) and P(i+1,j — 1) are both set to 1.



Counting Stacked Quartets

Then, to incorporate a count of the number of stacked quartets in
the fold, we change the objective function from

Maximize » _ P(/, j)
i<j

to

Maximize > [P(i,j) + Q(i.J)],
i<j
Or we can use weights to reflect the relative importance of stacked
quartets compared to matched pairs.



How Do Stacked Quartets Encourage Stacks?
Stacked quartets overlap in a stack, so the same number of
stacked quartets require fewer positions than if they were
separated, i.e., not in a stack.




Weighting stacked quartets in a nested pairing

The next, and perhaps the most important, extension of the
biological model is to incorporate weights into the objective
function for each stacked quartet.

Then, the objective function is given as:

i=n
Maximize » "[W(i,j) x Q(i,j)],
i=1
where W(i,j) is a positive constant that depends on which four
characters are in the stacked quartet (i,i +1,j — 1, /).

Extensive studies have been done to determine informative weights
for stacked quartets, based on which four characters in the stacked
quartet.



Alternative Objective Functions

The objective function
Maximize » "[P(i,J) + Q(i, )]
i<j
is sometimes replaced with
Maximize Z[Q(i,j)].
i<j
In fact, some biologists and biochemists think that this is the most
biologically-meaningful objective function.

What is fascinating is that the ILP with this objective function
solves much faster than the prior two, but the pairings are similar.



A Typical Example

In an example of length 100, with the minimum distance between
matched paired characters set at five, and using the objective
function with only P variables, Gurobi 7.5 took about 13 minutes
and produced a nested pairing with 33 matched pairs and 14
quartets.

Then, including both P and @ variables, Gurobi took 51 seconds
and produced a nested pairing with 32 matched pairs and 20
quartets.

But, using the objective function with only Q variables, Gurobi
took only 2.16 seconds and produced a nested pairing with 29
matched pairs and 20 quartets.

Good Karma! The most biologically-informative objective
function also solves the fastest.



Really Good Karmal!

It is also fascinating to note that the RNA folding problem using
the first objective function (only P variables in the objective
function) has a worst-case polynomial-time solution. In fact, for
a sequence of length n, the worst-case time for the classic
dynamic-programming solution is O(n3), which is polynomial.

On the other hand, the RNA folding problem using the third
objective function (only Q variables in the objective function) is
NP-hard (proven in a 2004 paper by Rune Lyngso, LNCS
3142:919-931 July 2004). So, one might expect that the ILP using
the first objective function would (empirically) run faster than the
ILP with the third objective.

But that expectation is wrong - Nature Bats Last!.



More Elaborate Models of RNA Folding

Complementary pairing, nested pairing and base stacking, along
with appropriate weights for matched pairs and stacked quartets
are the most critical features of RNA folding models.

However, many other features of RNA folds have been
incorporated into fold models. About two hundred parameter
choices in one RNA folding package.

E.g., In some models of RNA folding, the weight given to stacked
quartet depends both on the specific characters in the quartet,
and on where it appears in a stack. The main distinction is
whether the stacked quartet is the first quartet, the /ast quartet, or
a middle quartet in a stack.



Location of Stacked Quartets

We extend the ILP formulation to recognize where a stacked
quartet appears in a stack. Let F(i,;) be an ILP variable that will
be set to 1 if and only if the stacked quartet (i,i 4+ 1,5 —1,j) is
the first stacked quartet in a stack. We use:

QUij) = Qi —1,j+1) = F(i.j) < 0

and

2F(i,j) — Q(i,j)+ Q(i—1,j+1) < 1.

We can use the F variables to count the number of stacks in a
pairing, or give a special weight to a matched pair that begins a
stack, depending on what characters are in the matched pair (this
is commonly done). We can also use the F variables and counts to
encourage the matched pairs to form a few, long stacks. We leave
these extensions to the readers.



Further Extension: Allowing Certain Crossing Pairs

Up until now, we have required that pairings be nested,
non-crossing.

However, a limited number of crossing matched pairs are
sometimes observed in RNA folds, particularly for RNA molecules
that are not tRNA molecules.



Allowing Some Crossing Pairs

AN

1 <1< ] <] .]
Crossing matched pairs



Allowing Crossing Pairs

Let C(i,1',j,j") be an ILP variable with value 1 if () and (', ')
are matched pairs that cross.

Then, for every choice of four positions | < i’ < j < j/, create the
inequality:

P(i,j) + P(i",j") — C(i, i, j,j') <1 (5)
We don’t need inequalities for the only if direction.

With C variables, we can add an inequality that limits the number
of crossing matched pairs to a fixed number, or to a fixed
percentage of the number of crossing matched pairs in the pairing,
etc.



Pseudo-Knots
Pseudo-knots generalize crossing pairs. If two sets of crossing
matched pairs are organized into two stacks, they form a
pseudo-knot, which is a single structural feature.



Modeling Pseudo-Knots in an ILP

Pseudo Knots are hard to incorporate into dynamic programming
approaches to RNA folding, but easy to model in ILP.

We create the binary ILP variable, PS(i,i"), for i < i’, and set it to
1 if and only if there is a pseudo-knot whose two stacks begin at
positions / and i’ respectively.

Then create inequalities to set PS(i,i") to 1 if and only if there are
positions j and j/ where

F(i,j) = L and F(i",j) = 1 and C(i,i",j,j') = 1.

That is, the matched pairs 7, and /’j’ are the heads of two stacks,
and the matched pairs /i, and /', ' cross.



How to Use the PS(i, ") variables

For each pseudo-knot there is exactly one PS(i, ") variable set to
1, and this allows us to count the number of pseudo-knots in a
pairing. Hence, we can trivially bound the number of allowed
pseudo-knots, or the percentage of stacks that involved in a
pseudo-knot, etc.

We can also use the @ and F variables to make the ILP
formulation count the number characters contained in all of the
stacks. Similarly, we can count the number of characters in stacks
involved in a pseudo-knot, and use these count in inequalities to
limit the number, or percentage, of such characters. We leave this
again as an exercise.



Ending Comments

» RNA folding is just one illustration of ILP in computational
biology, but it is a good representative.

» How ILPs for Computational Biology differ from ILPs for
traditional applications: The native description of the
problems rarely look linear, in contrast to traditional
applications (for example, the classic diet problem). An ILP
formulation in computational biology encodes what are called
reductions in computer science.

» Most problems solved by ILP in computational biology are
NP-hard. The virtue of NP-hardness: Compact
Expressibility!



Why ILP?

If expressibility is so good, why use ILP and not some other
NP-hard problem?

In theory, any NP-hard problem will do. But In practice, there is
an industry which invests, maintains, and supports ILP. There is no
similar industry for any other NP-hard problem.

SAT-solvers can be competitive (or even superior) for some pure
decision problems, but they don’t naturally solve optimization
problems, especially with an extended range of values for feasible
solutions.



Thank You






Your Next Steps

* Try Gurobi 9.0 Now!

« Get a 30-day commercial trial license of Gurobi at www.gurobi.com/free-trial

« Academic and research licenses are free.

» For questions about Gurobi pricing, please contact sales@gurobi.com or sales@gurobi.de

« Arecording of this webinar, including the slides, will be available in roughly one week.


http://www.gurobi.com/free-trial
http://gurobi.com
http://gurobi.de



