Quadratic optimization

Robert Luce

October 2022

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved

GUROBI optimization

Basic terminology and formulations

Examples of quadratic functions

• Univariate function:

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2 + 2x + 1$$

• Bivariate function:

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \qquad f(x, y) = 3x^2 - xy + 2y^2 + 2x - y$$

• Multivariate function: With $Q \in \mathbb{R}^{n,n}$ and $p \in \mathbb{R}^n$

$$f: \mathbb{R}^n \to \mathbb{R}, \qquad f(x) = x^T Q x + p^T x$$

Convex sets

A set in \mathbb{R}^n is **convex** if any straight line connecting two points in the set is entirely contained in the set.

Convex functions and constraints

- A function f is convex if its epigraph $epi(f) \coloneqq \{(x,t) | f(x) \le t\} \subset \mathbb{R}^{n+1}$ is convex
- An inequality constraint $f(x) \leq 0$ is convex, if f is convex.

Every local optimum of a convex function is a global optimum!

Recognizing convex quadratic functions

Given some function $f(x) = x^T Q x + p^T x$, how can we decide whether f is convex?

- f is convex iff Q is positive semidefinite
- f is convex iff $x^T Q x \ge 0$ for all $x \in \mathbb{R}^n$

Important special cases

- $f(x) = (x_1 a_1)^2 + (x_2 a_2)^2 + \dots + (x_n a_n)^2$ (sum-of-squares)
- Q admits a matrix factorization $Q = F^T F$

Until further notice all quadratic functions in this lecture are assumed convex!

GUROBI Problem formulation with a quadratic objective function

• Standard form of a Quadratic Program (QP):

$$\begin{array}{ll} \min & x^T Q \; x + p^T x \\ s.t. & Ax = b \\ & x \ge 0 \end{array}$$

- Only difference: quadratic term in objective function
- (All kinds of linear inequality constraints allowed, "standard" form just normalizes the formulation).

OPTIMI7

Example: Linear regression

Goal: Find a straight line that "is close to all points"

Linear regression II

- Linear model function: ax + b with $a, b \ge 0$ (hyothetical physical meaning!)
- Data points: $(s_i, t_i) \in \mathbb{R}^2$
- Regression residual variables: $r_i = a * s_i + b t_i$

• Fit error:
$$||r||_2 = \sqrt{r_1^2 + r_2^2 + ... + r_n^2}$$

Putting it all in a QP:

$$\begin{array}{ll} \min & r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}\\ s.t. & a*s_{i}+b\ -t_{i}-r_{i}=0\\ & a,b\geq 0 \end{array}$$

Linear regression III

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Problem formulation with a quadratic constraint

• A Quadratically Constrained Program (QCP):

min
$$c^T x$$

s.t. $Ax = b$
 $x^T Q x + p^T x \le 0$
 $x \ge 0$

- Here: One single quadratic constraint
- In general: Can have arbitrarily many such constraints
- In general: Can have a quadratic objective, too
- (All kinds of linear constraints allowed, "standard form" just for simplicity)

Example: Markowitz Portfolio model

- Assume the role of an investor
- We seek an "optimal" investment in assets
- There are n assets, and $0 \le x_i \le 1$ defines the fraction of our investment to be allocated to asset i
- Investments follow a stochastic model:
 - The return of the assets r is a random variable
 - Its mean $\mu = \mathbb{E}r$, and covariance $\Sigma = \mathbb{E}(r \mu)(r \mu)^T$ are "known"
 - The return of the investment $y = r^T x$ has first and second moments $\mu^T x$ and $x^T \Sigma x$
- We want to maximize the expected return, while bounding the variance by a parameter γ :

$$\begin{array}{ll} \max & \mu^T x \\ s.t. & x^T \Sigma x \leq \gamma \\ & x_1 + \dots + x_n = 1 \\ & x \geq 0 \end{array}$$

Algorithms for QP and QCP

Recap: Algorithms for LP

- Simplex Algorithm
 - Exploits polyhedral structure of feasible region
 - Basic solutions correpond to vertices
 - One simplex iteration: Move from one vertex to an adjacent one
 - Typically takes "many" iterations, each single iteration typically very cheap. Sparse structure exploited in every algorithmic component
- Interior Point Method
 - Exploits analytic properties of the constraint functions
 - Iterates traverse the interior of the polyhedron
 - One interior point iteration: Move from "centered" point in the interior to the next
 - Typically takes "few" iterations, each single one is quite expensive. Sparse structure exploited for solving linear systems of equations.

Good News: Works for QP, too

- Both simplex and interior point methods extend quite naturally to quadratic objective functions
- Feasible region not structurally different: Still a polyhedron!
- But optimality conditions have more geometry now
- Consequence: Pivoting becomes more complicated, and gives more sources of numeric trouble

Gurobi comes with...

- Primal QP simplex algorithm (produces "basic" solutions)
- Dual QP simplex algorithm (produces "basic" solutions)
- Barrier algorithm for QP

Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 15 rows, 17 columns and 44 nonzeros

Model fingerprint: 0x157aa79a

Model has 15 quadratic objective terms

Coefficient statistics:

Matrix range [2e-01, 3e+00]

Objective range [0e+00, 0e+00]

QObjective range [2e+00, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e+00, 8e+00]

Presolve removed 1 rows and 1 columns

Presolve time: 0.00s

Presolved: 14 rows, 16 columns, 42 nonzeros

Presolved model has 15 quadratic objective terms

Iteration Objective Primal Inf. Dual Inf. Time

- 0 0.000000e+00 0.00000e+00 0.00000e+00 0s
- 0 4.2997056e+02 0.000000e+00 3.471309e+02 0s
- 3 3.5625798e+00 0.000000e+00 0.000000e+00 0s

Solved in 3 iterations and 0.00 seconds (0.00 work units)

Presolved model has 15 quadratic objective terms

Ordering time: 0.00s

Barrier statistics:

Dense cols : 2

AA' NZ : 2.800e+01

Factor NZ : 4.500e+01

Factor Ops : 1.310e+02 (less than 1 second per iteration)

Threads : 1

 Objective
 Residual

 Iter
 Primal
 Dual
 Primal
 Dual
 Compl
 Time

 0
 4.30955767e+02
 -1.54332297e+05
 1.93e+03
 1.00e+03
 9.94e+05
 0s

 1
 1.00700784e+06
 -1.04761020e+06
 1.93e-03
 1.00e-03
 1.28e+05
 0s

 <<<</td>
 <<</td>
 <</td>
 <</td>
 <</td>

 0s

Barrier solved model in 10 iterations and 0.00 seconds (0.00 work units)

Optimal objective 3.56257979e+00

Algorithms for QCP

Simplex algorithm not easily extensible to quadratic constraints

- Mostly because vertex-view on solutions no longer matches the underlying geometry of the feasible set
- More general class of algorithms: Active set methods. Many conceptual similarities to simplex algorithms
- As of now cannot compete with Interior point methods, although for *special problem classes* specialized active set methods can shine...
- Not implemented in Gurobi

Interior point method for QCP

- Interior point algorithms can be extended to QCP, a trick is needed
- IPM extend naturally to rotated SOC constraints like

$$x_1^2 + \dots + x_n^2 \le 2z, \qquad z \ge 0$$

- Need a transformation from QC to SOC:
 - Original constraint: $\frac{1}{2}x^TQx + p^Tx \le 0$
 - Since Q is PSD, it admits a factorization $Q = R^T R$
 - Add variables $y \in \mathbb{R}^n$, $q \ge 0$, then add constraints

$$y^T y \leq 2q$$

$$Rx = y$$

$$q + p^T x = 0$$

Spotting a QCP in the solver log file

Optimize a model with 26 rows, 60 columns and 102 nonzeros

Model fingerprint: 0x6c3c13d2

Model has 5 quadratic constraints

Coefficient statistics:

Matrix range [2e-01, 5e+00]

QMatrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+01]

Bounds range [0e+00, 0e+00]

RHS range [1e+00, 1e+00]

Presolve removed 9 rows and 30 columns

Presolve time: 0.00s

Presolved: 17 rows, 30 columns, 65 nonzeros

Presolved model has 5 second-order cone constraints

Ordering time: 0.00s

Adding integrality constraints

- MIQP: Some additional integrality and/or SOS constraints
 - All techniques from "Introduction to algorithms" apply
 - Workhorse: QP simplex
 - Interesting specialized techniques come into play, too
- MIQCP:
 - More challanging
 - More algorithmic machinery needed

Outer approximation for MIQCP

- In principle MIQCP fits naturally into the B&B framework
 - Relaxing integrality constraints yields convex subproblem (QCP!)
 - Branching on the fractional integers effects the same implicit enumeration as for MILP
- But many tricks from MILP do not carry over directly
 - Solution of the QCP subproblem at each tree node is expensive (relative to a re-solve with simplex).
 - Heuristics that rely on efficient simplex warm start cannot be run
 - Cutting planes that need a Simplex basis matrix cannot be deduced
 - ...
- Sometimes all of this doesn't do much harm overall, but for many models these drawbacks are severe
- Another trick is needed

MIQCP outer approximation

• Assume for simplicity that we have a MILP with one additional standard SOC constraint

$$f(x) = -x_1^2 + x_2^2 + \dots + x_n^2 \le 0,$$

- Next simply forget that the SOC constraint exist, and solve "just" the LP relaxation of the resulting MILP, call the optimal solution vector x^*
- If $f(x^*) \le 0$: We are done!
- Otherwise find a separating hyperplane for x^*
- Add as new linear constraint to the LP
- Resolve and repeat!

Unfortunately it's even more complicated

- Often we need further transformations to solve a model efficiently
- The overall strategy is controlled by parameters "PreMIQCPForm" and "MIQPCmethod"
- Happy to explain more during the coffee break!

From convex to nonconvex

Convex optimization is "easy"

- How "difficult" is it to optimize a smooth convex function over a convex domain?
- Hypothetical gradient-descend like algorithm:
 - Start at some feasible point
 - Find direction along which the objective function decreaes
 - Take step into that direction without leaving the domain
 - Convexity implies: With only very mild conditions on the step lengths, we always converge to globally optimal solution!!!
- Theory and practice for convex optimization well developed
 - Strong convergence results
 - Efficient algorithms

Nonconvexity and optimization

- How "difficult" is it to optimize a smooth convex function over a nonconvex domain?
- Hypothetical gradient-descend like algorithm:
 - Start at some feasible point
 - Find direction along which the objective function decreaes
 - Take step into that direction without leaving the domain
 - No matter what we do, we can only guarantee to converge to a locally optimal solution
- This problem is in fact NP-hard!
- Optimizing a smooth, nonconvex function over a convex set is NP-hard, too!

Mixed Integer Quadratically Constrained Programming

• A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as

$$\begin{array}{rclrcl} \min & c^T x & + & x^T Q_0 x \\ \text{s.t.} & a_1^T x & + & x^T Q_1 x & \leq & b_1 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & &$$

- The Q_k are symmetric matrices
- If all Q_k are positive semi-definite, then QCP relaxation is convex
- What if quadratic constraints or objective are non-convex?

Nonconvex QP, QCP, MIQP, and MIQCP

- Applications
 - Pooling problem bilinear)

(blending problem is LP, pooling introduces intermediate pools \rightarrow

- Petrochemical industry (oil refinery: constraints on ratio of components in tanks)
- Wastewater treatment
- Emissions regulation
- Agricultural / food industry
- Mining
- Energy
- Production planning
- Logistics
- Water distribution
- Engineering design
- Finance

(restrictions from free trade agreements) (Darcy-Weisbach equation for volumetric flow)

(constraints on ratio between internal and external workforce)

(constraints on exchange rates)

(blending based on pre-mix products)

- General MINLP
 - Non-convex MIQCP can model polynomial problems of arbitrary degree
 - Solve general MINLPs by approximating as polynomial problem
 - but: will often fail for higher degrees due to numerical issues

Nonconvex QP, QCP, MIQP, and MIQCP

- Traditional nonconvex constraints: Integer variables, SOS constraints
- Since version 9.0: Bilinear constraints: z = xy
 - Allows one to represent arbitrary nonconvex quadratic inequalities and equations
- These nonconvexities are treated by
 - Cutting planes
 - Branching
- Translation of nonconvex quadratic constraints into bilinear constraints:

 $\begin{aligned} &3x_1^2 - 7x_1x_2 + 2x_1x_3 - x_2^2 + 3x_2x_3 - 5x_3^2 = 12 & \text{(nonconvex quad. constraint)} \\ &z_{11} \coloneqq x_1^2, z_{12} \coloneqq x_1x_2, z_{13} \coloneqq x_1x_3, z_{22} \coloneqq x_2^2, z_{23} \coloneqq x_2x_3, z_{33} \coloneqq x_3^2 & \text{(6 bilinear constraints)} \\ &3z_{11} - 7z_{12} + 2z_{13} - z_{22} + 3z_{23} - 5z_{33} = 12 & \text{(linear constraint)} \end{aligned}$

More Details on Bilinear Transformation

- Special cases to avoid bilinear constraint for $q_{ij}x_ix_j$ term
 - At least one of x_i and x_j is fixed
 - Square of a binary: $x_i^2 = x_i$
 - At least one of x_i and x_j is binary: $z_{ij} \coloneqq x_i x_j$ can easily be modeled
 - if possible, add big-M linearization for $z_{ij} \coloneqq x_i x_j$
 - otherwise, add SOS1 formulation for $z_{ij} \coloneqq x_i x_j$
 - Square term $q_{ii}x_i^2$ with $q_{ii} > 0$: term is convex
- For quadratic inequalities $a^T x + x^T Q x \leq b$, only one side of $z_{ij} \coloneqq x_i x_j$ is needed
 - $z_{ij} \ge x_i x_j$, if $q_{ij} > 0$
 - $z_{ij} \leq x_i x_j$, if $q_{ij} < 0$
- More sophisticated partitions into convex and nonconvex parts are possible and may work better!

- General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)
- Consider square case (x = y):

nonconvex $-z - x^2 \le 0$

- General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)
- Consider square case (x = y):

nonconvex $-z - x^2 \le 0$

easy: add tangent cuts

- General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)
- Consider square case (x = y):

nonconvex $-z - x^2 \le 0$

- General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)
- Consider square case (x = y):

nonconvex $-z - x^2 \le 0$

• General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

LP Relaxation of Bilinear Constraints

20-Mixed product case: -z + xy = 010--10--20pictures from Costa and Liberti: "Relaxations of multilinear convex envelopes: dual is better than primal" McCormick lower and upper envelopes: $-z + l_x y + l_y x \le l_x l_y$ $-z + u_x y + u_y x \le u_x u_y$ $-z + u_x y + l_y x \ge u_x l_y$ $-z + l_x y + u_y x \ge l_x u_y$

 $\times 1$

 $\times 1$

LP Relaxation of Bilinear Constraints

Mixed product case: -z + xy = 0

pictures from Costa and Liberti: "Relaxations of multilinear convex envelopes: dual is better than primal"

McCormick lower and upper envelopes:

 $-z + l_x y + l_y x \le l_x l_y$ $-z + u_x y + u_y x \le u_x u_y$

 $\begin{aligned} -z + u_x y + l_y x &\geq u_x l_y \\ -z + l_x y + u_y x &\geq l_x u_y \end{aligned}$

Adaptive Constraints in LP Relaxation

- Coefficients and right hand sides of McCormick constraints depend on local bounds of variables
 - Whenever local bounds change, LP coefficients and right hand sides are updated
 - May lead to singular or ill-conditioned basis
 - in worst case, simplex needs to start from scratch
- Alternative to adaptive constraints: locally valid cuts
 - Add tighter McCormick relaxation on top of weaker, more global one, to local node
 - Advantages:
 - old simplex basis stays valid in all cases
 - more global McCormick constraints will likely become slack and basic
 - should lead to fewer simplex iterations
 - Disadvantages:
 - basis size (number of rows) changes all the time during solve
 - complicated (and potentially time and memory consuming) data management needed
 - redundant more global McCormick constraints stay in LP
 - LP solver performs useless calculations in linear system solves

Spatial Branching

- Branching variable selection
 - What most solvers do: first branching on fractional integer variables as usual
 - If no fractional integer variable exists, select continuous variable in violated bilinear constraint
 - Our variable selection rule is a combination of:
 - sum of absolute bilinear constraint violations
 - reduce McCormick volume as much as possible
 - big McCormick polyhedron is turned into two smaller McCormick polyhedra after branchi
 - sum of smaller volumes is smaller than big volume
 - shadow costs of variable for linear constraints
- Branching value selection
 - We use a standard way
 - a convex combination of LP value and mid point of current domain
 - Avoid numerical pitfalls
 - large branching values for unbounded variables
 - tiny child domains if LP value is very close to bound
 - very deep dives (node selection)

Performance Impact of Branching

32 GB RAM

GUROBI OPTIMIZATION

Cutting Planes for Mixed Bilinear Programs

- All MILP cutting planes apply
- Special cuts for bilinear constraints
 - RLT Cuts
 - Reformulation Linearization Technique (Sherali and Adams, 1990)
 - multiply linear constraints with single variable, linearize resulting product terms
 - very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs
 - BQP Cuts
 - facets from Boolean Quadric Polytope (Padberg 1989)
 - equivalent to Cut Polytope
 - currently implemented: Padberg's clique cuts for BQP
 - PSD Cuts
 - tangents of PSD cone defined by $Z = xx^T$ relationship: $Z xx^T \ge 0$ (Sherali and Fraticelli, 2002)

Summary

- Quadratic optimization if fun
- Convex quadratic optimization is an established technique, and Gurobi has a broad toolset for it
- Nonconvex quadratic optimization is mathematical challanging discipline, Gurobi puts a lot of effort into making it tractable in practice
- Check out my other lecture "Nonconvex optimization under the hood" talk in the advanced track! (*Caution: contains math*)