
Robert Luce

May 2022

Nonconvex
optimization under
the hood

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved
1

Nonconvex optimization under the hood

Robert Luce

May 2022

2

Cuts

3

Cut

4

Setup

We consider the problem

min
x∈Rn

xTQ0x + cT x

s.t. Ax = b

xTQkx + pTk x ≤ dk

l ≤ x ≤ u

xI ∈ Z

with all Qk ∈ Rn×n symmetric.

I Our goal: find a provably global optimal solution.

I Our solution strategy: Branch-and-bound.

5

Simplified setup

We consider the problem

min
x∈Rn

xTQx + cT x

s.t. Ax = b

x ≥ 0

xI ∈ Z

I We are interested in the case where xTQx is nonconvex.

I Problem: Relaxing xI ∈ Z gives us only a nonconvex continuous problem.

I Need to fix this first to make BnB effective!

6

Extended formulation & McCormick relaxation

Basic idea:

I For each appearing quadratic term xixj introduce an auxiliary variable Xij .

I Add some polyhedral constraints (x ,X) ∈ S that connect xixj with Xij (linear
envelope of xixj).

I The envelope becomes tighter in the course of branching, bound changes for xi , xj
propagate to bound changes for Xij .

Challange: We may need to branch many times until the relaxation solution satisfies

xxT = X .

7

Cuts from SDP outer approximation 1

We will use the xxT = X to derive globally valid cutting planes for the relaxed
extended formulation.

For any x ∈ Rn,X ∈ Rn×n We have

xxT = X ⇒ xxT 4 X

⇔ 0 4 X − xxT

⇔ 0 4

[
1 0
0 X − xxT

]
⇔ 0 4

[
1 0
x I

] [
1 0
0 X − xxT

] [
1 xT

0 I

]
⇔ 0 4

[
1 xT

x X

]
=: X̂

How do we derive cuts from 0 4 X̂?

8

Cuts from SDP outer approximation 1

We will use the xxT = X to derive globally valid cutting planes for the relaxed
extended formulation.
For any x ∈ Rn,X ∈ Rn×n We have

xxT = X ⇒ xxT 4 X

⇔ 0 4 X − xxT

⇔ 0 4

[
1 0
0 X − xxT

]
⇔ 0 4

[
1 0
x I

] [
1 0
0 X − xxT

] [
1 xT

0 I

]
⇔ 0 4

[
1 xT

x X

]
=: X̂

How do we derive cuts from 0 4 X̂?

9

Cuts from outer approximation 2

Recall [
1 xT

x X

]
=: X̂

From the variational characterization

X̂ < 0 ⇔ vT X̂ v ≥ 0 ∀ v ∈ Rn

we see that a solution (x∗,X ∗) for the relaxation is cut off by the linear cutting plane
vT X̂ v ≥ 0 by any v ∈ Rn satisfying

vT X̂ ∗v < 0.

10

Characterization of cut-defining vectors

I Let (λ, v) be a normalized eigenpair with λ < 0, then

vT X̂ ∗v = λvT v = λ < 0.

I More generally, let U := span{v1, . . . , vs} be the subspace generated from
eigenvectors corresponding to all negative eigenvalues. Then any v ∈ U defines a
cut.

I Reverse: any cut-defining v satisfies projU (v) 6= 0

I Even better: If v /∈ U , and w = projU (v), then wT X̂ ∗w ≤ vT X̂ v .

Conclusion: U is the right place to look for cuts.
Problems: U is expensive to compute for large n, and the number of nonzeros in the
cut are n(n+1)

2 + n.

11

Characterization of cut-defining vectors

I Let (λ, v) be a normalized eigenpair with λ < 0, then

vT X̂ ∗v = λvT v = λ < 0.

I More generally, let U := span{v1, . . . , vs} be the subspace generated from
eigenvectors corresponding to all negative eigenvalues. Then any v ∈ U defines a
cut.

I Reverse: any cut-defining v satisfies projU (v) 6= 0

I Even better: If v /∈ U , and w = projU (v), then wT X̂ ∗w ≤ vT X̂ v .

Conclusion: U is the right place to look for cuts.

Problems: U is expensive to compute for large n, and the number of nonzeros in the
cut are n(n+1)

2 + n.

12

Characterization of cut-defining vectors

I Let (λ, v) be a normalized eigenpair with λ < 0, then

vT X̂ ∗v = λvT v = λ < 0.

I More generally, let U := span{v1, . . . , vs} be the subspace generated from
eigenvectors corresponding to all negative eigenvalues. Then any v ∈ U defines a
cut.

I Reverse: any cut-defining v satisfies projU (v) 6= 0

I Even better: If v /∈ U , and w = projU (v), then wT X̂ ∗w ≤ vT X̂ v .

Conclusion: U is the right place to look for cuts.
Problems: U is expensive to compute for large n, and the number of nonzeros in the
cut are n(n+1)

2 + n.

13

Cuts from submatrices

For I ⊆ [n] we define the submatrix of X̂ induced by I by

X̂I :=

[
1 x(I)T

x(I) X (I, I)

]
.

Passing to subsets is a way around computational burden, but since

min
v∈Rn

vT X̂ v ≤ min
v∈span{ei}i∈I

vT X̂ v = min
v∈R|I|

vT X̂Iv

a cut may be quite a bit weaker than the best possible cut on X̂ .

14

Sparse extended formulations
Typically we will not add all the variables Xij in our extended formulation. For
simplicity assume that we have added all variables corresponding to the incidence
graph GQ = (V ,E) := G (Q) though.

Simple heuristic 1:

I Pick any ”small” clique C in GQ .

I Apply cut heuristic to GQ [C].

Simple heuristic 2:

I Compute a chordal completion C of GQ .

I For each maximal clique of C (that is still small enough...) fill entries in X ∗ by

[X ∗]ij =

{
X ∗ij if (i , j) ∈ E

x∗i x
∗
j otherwise,

and relax “missing” variables in the cut by an upper bound.

I If cut still cuts off (x∗,X ∗), take it!

15

Sparse extended formulations
Typically we will not add all the variables Xij in our extended formulation. For
simplicity assume that we have added all variables corresponding to the incidence
graph GQ = (V ,E) := G (Q) though.
Simple heuristic 1:

I Pick any ”small” clique C in GQ .

I Apply cut heuristic to GQ [C].

Simple heuristic 2:

I Compute a chordal completion C of GQ .

I For each maximal clique of C (that is still small enough...) fill entries in X ∗ by

[X ∗]ij =

{
X ∗ij if (i , j) ∈ E

x∗i x
∗
j otherwise,

and relax “missing” variables in the cut by an upper bound.

I If cut still cuts off (x∗,X ∗), take it!

16

Sparse extended formulations
Typically we will not add all the variables Xij in our extended formulation. For
simplicity assume that we have added all variables corresponding to the incidence
graph GQ = (V ,E) := G (Q) though.
Simple heuristic 1:

I Pick any ”small” clique C in GQ .

I Apply cut heuristic to GQ [C].

Simple heuristic 2:

I Compute a chordal completion C of GQ .

I For each maximal clique of C (that is still small enough...) fill entries in X ∗ by

[X ∗]ij =

{
X ∗ij if (i , j) ∈ E

x∗i x
∗
j otherwise,

and relax “missing” variables in the cut by an upper bound.

I If cut still cuts off (x∗,X ∗), take it!
17

Eigenspace guided submatrix selection

Now consider the setting where GQ is large and sparse. We can compute an
s-dimensional approximation to U (e.g., Lanczos, Krylov-Schur).

I Basic operation: Matrix vector products with X̂ ∗, cost O (n + |E |) each, and a
few eigensolves of size s.

I If the method converges, we obtain a U ∈ Rn,s with orthonormal columns, such
that span(U) ⊆ U . (Or a certificate that no cuts can be separated.)

With U at hand, we can:

1. Generate dense cuts as before.

2. Project U on a selection matrix, i.e., find a matrix

P =
[
e1, ei1 , . . . , eir

]
,∈ Rn,r r ≤ s

such that ‖U − P‖ is (somewhat) small, and separate a cut on PT X̂ ∗P = X̂ ∗I .

18

Eigenspace guided submatrix selection

Now consider the setting where GQ is large and sparse. We can compute an
s-dimensional approximation to U (e.g., Lanczos, Krylov-Schur).

I Basic operation: Matrix vector products with X̂ ∗, cost O (n + |E |) each, and a
few eigensolves of size s.

I If the method converges, we obtain a U ∈ Rn,s with orthonormal columns, such
that span(U) ⊆ U . (Or a certificate that no cuts can be separated.)

With U at hand, we can:

1. Generate dense cuts as before.

2. Project U on a selection matrix, i.e., find a matrix

P =
[
e1, ei1 , . . . , eir

]
,∈ Rn,r r ≤ s

such that ‖U − P‖ is (somewhat) small, and separate a cut on PT X̂ ∗P = X̂ ∗I .

19

Heuristics

20

Heuristic

21

Simplified problem setting

min
x∈Rn

f (x)

s.t. c(x) = 0

x ≥ 0

Because our general problem setting contains only linear and quadratic constraints,
both f and c are trivially twice differentiable, and ∇2f and all of ∇2ci are Lipschitz
continuous.

22

First order (FO) optimality conditions at optimum (x∗, y ∗, z∗)

∇f (x∗) +∇c(x∗)y∗ − z∗ = 0

c(x∗) = 0

0 ≤ z∗ ⊥ x∗ ≥ 0

I These do not guarantee a local optimum.

I A few other optimality measures need to be considered.

I Not all are actually computable or even heuristically assessable.

23

Basic ingredients

In order to solve this problem with an iterative scheme, we need to

1. have a device to deal with complementary conditions (nonsmooth!),

2. find directions of local “improvement”, and

3. ensure global convergence.

Ingredients for addressing these:

1. Homotopy method (aka barrier function)

2. Newton method

3. Line search, filter, feasibility relaxation

24

Basic ingredients

In order to solve this problem with an iterative scheme, we need to

1. have a device to deal with complementary conditions (nonsmooth!),

2. find directions of local “improvement”, and

3. ensure global convergence.

Ingredients for addressing these:

1. Homotopy method (aka barrier function)

2. Newton method

3. Line search, filter, feasibility relaxation

25

Homotopy on FO KKT system
We replace condition z ⊥ x by a sequence of constraints

diag(x)z =: Xz = µ1,

with parameter µ→ 0. Thus we end up with a sequence of nonlinear systems

∇f (x) +∇c(x)y − z = 0

c(x) = 0

Xz = µ1

x , z ≥ 0

whose solutions approach a solution of original FO KKT system.

I Imposed regularity on f , c enters analysis of homotopy path.

I Additional convergence conditions: LICQ, strict complementarity, Hessian
uniformly bounded from below, nonempty interior, ...

I Optima x∗(µ) are guaranteed to converge only in a neighborhood of 0.

26

Homotopy on FO KKT system
We replace condition z ⊥ x by a sequence of constraints

diag(x)z =: Xz = µ1,

with parameter µ→ 0. Thus we end up with a sequence of nonlinear systems

∇f (x) +∇c(x)y − z = 0

c(x) = 0

Xz = µ1

x , z ≥ 0

whose solutions approach a solution of original FO KKT system.

I Imposed regularity on f , c enters analysis of homotopy path.

I Additional convergence conditions: LICQ, strict complementarity, Hessian
uniformly bounded from below, nonempty interior, ...

I Optima x∗(µ) are guaranteed to converge only in a neighborhood of 0.
27

Newton method

Basic Newton iteration for a function f : Rn ⊃ D → Rn: xk+1 = xk −∇f (xk)−1f (xk).

Applying Newton method to µ-FO systems:[
∇2f (xk) +

∑
i yi∇2ci (xk) + X−1Z ∇c(xk)
∇c(xk)T 0

] [
dx
dy

]
=

[
−∇f (xk)−∇c(xk)yk + µX−11

−c(x)

]
I Newton directions improve feasibility of the FO system – but possibly not of any

second order, or other sufficient optimality conditions.

I Need to apply heuristics to get actual ”improving” direction from the Newton
scheme.

I Need to damp the Newton steps to ensure nonnegativity.

28

Newton method

Basic Newton iteration for a function f : Rn ⊃ D → Rn: xk+1 = xk −∇f (xk)−1f (xk).
Applying Newton method to µ-FO systems:[
∇2f (xk) +

∑
i yi∇2ci (xk) + X−1Z ∇c(xk)
∇c(xk)T 0

] [
dx
dy

]
=

[
−∇f (xk)−∇c(xk)yk + µX−11

−c(x)

]

I Newton directions improve feasibility of the FO system – but possibly not of any
second order, or other sufficient optimality conditions.

I Need to apply heuristics to get actual ”improving” direction from the Newton
scheme.

I Need to damp the Newton steps to ensure nonnegativity.

29

Newton method

Basic Newton iteration for a function f : Rn ⊃ D → Rn: xk+1 = xk −∇f (xk)−1f (xk).
Applying Newton method to µ-FO systems:[
∇2f (xk) +

∑
i yi∇2ci (xk) + X−1Z ∇c(xk)
∇c(xk)T 0

] [
dx
dy

]
=

[
−∇f (xk)−∇c(xk)yk + µX−11

−c(x)

]
I Newton directions improve feasibility of the FO system – but possibly not of any

second order, or other sufficient optimality conditions.

I Need to apply heuristics to get actual ”improving” direction from the Newton
scheme.

I Need to damp the Newton steps to ensure nonnegativity.

30

Global convergence

Basic problem: Feasible region is nonconvex, how do we guarantee convergence to a
local optimum?

1. Use line search for Newton directions. Cut back on step length until new point is
an “improvement” by some metrics.

2. Use “filter” to forbid steps into already dominated regions.

3. Use feasibility relaxation if stuck at a point, i.e., solve

min
x∈Rn

‖p‖1+‖x − xk‖2

s.t. c(x) + p = 0

x ≥ 0

31

Global convergence

Basic problem: Feasible region is nonconvex, how do we guarantee convergence to a
local optimum?

1. Use line search for Newton directions. Cut back on step length until new point is
an “improvement” by some metrics.

2. Use “filter” to forbid steps into already dominated regions.

3. Use feasibility relaxation if stuck at a point, i.e., solve

min
x∈Rn

‖p‖1+‖x − xk‖2

s.t. c(x) + p = 0

x ≥ 0

32

Conclusions

I Singled-out subproblems lead to other interesting problems!

I Nonconvex global optimization is fun.

Thanks!

33

Conclusions

I Singled-out subproblems lead to other interesting problems!

I Nonconvex global optimization is fun.

Thanks!

34

