Non-Convex MIQCP in Gurobi 9.1: New Advances

The World's Fastest Solver

Tobias Achterberg 08/09 December 2020

Non-Convex MIQCP Performance

Presolve		33%
Detect parallel Q constraints	4%	
 Add Q equations to Q constraints to cancel quadratic terms 	18%	
 Add Q equations to objective to cancel quadratic terms 	0%	
 Improved bilinear probing code 	3%	
 Accept small bound changes for variables that appear in quadratic terms 	2%	
 Allow substitutions on variables that appear in linear part of Q constraints 	1%	
 Feasibility-based bound tightening on variables in quadratic terms 	2%	
QCP to Bilinear Translation		36%
 Also disaggregate Q constraints with only positive squares plus linear terms 	8%	
 Convert positive squares of objective into constraint 	14%	
 Clean up translation code to save some work 	1%	
 Reuse product variables across bilinear and convex Q constraints 	9%	
Node presolve		4%
 Tighten finite bound for variables with one infinite bound 	1%	
 Re-propagate bilinear constraints if domain of mixed product term changed 	1%	
 Faster propagation for disjoint product terms 	1%	
 Exploit implied quadratic equations in propagation 	1%	

Time limit: 10000 seconds Speed-ups on 217 models that take at least 1 second

٠

٠

٠

MINLP Performance – Summary

•	 Branching Adjust balance of McCormick volume and violation scores 	15%	15%
•	 Cuts Tangent cuts for convex part of bilinear constraints Tilt tangent cuts to increase Euclidean violation Exploit implied quadratic equations in cuts 	1% 1% 4%	22%
•	 PSD cuts Primal Heuristics Randomize order for greedy Q term coverage in fix-and-dive Consider quadratic constraints in a sub-MIP heuristic 	15% 1% 1%	2%
•	 Simplex/MIP Integration Add bias to favor moving McCormick constraints into basis 	2%	2%
•	Other Improvements Including effects of MIP/LP/QP/QCP improvements 		50%
•	Total		4.11x

Time limit: 10000 seconds Speed-ups on 217 models that take at least 1 second

Parallel Quadratic Constraints

- Identify quadratic constraints that are parallel to each other
 - Example from customer model:
 - 0.259286x155 + ... + 0.259286x7563 x18079 + [+2x18078*x18079] <= 1
 - 0.259286x155 ... 0.259286x7563 + x18079 + [-2x18078*x18079] <= -1
 - Can be merged into equation: 0.259286x155 + ... + 0.259286x7563 - x18079 + [+2x18078*x18079] == 1
 - Other case: discard identical or dominated constraint
- Happens frequently in sub-MIPs solved by primal heuristics
- Detection is very similar to linear case
 - Hash function for linear and quadratic parts (normalize for sign/scaling)
 - Pairwise comparison of constraints with identical hash value
 - Very fast in practice

Parallel Quadratic Constraints

- Affects about 20% of models in non-convex MIQCP test set
 - 11% speed-up on those models
 - 4% speed-up overall
 - 12 consistent wins, 0 consistent losses

$a^{1}x + x^{T}Qx = b^{1}$ $a^{2}x + x^{T}Qx \le b^{2}$

• Subtract equation from other constraint turns other into linear constraint

$$a^{1}x + x^{T}Qx = b^{1}$$

 $(a^{2} - a^{1})x \le b^{2} - b^{1}$

Case 2

Case 1

 ${}^{\bullet}$

• Both constraints are inequalities

At least one constraint is an equation

$$a^{1}x + x^{T}Qx \le b^{1}$$
$$a^{2}x + x^{T}Qx \le b^{2}$$

• Introduce auxiliary variable to represent quadratic part

$$a^{1}x + s \leq b^{1}$$
$$a^{2}x + s \leq b^{2}$$
$$x^{T}Qx - s \leq 0$$

Substitute Identical Quadratic Part

Different linear part, but identical quadratic part

Substitute Identical Quadratic Part

- Affects about 27% of models in non-convex MIQCP test set
 - 39% speed-up on those models
 - 18% speed-up overall
 - 22 consistent wins, 0 consistent losses

- Reducing Q part of objective affects only 7 models (< 2%)
 - 5% speed-up on those models
 - 0.1% speed-up overall
 - 0 consistent wins, 0 consistent losses

PSD Cuts

- New cutting plane separator in Gurobi 9.1 for non-convex MIQCPs
 - Controlled by PSDCuts parameter
- Sherali and Fraticelli (2002):
 - "Enhancing RLT relaxations via a new class of semidefinite cuts"
- Qualizza, Belotti and Margot (2012):
 - "Linear Programming Relaxations of Quadratically Constrained Quadratic Programs"
- Bilinear constraints: $y_{ij} = x_i x_j$
- As matrix equation: $Y = xx^T$
- Relax to: $Y \ge xx^T \Leftrightarrow Y xx^T \ge 0$ (matrix is PSD)
- Schur's complement: $Y xx^T \ge 0 \Leftrightarrow \begin{pmatrix} 1 & x^T \\ x & Y \end{pmatrix} \ge 0$
- Equivalent to:

$$\begin{pmatrix} 1 & x^T \\ x & Y \end{pmatrix} v \ge 0 \text{ for all } v \in \mathbb{R}^{n+1}$$

• Separate cuts by finding v for which this is violated

 v^T

• Eigenvectors corresponding to negative eigenvalues

PSD Cuts

- We separate PSD cuts for up to 10 product variables
 - Only use those sets where all mixed y_{ij} variables exist
 - Find cliques in graph with nodes x_j and edges y_{ij}
- Example for single mixed product variable y_{ij}
 - Find v with $v^T \begin{pmatrix} 1 & x_i^* & x_j^* \\ x_i^* & y_{ii}^* & y_{ij}^* \\ x_j^* & y_{ij}^* & y_{jj}^* \end{pmatrix} v < 0$ for current LP solution (x^*, y^*)
 - Find negative eigenvalue, let v be the corresponding eigenvector

• Add cut $v^T \begin{pmatrix} 1 & x_i & x_j \\ x_i & y_{ii} & y_{ij} \\ x_j & y_{ij} & y_{jj} \end{pmatrix} v =$ $v_1^2 + 2v_1v_2x_i + 2v_1v_3x_j + v_2^2y_{ii} + v_3^2y_{jj} + 2v_2v_3y_{ij} \ge 0$

PSD Cuts

- Affects about 34% of models in non-convex MIQCP test set
 - 32% speed-up on those models
 - 15% speed-up overall
 - 28 consistent wins, 5 consistent losses

Non-Convex MINLP Cuts Summary

Bilinear Inequalities and Cuts

• Recall PSD cuts, formulated with y_{ij} variables

•
$$v^T \begin{pmatrix} 1 & x_i & x_j \\ x_i & y_{ii} & y_{ij} \\ x_j & y_{ij} & y_{jj} \end{pmatrix} v =$$

$$v_1^2 + 2v_1v_2x_i + 2v_1v_3x_j + v_2^2y_{ii} + v_3^2y_{jj} + 2v_2v_3y_{ij} \ge 0$$

- But actually, one can view this as a two step process
 - Formulate quadratic cut in x_i variables
 - $v_1^2 + 2v_1v_2x_i + 2v_1v_3x_j + v_2^2x_i^2 + v_3^2x_j^2 + 2v_2v_3x_ix_j \ge 0$
 - Substitute quadratic terms for y variables using $y_{ij} = x_i x_j$
 - But what if we only have $y_{ij} \le x_i x_j$ or $y_{ij} \ge x_i x_j$?

Bilinear Inequalities and Cuts

- Same question for RLT and PSD cuts
 - Given a quadratic cut

$$\sum a_{ij} x_i x_j \le b$$

and relations

 $y_{ij} = x_i x_j, y_{ij} \le x_i x_j$, or $y_{ij} \ge x_i x_j$ how can we derive a valid linear cut?

- Need to look at signs of a_{ij} coefficients
 - $a_{ij} > 0$: can only use $y_{ij} = x_i x_j$ and $y_{ij} \le x_i x_j$
 - $a_{ij} < 0$: can only use $y_{ij} = x_i x_j$ and $y_{ij} \ge x_i x_j$
 - If not compatible: need to relax term
 - E.g., by substituting bounds for x_i and x_j that minimize $a_{ij}x_ix_j$
- Observation: bilinear equations help to find better cuts

Consider a quadratic inequality

 $a'x' + ax + y^T Qy \le b$

with

- the linear part partitioned into ax and a'x', and
- the set of variables in the quadratic part being disjoint from the linear part
- The inequality is an implied equation if
 - for any x' and y we can always move ax upwards until we hit b, or
 - for any x' and x we can always move $y^T Q y$ upwards until we hit b.

- Exploit implied quadratic equations in
 - Cuts
 - Allows more substitutions of bilinear terms by product variables
 - RLT cuts
 - PSD cuts
 - BQP cuts
 - Propagation
 - Propagate constraint in opposite direction
 - Node presolve
 - Fix-and-dive heuristics
 - Branching
 - Update shadow costs of variable for both directions

- Affects about 32% of models in non-convex MIQCP test set
 - 9% speed-up on those models
 - 4% speed-up overall
 - 8 consistent wins, 1 consistent loss

Non-Convex MIQCP Performance Gurobi 9.0 vs. 9.1

Total run-time over all 1524 models in log files: 7282968 sec = 2023.0 h = 84.3 d

Full set	Count	Loss/Win	NodeR	IterR	VMemR	TimeR	
all:	729	52/ 154	0.577	0.618	0.847	0.657	
>0s:	413	52/ 154	0.363	0.433	0.739	0.442	
>1s:	217	47/ 140	0.169	0.226	0.649	0.245	4.1x speed-up
>10s:	161	31/ 112	0.111	0.156	0.583	0.158	
>100s:	123	19/ 94	0.073	0.116	0.517	0.104	9.6x speed-up
>1000s:	85	14/ 66	0.062	0.103	0.462	0.081	

Unsolved:	(31	/	4)	+ 316 for all solvers
- Time limit:	(34	/	8)	+ 307 for all solvers
- Mem limit:	(4	/	3)	+ 2 for all solvers
No feasible:	(14	/	4)	+ 111 for all solvers

Non-Convex MIQCP Performance Other Solvers vs. Gurobi 9.1

- Comparison of other solvers vs. Gurobi 9.1 conducted by Prof. Hans Mittelmann on models from QPLIB
 - See http://plato.asu.edu/bench.html
 - Gurobi 9.0 results from 8 October 2020 (discrete non-convex) and 10 October 2020 (continuous non-convex)
 - Gurobi 9.1 results from 10 November 2020 (discrete non-convex) and 2 December 2020 (continuous non-convex)
 - Antigone, BARON, FSCIP, Couenne, Minotaur, SCIP, Octeract, Gurobi
- Binary Non-Convex QPLIB Benchmark
 - Not relevant here: translate into MILP
- Convex Continuous QPLIB Benchmark
 - Not relevant here: these are convex SOCPs
- Convex Discrete QPLIB Benchmark
 - Not relevant here: these are convex MIQCPs

Problem Class	#	Gurobi 9.0 solved	Gurobi 9.1 solved	Best Competitor	Competitor solved	Competitor vs. Gurobi 9.0	Competitor vs. Gurobi 9.1
Continuous non-convex	57	28	35	Antigone	29	1.59x	4.68x
Discrete non-convex	75	65	66	FSCIP	32	7.31x	10.5x

Solved by at least one solver

Thank You!

© 2020, Gurobi Optimization, LLC

- Quadratic inequality $a'x' + ax + y^TQy \le b$
- Conditions for being able to move *ax* upwards:
 - $\inf\{a'x'\} + \sup\{ax\} + \inf\{y^TQy\} \ge b$
 - For all integer feasible (x', y) there exists integer feasible x such that $ax + a'x' + y^TQy = b$
 - None of the *x_i* appear in equations
 - Each of the x_i appears in other inequalities only with opposite sign
 - $a_j > 0 \Rightarrow A_{ij} \le 0$ for all other constraints *i*
 - $a_j < 0 \Rightarrow A_{ij} \ge 0$ for all other constraints *i*
 - Similar for objective function
 - $a_j > 0 \Rightarrow c_j \le 0$
 - $a_j < 0 \Rightarrow c_j \ge 0$
 - Similar for other quadratic constraints and SOS constraints
- Similar conditions for being able to move $y^T Q y$ upwards