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Products of binaries GUROB!

 Problem formulation:

min[c’x]+ x"Qx  // no assumptions on convexity of x" Qx
[s.t. Ax~Db]

x € {0,1}

* Possibly nonconvex MIQP

* Can reformulate constraints into objective using penalties (QUBO)
* Good formulation for Quantum Annealers, not so good for solvers like Gurobi

 https:.//www. sprmqerprofessmnal de/en/quantum-bridge-analytics-i-a-tutorial-
on-formulating-and-using-q/17436666
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Outline GUROB

* Products of binaries fundamentals
» Solver options and parameters
« Working with the existing formulation

« Reformulations
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Products of binaries fundamentals GUROB!

» Solution strategies

 Solve as convex or nonconvex MIQP
« Still must deal with the quadratic objective

« Starting with version 9.0, Gurobi can solve nonconvex MIQPs (and
MIQCPs)

* Transform into a convex MIQP or a MILP
» Convexification of objectlve = x; for binary variables)

* XiXj = XX + (xf- xl)+(x Xj)= (x +xx]+x)—xl—x]
Y
convex

e xT0x = xTQx +|xTDx'— d'x,=xT(Q+D)x— dlx

0 PSD
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Products of binaries fundamentals GUROB!

- PreQLinearize = 0: Convexification of objective (x = x; for binary variables)
* A nonconvex MIQP becomes a convex one without adding constraints
« But there is no free lunch
* xiXj = XX+ (xF-x;) + (xF—x)= (eF4xxg + 1) — x; — %
\_'_I | : J | q ) | v ]

0 0 convex relaxation

- Consider x; = x; = .51in
min x;x; S.t
xi+xj=1
xi, xj 20

» Objective value in relaxation is -.25

 Potential for negative dual bound values for convexified model that has an
obvious lower bound of 0 in the original model

« As magnitude of D increases, so does the weakness in the dual bound of the
convexified problem
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Products of binaries fundamentals GUROB!
» Solution strategies

e Linearize a convex or nonconvex MIQP into a MILP

« Simplest linearization technique: do the following for each product of
binaries in the model (PreQLinearize=1)

° Zij = Xl'Xj
Zij < Xi

(only need these two if objective pushes z;; up)
Zi j < X j

Zij > X + xj —1 } (only need this one if objective pushes z;; down)
e Add the 3 linear constraints to the model
* Replace each occurrence of X;x; in the model with z;;
 We've transformed a (possibly nonconvex MIQP) into a MILP

* Benefit from various Gurobi features available for MILP but not MIQP
e Still no free lunch

* We added 1-3 constraints for each product of binaries.
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Products of binaries fundamentals GUROB!

» Solution strategies

* Linearize a convex or nonconvex MIQP into a MILP
A less straightforward but more compact linearization technique

* Consider the MIPLIB 20710 model neos-911970

Minimize
C0001 + C0002 + C0O003 + C0004 + CO005 + C0006 + CO0O07 + C0O008 + C0009
+ C0010 + C0011 + C0012 + C0013 + C0014 + C0O015 + C0016 + C0O017 + C0O018
+ C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027

+C0028 + C0029 + C0030 + CO031 + C0032 + C0033 + C0034 + C0035 + C0036 Penalty variable on soft
+ C0037 + C0038 + C0039 + CO040 + C0041 + C0042 + C0043 + C0044 + C004 knapsack constraint
+ C0046 + C0047 + C0048 R0001

Subject To

R0001: - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
+4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385 All other variables in
+3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505 constraint are binary
+4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
+5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745
+5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 6.5
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Products of binaries fundamentals GUROB!

A less straightforward but more compact linearization technique
» Look at a simpler version of this soft knapsack constraint

Minimize
C0001 + C0002 + C0003 + C0O004 + C0O005 + C0O006 + CO007 + CO008 + C0O009
+ C0010 + C0011 + C0012 + C0013 + C0O014 + C0O015 + C0016 + CO017 + C0O018
+ C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027
+ C0028 + C0029 + C0030 + C0031 + C0032 + C0O033 + C0034 + CO035 + CO036
+ C0037 + C0038 + C0O039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045
+ C0046 + C0047 + C0048

Subject To

R0O001a: - C0025 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 <=6.5

Knapsack capacity

matches largest

C0673 = C0697 =1 --> C0025=4.2+6.5-6.5=4.2 knapsack weight
C0673 = C0721 = 1 —> C0025=4.2 + 5.95 - 6.5 = 3.65

C0697 = C0721 = 1 —-> C0025 = 6.5 + 5.95 - 6.5 = 5.95

C0673 = C0697 = C0721 = 1 -> C0025 = 4.2 + 5.95 = 10.15

R0001a provides a linear representation of
C0025 =4.2 C0673*C0697 + 3.65 C0673*C0721 + 5.95 C0697*C0721 - 3.65 C0697*C0673*C0721

Copyright © 2021, Gurobi Optimization, LLC




Products of binaries fundamentals GUROB!

A less straightforward but more compact linearization technique
 Implications for the full constraint RO001

R0O001: - C0025 + 5.43 C0049 + 5.56 C0O073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
+4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+4.39 C0289 + 5.64 C0313 + 5.9 C0O337 + 3.57 C0361 + 6.4 C0385
+ 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
+4.31 C0529 + 4.63 C0553 + 4.74 CO577 + 5.5 C0601 + 5.1 C0625
+ 5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745
+5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <=6.5

C00025 = (linear combinations of all the bilinear terms) — (linear combinations of larger multilinear
terms)

» Could represent this complicated multilinear expression via a single constraint

 Suspect the creator of this model was Jlust thinking about soft knapsack constraints
(no info on MIPLIB set regarding model origins).

« Can we modify this to help us linearize an expression just involving bilinear terms?
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Products of binaries fundamentals GUROB!

« A less straightforward but more compact linearization technique
» Consider a different version of this constraint:
R0001": - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
+4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385
+ 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
+4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
+ 5.1 C0649 + 4.2 C0673 + 166.76 C0697 + 5.95 C0721 + 5.88 C0745
+5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 166.76

166.76 = sum of all knapsack weights except for C0697

« All sums of knapsack weights other than C0697 will be <= the rhs
« — all multilinear expressions not involving C0697 contribute 0 violation to this soft constraint

 If C0697 = 1 and any other binary variable = 1 we get a contribution of the other binary
variable’s coefficient to the violation (e.g C0049 ="1 contributes 5.43 of violation).

« C0025=5.43 C0049*C0697 + 5.56 C0O0/3*C0697 + ... + 5.534 C0865*C0697/
« (C0025 represents precisely a quadratic expression involving C0697 and other binaries
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Products of binaries fundamentals GUROB!

A less straightforward but more compact linearization technique
« C0025=5.43 C0049*C0697 + 5.56 C00/3*C0697 + ... + 5.534

C0865*C0697/

« C0025 represents precisely a quadratic expression involving C0697 and
other binaries

» Gurobi’s PreQLinearize = 2 setting uses this to do a more compact
linearization

* 1y *x; + -+ @y * X, (y,x; binary) is linearized as

q1%1 + -+ qnxn+qy —p<q  (@=ZXj-1q9;)  //q;>0.
P=q1Y * X1 + -+ qpy * Xy
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Products of binaries fundamentals GUROB!

« Summary of Gurobi PreQLinearize settings: Still No Free Lunch
* PreQLinearize = 0: Convexify the nonconvex quadratic objective
- Move from nonconvex MIQP to convex MIQP<&
- No additional constraintscs
+ Miss out on MILP features absent from convex MIQP solverf |
. Counterintuitive dual bound values that suggest possibly weak relaxations“f
* PreQLinearize = 1: Linearize the nonconvex quadratic objective with new
variable and constraints for each bilinear objective term
« Move from nonconvex MIQP to MILP:& &
* Fairly strong MILP formulation

« Each bilinear term in the quadratic ggjective introduces one new variable and one
or two additional linear constraints

* PreQLinearize = 2: Linearize using the soft knapsack constraints
- Move from nonconvex MIQP to MILP<& |
« Multiple bilinear terms modelled with one additional variable and constraintcs
. Weaker MILP formulation <%
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Products of binaries fundamentals GUROB!

* Gurobi PreQLinearize settings
 Gurobi’s default logic to choose works fairly well.

» Use node log to determine the default selection
« Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: Oxe647a136

Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)

Coeffi_cient statistics: Default setting; convexification
Matrix range  [1e+00, 1e+00] (PreQLinearize = 0) selected.
Objective range [0e+00, Oe+00] No additional constraints; number of

QObijective range [2e-01, 2e+01] : :
Bounds range  [1e+00, 1e+00] quadratic terms has increased due

RHS range [1e+01, 1e+01] to convexification (one new nonzero

Found heuristic solution: objective 246.2637697 the O diagonal term associated the
Presolve time: 0.00s square of each of the 50 variables)
Presolved: 1 rows, 50 columns, 50 nonzero
Presolved model has 1275 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)

Copyright © 2021, Gurobi Optimization, LLC




Products of binaries fundamentals GUROB
* Gurobi PreQLinearize settings

 Gurobi’s default logic to choose works fairly well.

» Use node log to determine the default selection

« Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: Oxe647a136

Model has 1225 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary)

Coefficient statistics: Set PreQLinearize = 1 (simple
Matrix range  [1e+00, 1e+00] linearization).
Objective range [0e+00, Oe+00] One additional constraint and
QObjective range [2e-01, 2e+01] variable for each bilinear term; no

Bounds range  [1e+00, 1e+00] quadratic objective terms in
RHS range [1e+01, 1e+01] presolved model.

Found heuristic solution: objective 246.263762
Presolve time: 0.00s

Presolved: 1226 rows, 1275 columns, 3725 nonzeros
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Products of binaries fundamentals GUROB!

* Gurobi PreQLinearize settings
 Gurobi’s default logic to choose works fairly well.

» Use node log to determine the default selection

« Compare original model with presolved model
Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: 0xe647a136

Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)

Coefficient statistics: Set PreQLinearize = 2 (compact
Matrix range  [1e+00, 1e+00] linearization).
Objective range [0e+00, 0e+00] One additional constraint (49 total)
QObjective range [2e-01, 2e+01] for all bilinear terms involving a
Bounds range [1e+00, 1e+00] single variable; 49 additional penalty
RHS range [1e+01, 1e+01] variables no quadratic objective

Found heuristic solution: objective 246. terms in presolved model.
Presolve time: 0.00s
Presolved: 50 rows, 99 columns, 1373 nonzeros

AL} el iRq aln a o alrzierl: ellaps
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An Interesting Example S s on
* The p-Dispersion-Sum problem

 Given a set of n points with distances dij between points i and j, find the
subset of k points that maximizes the sum of the distances

Max Zi<j dijxin
Xj (S {0,1}

« Example discussed in Practical Guidelines for Solving Difficult MILPs
(https://www.sciencedirect.com/science/article/abs/pii/S1876735413000020

« Broader discussion in

http.//yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximu
m-dispersion.html

« We'll come back to this later.
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Solver options and parameters S roon

« Solve directly as (non)convex MIQP
 Via Spatial Branch and Bound if using Gurobi
« Set NonConvex parameter to 2
* Not the best choice on the models considered in this presentation.

« Transform into a MILP or convex MIQP
« Choose between convexification and linearization (PreQlinearize parameter)

« Convexification
« More compact formulation, but weaker
» Linearization
« Larger, stronger formulation
« More opportunities to provide polyhedral cuts, use other MILP features
« Canincrease intensity of RLT and BQP cuts
» For general bilinear terms, but particularly effective on products of binaries
* More later
« Zero-Half cuts when PreQLinearize = 1
* Good in general on constraints with all binaries, +-1, +-2 coefficients
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Results for the p-Dispersion-Sum problem, n=50, k=10 @ SYRCE!

*  Max );jdijxx;
s.t. 2}1:1 xj =k
xj €{0,1}
« Gurobi 9.1, 2 Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz quad core processors

« Defaults: Out of memory with gap of 52.3% after 1.35 hours
 Gurobi by default chose to convexify rather than linearize

* PreQLinearize = 1: Optimal, 3.62 hours
* PreQLinearize = 2, RLTCuts = 2: Optimal, 1.55 hours
« Can we do better by tightening the formulation?
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GUROBI

Working with the existing formulation

LP relaxation feasible region is the convex hull of the integer feasible points
« Won't be able to use LP-based polyhedral cuts on this direct formulation
 Previous results indicate just linearizing (PreQLinearizing=1) is better, but still not particularly
effective given the problem size

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-
dispersion.html describes multiple ways to derive a single cut that uses both original x
binary variables and the linearization variables z

Max Zi<]' di]-xix]- Max Zi<j dijzij
s. t. j=1Xj =k ‘ s.t. Yjim1xj=k
x;j €{0,1} <linearization constraints>
x]- (S {O, 1}

Run time with cut drops from hours to < a minute

Blog describes multiple ways to derive this cut, but how do we do it generically in a way
that extends to other models?
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GUROBI

Working with the existing formulation
e Max Zi<j di]-xl-xj Max Zi<j dijzij
s. t. }‘:1 xj =k ‘ s. t. }‘:1 xj|=k
x; € {0,1} <linearization constraints>
x]- (S {O, 1}

« Generic approach #1: RLT and aggregate (from the blog): ghxi

‘ Z,<lzq + Z,>lzq = (k 1) * x;

(add all n such constraints: i=1Xj<iZij + Xjsizij) = (k— 1)+ Xizq x;

‘ Zjiizi]- == (k— 1) *k» 2 *ZK]-Z,-]- = k * (k— 1)» ZKJ-ZU- = k * (k— 1)/2

Copyright © 2021, Gurobi Optimization, LLC




Working with the existing formulation

GUROBI

OPTIMIZATION

« RLT approach of last slide Max ¥;;d;jz;
A bit complex, but generic s.t. Yim1xj=k
and effective <linearization constraints>

x]- (S {O, 1}

« Generic approach #2: just use the “Padberg Graph”
» Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives

Zij =Xl'Xj

Zij SXL' Zij

Zij = %; Q Q
Zij = Xi + Xj —1

« Either way, we are determining the number of z variables that must be 1

Copyright © 2021, Gurobi Optimization, LLC




GUROBI

Working with the existing formulation
- Padberg graph for our dispersion problem Max ). jd;ijz
Complete graph since d;; > 0 s.t. Yim1xj=k

<linearization constraints>

xj (S {0, 1}

* Given that k of the x variables must be 1, how
many of the z variables must be 1?

« WLOG, set the first k x variables to 1

* Induces a complete subgraph on the green
nodes associated with x, ..., x

« Each edge in the subgraph identifies a z
variable that must be 1

 There are k x (k — 1)/2 such edges

Source: http://orwe-conference.mines.edu/files/I0S2018SpatialPerfTuning.pdf
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Working with the existing formulation S s on

- Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives
« He used the Padberg graph in a generic manner that just used the quadratic objective

« Generate cuts even when the problem has no constraints
° Example: X1+ X+ X3 — (le + Zy3 + Zlg) <1

« Can prove by contradiction
* Or by induction Z1 Z13
« Extends to cliques of larger size / \
* Or by deriving as a zero half cut @ @
« But Padberg figured it out first z Z93 ’
» Orvia facet defining inequalities
« Gurobi's BQP cut feature makes use of this with cliques of size 3

« Traction for cut generation when model has few or no constraints

« Adding these Padberg Cuts for cliques of size 4 or more may be useful
 For 9.1.x with x>=1, can set GURO_PAR_MOREBQPCUTS to 1

» For next major release and beyond, more refined improvements will be integrated with no need for
setting a hidden parameter.
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GUROBI

Working with the existing formulation
e Max Zi<j di]-x,-x]- Max Zi<j dijzij
s. t. j=1Xj =k ‘ s.t. | XjsaxjEk
xj € {0,1} <linearization constraints>
x]- (S {O, 1}

 Best time on original model: 1.55 hours (PreQLinearize=2, RLTCuts=2)

« Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 18
seconds

- Do the 3 constraint linearization described in this presentation: 8 seconds
 Add the cardinality cut to 3 constraint linearization model: 5 seconds
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GUROBI

Working with the existing formulation

Does the success tightening the n=50, k=10 p-dispersion-sum model carry over
to other models?

Consider the publicly available QPLIB models on which Gurobi exceeds or
comes close to the one hour time limit on the Mittelmann benchmark.

Model 3772
« Convexify objective (PreQLinearize=0): 11.5% gap after 2 hours

* Linearize objective (PreQLinearize=1, Gurobi’'s default choice): Optimal, 27.88
minutes

 Best non default settings: ZeroHalfCuts=2, RLTCuts=2: Optimal, 14.22 minutes

* No success so far tightening the formulation

 All original binaries can get setto 0
« All linearization variables can be setto 0
« No cardinality type cut like in the p-dispersion sum model is available
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Working with the existing formulation S s on

« More QPLIB models

* Model 3775
Convexify objective (PreQLinearize=0, Gurobi’s default choice): 27.32 minutes

Linearize objective (PreQLinearize=1) 30.73 minutes
Best non default settings found: 22.67 minutes (PreQLinearize=1, RLTCuts=2)

Tightening the existing formulation
* No explicit cardinality constraints on the original variables like in the p-dispersion-sum
problem
* Q matrix is not dense like in the p-dispersion-sum problem

« But we can ask a similar question: what is the minimum number of linearization binaries
that must be set to 1 in a feasible solution for the linearized MIQP?

« Formulate and solve the appropriate subMIP
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How many z variables must be 1? S roon

« Model 3775 (continued)
 SubMIP solve for case where Q;; = 0:

subMIP e=(1,1,...,1)
minc’x + xTQx messssmm) minc/x +|d'z| sy  mine’z
[s.t. Ax ~Db] inoarve LSt Ax ~D] [s.t. Ax ~Db]
x €{0,1} Te——) x4 F,z<Dp Exx +E,z<p
x,z € {0,1} x,z € {0,1}

Cardinality cut: eTz > z*

Best time on original model: 22.67 minutes (PreQLinearize=1, RLTCuts=2)

Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 15.40 minutes*
Do the 3 constraint linearization described in this presentation: 49.18 minutes

Add the cardinality cut to 3 constraint linearization model: 8.95 minutes*

*. Includes 32 sec. for subMIP solve
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Working with the existing formulation S s on

« More QPLIB models

* Model 3587
 Convexify objective (PreQLinearize=0): Hopeless
« Linearize objective (PreQLinearize=1, Gurobi’'s default choice) : 62.63 minutes
 Best non default settings found: 49.55 minutes (RLTCuts = ZeroHalfCuts = 2)
« subMIP yields a useful cardinality cut
« Gurobi linearized model: 15.37 minutes
« 3 constraint linearized model 12.58 minutes
 Includes 0.5 sec. for sub MIP solve
 Similar results giving 3 constraint linearized model to Gurobi without the cut

 Model 3614
« Appears to be a different instance of the same model as 3587

« Over 3x speedup adding cardinality cut to 3 constraint linearized model compared to
defaults (subMIP solve time only 0.02 sec.
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Working with the existing formulation S s on

« QPLIB models summary
 Discarded model 0752 due to high performance variability

Defaults (minutes) | Best non default Cardinality Cut

3772 27.88 1422 e
3775 27.32 22.67 8.95
3587 62.63 49.55 12.58
3614 11.65 9.83 3.07

« Found non default settings to improve performance on all 4 models
 Cardinality cut offered the best performance on the 3 of 4 models
« And all 3 on which it could be created.
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Working with the existing formulation GUROB]

OPTIMIZATION

e Other results with sub MIP cuts

« Quadratic Assignment Problems (QAPs) from the QAPLIB set
« Known to be difficult for MIP solvers
« Sub MIP solves quickly
» Big speedups on had, nug QAPs of dimension 12

« Solved had, nug QAPs of dimension 14 and 16 that regular Gurobi cannot solve with defaults or
parameter tuning

» Doesn't scale up to larger QAPs
e Sub MIP cuts require basic linearization
« Number of bilinear terms grows quadratically as dimension increases
« Node throughput slows dramatically as problem size increases

* Proprietary models from a prospect
« SubMIP solves remained far from optimality after over an hour
« Extended BQP cuts in 9.1.x and beyond were very effective
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Reformulations GUROB!

» Back to the p-Dispersion-Sum problem

« Cardinality based cut enabled Gurobi to solve the n=50, k=10 instance within 30
seconds

 But how well does it scale?

« Aninstance with n=100, k= 20 and the cardinality cut did not solve to optimality
in several hours, despite better gap

 Instead of maximizing the sum of distances, maximize the minimum distance
among the k chosen points (and k*(k-1)/2 associated distances):

Max A
s.t.A< d;; + M(l — X * x]') /I M = maxd;; Only binding when

j=1Xj =k x; = %=1

X; € {O, 1} (source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html )
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. Only bindi h
Reformulations e SO
 Max A
;'1=1 x] — k
xj € {0,1} (Formulation 1) (Formulation 2)

« Formulation 1 (n=100, k=20)
« Defaults (PreQLinearize=1): 16 seconds
« PreQLinearize=0: Timed out after 3 hours (solving nonconvex MIQCP)

« Formulation 2 (n=100, k=20)
» Defaults: 2 seconds

(source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html )
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A few loose ends GUROBI

OPTIMIZATION

 The subMIP and cardinality cut approaches required direct access to the
linearization variables

» Can generate and work on the presolved model
« Easier to just do the simple linearization (PreQLinearize=1) yourself

def glinearize(model, useobj, zvars = None):
qobj = model.getObjective()
t = model.ModelSense
linpart = qobj.getLinExpr()
model.setObjective(linpart)
dupdict = {}
for k in range(qobj.size()):
qcoef = qobj.getCoeff(k)
Xi = qobj.getVar1(k)
Xj = qobj.getVar2(k)
keyl = (xi, xj)
key2 = (xj, xi)
if key1 in dupdict or key2 in dupdict:
continue # this product already linearized; don't duplicate
else:
dupdictlkey1] =1 # first time this xi, xj pair encountered.
dupdictfkey2] = 1 # proceed with linearization.
qcoeff = qobj.getCoeff(k)

(appendix of this deck contains this code in

zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)

St <raee e a size that can actually be read)

skip2 = False
if useobj:
down = qcoef*t > 0.0
if down:
skip1 = True
else: # qobj only contains nonzero Q elements
skip2 = True
if not skip1:

cname = "lin1_"+ suffix

model.addConstr(zij - xi <= 0, name = cname)

cname = "lin2_"+ suffix

model.addConstr(zij - xj <= 0, name = cname)
if not skip2:

cname = "lin3_"+ suffix

model.addConstr(xi + xj - zij <= 1, name = cname)
if zvars = None:

zvars.append(zij)
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A few loose ends GUROBI

OPTIMIZATION

« Sometimes better to generate all 3 constraints associated with PreQLinearize=1
instead of the 1 or 2 that Gurobi generates

* Not needed for correctness, but can yield tighter relaxations

« Under investigation to try to get the tighter formulation without the additional
constraint(s)
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A few loose ends GUROBI

* MILPs that are actually MINLPs in disguise

« We already saw this with neos-911970
« Soft knapsack constraints were a multinomial objective in disguise

* Don't necessarily want to reformulate the MILP into the MINLP

« But do want to consider both formulations, consider anything in the unused formulation
that will help the other run faster (e.g. create the Padberg Graph)

» Other examples
» QOverlap or interference conditions

 Logical conditions (e.g. SAT models)

 z variable models an and for the two binary x
variables

* The open MIPLIB model neos-2629914-sudost

« Solve the MILP or MINLP, but use info from both
to improve performance
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Key Takeaways GUROBI

* Non Default parameter settings can help
* PreQLinearize
« RLT, BQP and ZeroHalf cuts
« Don't forget the NodeMethod parameter to improve node LP solve times

« When tightening the formulation, need to consider the linearization variables
 Linearized model offers more opportunities to tighten than convexified model
« Albeit with potentially slower node throughput
Gurobi's linearizations emphasize compact formulations
« Sometimes larger, basic linearization may work better
« Easy to implement (see Appendix)

RLT type strategy: Multiply linear constraints by binary variable, linearize and combine
constraints

Padberg graph can yield insights
Solve subMIPs including the linearization variables to determine bounds on the number of
linearization variables that must be 1
« Look for reformulation opportunities
« Make sure quadratic conditions involving binaries are really quadratic.
« MINLP formulation in disguise can be used to tighten MILP formulation being used
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References and Resources

4.

S.

Dispersion Problems (Kalvelagen):
http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-

dispersion.html

Products of binaries (Achterberg): https://www.gurobi.com/resource/products-of-variables-in-
mixed-integer-programming/

More on the Padberg Graph and products of binaries (Klotz):
http://orwe-conference.mines.edu/files/I0S2018SpatialPerfTuning.pdf

Padberg’s original Boolean Quadric Polytope Paper:
https://link.springer.com/article/10.1007/BF01589101

Reformulating IPs as QUBOs (Glover, Kochenberger, Du)
https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-

and-using-q/17436666

6.

Other literature on linearizations of products of binaries:
https://www.hindawi.com/journals/jam/2020/5974820/
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Specialized Strategies for Products of Binary Variables oo

Thank You

Questions?

Copyright © 2021, Gurobi Optimization, LLC, Confidential



Appendix oo

« Some sample code using the Gurobi Python API to do the basic linearization

def glinearize(model, useobj, zvars = None):
gobj = model.getObjective()
t = model.ModelSense
linpart = qobj.getLinExpr()
model.setObjective(linpart)
dupdict ={}
for k in range(qobj.size()):
gcoef = gobj.getCoeff(k)

Xi = gobj.getVar1(k)
X = gobj.getVar2(k)
keyl = (xi, Xj)
key2 = (xj, xi)
if key1 in dupdict or key2 in dupdict:
continue # this product already linearized; don't duplicate
else:

dupdictlkey1] = 1 # first time this xi, xj pair encountered.
dupdictlkey2] =1 # proceed with linearization.
gcoeff = qobj.getCoeff(k)

zname ="z "+ xi.VarName +" " + xj.VarName
Zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)
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Appendix oo

« Some sample code using the Gurobi Python API to do the basic linearization

suffix = xi.VarName + + xj.VarName

skip1 = False
skip2 = False
if useob;j:
down = gcoef*t > 0.0
if down:
skip1 = True
else: # qobj only contains nonzero Q elements
skip2 = True
if not skip1:

cname ="lin1_"+ suffix

model.addConstr(zij - xi <= 0, name = cname)

cname = "lin2_"+ suffix

model.addConstr(zij - xj <= 0, name = cname)
if not skip2:

cname = "lin3_"+ suffix

model.addConstr(xi + xj - zij <= 1, name = chame)
if zvars != None:

zvars.append(zij)
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