What's New in Gurobi 9.1

The World's Fastest Solver

Tobias Achterberg 08/09 December 2020

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

Integrality Focus – Trickle Flows

• Very common model construct:

 $z = 0 \rightarrow x = 0, 0 \le x \le M, z$ binary

• If you don't build a factory, you cannot produce anything

Modeling options

- Indicator constraint $z = 0 \rightarrow x \le 0$
 - Automatically translated into SOS
- SOS constraint z + z' = 1, SOS1(z', x)
 - Depending on "PreSOS1BigM", automatically translated into Big-M
- Big-M constraint $x \le Mz$
- Numerical precision vs. performance
 - SOS is not part of LP relaxation: bad performance
 - Big-M constraint allows trickle flow: $z = 10^{-5}$, $x = 10^{-5}M$

Integrality Focus – Trickle Flows

- Our solution (IntegralityFocus = 1)
 - Round integers and check feasibility
 - If not feasible, reject solution and branch on integer
 - Domain propagation in child node may resolve trickle flow

• Example

$$\begin{array}{l} x-10^8 z_1 - 10^8 z_2 \leq 0 \\ x^* = 1100, z_1^* = 10^{-6}, z_2^* = 10^{-5} \end{array}$$

- Round integers to zero: constraint is violated by 1100
- Branch on $z_1 \leq 0$
 - New solution: $x^* = 1100, z_1^* = 10^{-6}, z_2^* = 10^{-5}$
 - Bad luck: current solution is still feasible in tolerance, hence no simplex pivot applied
- Continue in $z_1 \leq 0$ child node by branching on $z_2 \leq 0$
 - Now, domain propagation concludes $x \le 0$
 - New solution: $x^* = 0, z_1^* = 10^{-6}, z_2^* = 10^{-6}$
 - Accept solution as feasible

Integrality Focus – Trickle Flows

Impact on numerical stability

Trickle Flow Viol	>10.0	>1.0	>10 ⁻¹	>10 ⁻²	>10 ⁻³	>10 ⁻⁴	>10 ⁻⁵
Default	5	15	7	7	22	14	28
IntegralityFocus = 1	0	0	0	0	2	7	8

Impact on performance

- 255 models out of ~4000 affected
- 20% slower on affected models on average
- 2% slower overall

Not a default setting

- User needs to activate it explicitly
- Similar to NumericFocus:
 - It may hurt performance
 - It may help with numerics, but is not guaranteed to do so

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

NoRel Heuristic

- Primary target: models for which LP relaxation is hard to solve
 - LP takes too long, but user wants to have a good feasible solution in reasonable amount of time
 - Tough for our other heuristics
 - Sophisticated ones require an LP solution to start from
 - Existing Non-LP heuristics are very cheap, usually produce low-quality solutions, if any

• Secondary target: find best solution in given time limit

- Sometimes, node throughput is too small
 - Not enough exploration to find good solutions in given time limit
- NoRel heuristic searches in a more diverse solution space
 - May find more and better solutions than regular branch-and-cut
- Downside: no objective bound and solution quality assessment

NoRel Heuristic

• NoRel heuristic is called between presolve and initial root LP

- Start from some (feasible or infeasible) vector
 - Constructed by quick heuristic
- Solve smaller sub-MIPs to decrease infeasibility or objective value
 - Use multiple threads to solve sub-MIPs in parallel
- Various neighborhood strategies
 - adaptive to spend more time on more successful ones
- Basically runs forever until specified time or work limit is hit

Parameters to control NoRel heuristic

- NoRelHeurTime
 - Specifies time to spend in heuristic
 - non-deterministic, based on wall-clock time
- NoRelHeurWork
 - Specifies work to spend in heuristic
 - deterministic

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

Pre-Specified User Cuts

- Up to Gurobi 9.0: user cuts could only be added via callback
- Gurobi 9.1: user cuts can also be provided explicitly in advance
 - Similar to lazy constraints
 - Add as regular linear constraint
 - Set the "Lazy" attribute to -1
- Recall properties of user cuts:
 - Must be redundant w.r.t. other constraints and integrality
 - Hence, without them, set of feasible solutions stays identical
 - Will be considered to be added to LP relaxation if they cut off current LP solution
 - Apply same filtering mechanism as for Gurobi's internal cuts

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

IIS Size Estimate

Constraints				Bounds			Runtime
Min	Max	Guess	Mir	n Max	k Guess		
0	4055	-	()	6		0s
0	4038	_	() 5476	б —		35s
0	4038	460	(5476	6 –		40s
0	4032	460	() 5476	б —		45s
0	4032	380	() 5476	б —		51s
0	4014	350	() 5476	- 6 -		56s
0	4008	360	() 5476	- 6 -		75s
0	4003	360	() 5476	6 –		80s
0	3998	440	() 5476	б —		87s
1	3991	490	() 5476	б —		115s
1	3990	490	() 5476	- 6 -		121s
2	3988	490	(5476	6		126s
3	3987	510	() 5476	б —		130s
4	3984	610	() 5476	- 6 -		136s
4	3982	550	(5476	6 –		140s
6	3980	690	(5476	6 –		146s

- Often pretty good estimate of the size of the final IIS
 - Just an estimate; neither an upper or lower bound

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

Enhancements in gurobipy Python API

- New MConstr class for matrix constraints
 - Single object to model an array-like set of linear constraints
 - Example:

```
mc = model.addConstr(A @ x == b)
```

• Attribute access via NumPy's ndarray:

mc.b = np.ones(n) # Change RHS to all-ones

duals = mc.Pi # Query dual values for these linear constraints

• Enables concise, natural expressions:

print(norm(mc.rhs - A @ x.X)) # primal residual norm for Ax=b
print(abs(x.obj @ x.X - mc.rhs @ mc.pi)) # duality gap

Enhancements in gurobipy Python API

• Install gurobipy via pip:

pip install -i <u>https://pypi.gurobi.com</u> gurobipy

- Package hosted at Gurobi
 - Available on PyPI.org some time later
- Installation is self contained
 - No need to install the full Gurobi software distribution!

Comes with limited-size trial license

- Runs out of the box for limited-size models
- Easy to plug in full (academic or commercial) license
- Supported Python versions:
 - 2.7 (deprecated)
 - 3.6, 3.7, 3.8, 3.9

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

Record/Replay for Compute Server and Gurobi Instant Cloud

- Use as in the local case
 - Just set the "Record" parameter to 1 and run your Compute Server or Gurobi Instant Cloud code
- Privacy
 - Will not store some string parameter settings in recording file
 - User credentials and secrets
 - File names (like log file names, nodefile directories)
 - Compute Server URL
 - Only stores that the parameter has been changed, but not to which value
 - In replay, use pre-defined names for these string parameters
 - To make it work, may need to set OS environment variables to inject string parameter values that work in the replay environment
 - e.g., a different Compute Server URL

- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute

Tuning Tool

- New command line option TuneBaseSettings
 - Example: grbtune TuneBaseSettings="base1.prm base2.prm base3.prm"
 - Tries these parameters first, in this order
 - As usual, subsequent parameter runs are aborted if they hit runtime of best parameter setting found so far
 - An empty parameter file corresponds to default settings
 - If the list does not contain an empty parameter file, then default settings will be appended to the list
 - Hence, in this case defaults are after all specified parameter settings
 - Can help to avoid long default run if user knows good parameter settings

Tuning Tool

- New command line option TuneCleanup
 - Parameter in [0,1]
 - Specifies that the last x% of runtime should be used for cleanup
 - Goal of cleanup: reduce the number of non-default parameter settings to get good performance

Additional output

• Display more detailed summary at end of tuning

```
Tested 17 parameter sets in 84.92s

Baseline parameter set: mean runtime 2.90s

Default parameters

# Name 0 1 2 Avg Std Dev

0 Model 3.12s 2.62s 2.96s 2.90s 0.21

Improved parameter set 1 (mean runtime 2.14s):

Cuts 3

# Name 0 1 2 Avg Std Dev

0 Model 2.11s 2.47s 1.86s 2.14s 0.25
```


- Performance improvements compared to Gurobi 9.0
 - See separate talk on performance improvements in Gurobi 9.1
- PSD Cuts for non-convex MIQCPs
 - See separate talk on non-convex MIQCP enhancements
- IntegralityFocus parameter
 - Avoid numerical issues with trickle flows
- Heuristics
 - NoRel heuristic to find solutions if LP relaxation is too hard to solve
 - New variant of RINS improves ability to find good solutions early on
 - New heuristic for models with cardinality constraints
- Pre-specified user cuts
 - Provide explicit user cuts by adding linear constraints with Lazy=-1 attribute
- Multi-objective
 - Better control of objective relaxation constant
- IIS size estimate
 - See estimate of size of IIS in log file

- Python enhancements
 - Python matrix API enhancements
 - Pip install support
 - Release GIL during optimization
- Compute Server communication protocol performance
 - Reduced number of messages passed between client and server
- Record/replay for Compute Server and Cloud
- Tuning tool enhancements
 - TuneBaseSettings command line argument
 - TuneCleanup parameter
- Additional Parameter
 - PoolGapAbs parameter
- Additional Attribute
 - FingerPrint attribute