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Basic terminology and formulations



• Univariate function:

𝑓: ℝ⟶ ℝ, 𝑓 𝑥 = 𝑥2+ 2𝑥 + 1

• Bivariate function:

𝑓: ℝ2 ⟶ℝ, 𝑓 𝑥, 𝑦 = 3𝑥2 − 𝑥𝑦 +2𝑦2 + 2𝑥 − 𝑦

• Multivariate function: With 𝑄 ∈ ℝ𝑛,𝑛 and 𝑝 ∈ ℝ𝑛

𝑓: ℝ𝑛 → ℝ, 𝑓 𝑥 = 𝑥𝑇𝑄 𝑥 + 𝑝𝑇𝑥
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Examples of quadratic functions
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Convex sets

A set in ℝ𝑛 is convex if any straight line connecting two points in the set is entirely 
contained in the set.

convex not convex



• A function f is convex if its epigraph 𝑒𝑝𝑖 𝑓 ≔ 𝑥, 𝑡 𝑓 𝑥 ≤ 𝑡} ⊂ ℝ𝑛+1 is convex

• An inequality constraint 𝑓 𝑥 ≤ 0 is convex, if f is convex.
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Convex functions and constraints

convex
𝑥2 ≤ 𝑡

nonconvex
−𝑥2 ≤ 𝑡

Every local optimum of a convex function is a global optimum!



Given some function 𝑓 𝑥 = 𝑥𝑇𝑄 𝑥 + 𝑝𝑇𝑥, how can we decide whether f is convex?

• f is convex iff Q is positive semidefinite

• f is convex iff 𝑥𝑇𝑄 𝑥 ≥ 0 for all 𝑥 ∈ ℝ𝑛

Important special cases

• 𝑓 𝑥 = 𝑥1 − 𝑎1
2 + 𝑥2 − 𝑎2

2 + …+ 𝑥𝑛 − 𝑎𝑛
2 (sum-of-squares)

• Q admits a matrix factorization 𝑄 = 𝐹𝑇𝐹

Until further notice all quadratic functions in this lecture are assumed convex!
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Recognizing convex quadratic functions



• Standard form of a Quadratic Program (QP):

𝑚𝑖𝑛 𝑥𝑇𝑄 𝑥 + 𝑝𝑇𝑥

𝑠. 𝑡. 𝐴𝑥 = 𝑏
𝑥 ≥ 0

• Only difference: quadratic term in objective function

• (All kinds of linear inequality constraints allowed, “standard” form just normalizes 
the formulation).
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Problem formulation with a quadratic objective function
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Example: Linear regression

Goal: Find a straight line that “is close to all points”



• Linear model function: 𝑎𝑥 + 𝑏 with 𝑎, 𝑏 ≥ 0 (hyothetical physical meaning!)

• Data points: (𝑠𝑖 , 𝑡𝑖) ∈ ℝ2

• Regression residual variables: 𝑟𝑖 = 𝑎 ∗ 𝑠𝑖 + 𝑏 − 𝑡𝑖

• Fit error: 𝑟 2 = 𝑟1
2 + 𝑟2

2+ …+ 𝑟𝑛
2

Putting it all in a QP:
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Linear regression II
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Linear regression III



• A Quadratically Constrained Program (QCP):

𝑚𝑖𝑛 𝑐𝑇𝑥
𝑠. 𝑡. 𝐴𝑥 = 𝑏

𝑥𝑇𝑄 𝑥 + 𝑝𝑇𝑥 ≤ 0
𝑥 ≥ 0

• Here: One single quadratic constraint

• In general:  Can have arbitrarily many such constraints

• In general: Can have a quadratic objective, too

• (All kinds of linear constraints allowed, “standard form” just for simplicity)
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Problem formulation with a quadratic constraint



• Assume the role of an investor

• We seek an “optimal” investment in assets

• There are n assets, and 0 ≤ 𝑥𝑖 ≤ 1 defines the fraction of our investment to be 
allocated to asset 𝑖

• Investments follow a stochastic model:

• The return of the assets 𝑟 is a random variable

• Its mean 𝜇 = 𝔼r, and covariance Σ = 𝔼 𝑟 − 𝜇 𝑟 − 𝜇 𝑇 are “known”

• The return of the investment 𝑦 = 𝑟𝑇𝑥 has first and second moments 𝜇𝑇𝑥 and 𝑥𝑇Σ𝑥

• We want to maximize the expected return, while bounding the variance by a 
parameter 𝛾:
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Example: Markowitz Portfolio model
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Algorithms for QP and QCP



• Simplex Algorithm
• Exploits polyhedral structure of feasible region

• Basic solutions correpond to vertices

• One simplex iteration: Move from one vertex to an adjacent one

• Typically takes “many” iterations, each single iteration typically very cheap. Sparse 
structure exploited in every algorithmic component

• Interior Point Method 
• Exploits analytic properties of the constraint functions

• Iterates traverse the interior of the polyhedron

• One interior point iteration: Move from “centered” point in the interior to the next

• Typically takes “few” iterations, each single one is quite expensive.  Sparse structure 
exploited for solving linear systems of equations.
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Recap: Algorithms for LP



• Both simplex and interior point methods extend quite naturally to quadratic 
objective functions

• Feasible region not structurally different: Still a polyhedron!

• But optimality conditions have more geometry now

• Consequence:  Pivoting becomes more complicated, and gives more sources of 
numeric trouble

Gurobi comes with…

• Primal QP simplex algorithm (produces “basic” solutions)

• Dual QP simplex algorithm (produces “basic” solutions)

• Barrier algorithm for QP
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Good News: Works for QP, too



Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 15 rows, 17 columns and 44 nonzeros

Model fingerprint: 0x157aa79a

Model has 15 quadratic objective terms

Coefficient statistics:

Matrix range [2e-01, 3e+00]

Objective range [0e+00, 0e+00]

QObjective range [2e+00, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e+00, 8e+00]

Presolve removed 1 rows and 1 columns

Presolve time: 0.00s

Presolved: 14 rows, 16 columns, 42 nonzeros

Presolved model has 15 quadratic objective terms

Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 0.000000e+00 0.000000e+00 0s

0 4.2997056e+02 0.000000e+00 3.471309e+02 0s

3 3.5625798e+00 0.000000e+00 0.000000e+00 0s

Solved in 3 iterations and 0.00 seconds (0.00 work units)
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Presolved model has 15 quadratic objective terms

Ordering time: 0.00s

Barrier statistics:

Dense cols : 2

AA' NZ : 2.800e+01

Factor NZ : 4.500e+01

Factor Ops : 1.310e+02 (less than 1 second per iteration)

Threads : 1

Objective Residual

Iter Primal Dual Primal Dual Compl Time

0 4.30955767e+02 -1.54332297e+05 1.93e+03 1.00e+03 9.94e+05 0s

1 1.00700784e+06 -1.04761020e+06 1.93e-03 1.00e-03 1.28e+05 0s

<<<< SNIP >>>>

Barrier solved model in 10 iterations and 0.00 seconds (0.00 work units)

Optimal objective 3.56257979e+00



Simplex algorithm not easily extensible to quadratic constraints

• Mostly because vertex-view on solutions no longer matches the underlying 
geometry of the feasible set

• More general class of algorithms: Active set methods.  Many conceptual 
similarities to simplex algorithms

• As of now cannot compete with Interior point methods, although for special 
problem classes specialized active set methods can shine…

• Not implemented in Gurobi
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Algorithms for QCP



• Interior point algorithms can be extended to QCP, a trick is needed

• IPM extend naturally to rotated SOC constraints like

𝑥1
2 +⋯+𝑥𝑛

2 ≤ 2𝑧, 𝑧 ≥ 0

• Need a transformation from QC to SOC:

• Original constraint: 
1

2
𝑥𝑇𝑄 𝑥 + 𝑝𝑇𝑥 ≤ 0

• Since Q is PSD, it admits a factorization 𝑄 = 𝑅𝑇𝑅

• Add variables 𝑦 ∈ ℝ𝑛, 𝑞 ≥ 0, then add constraints
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Interior point method for QCP



Optimize a model with 26 rows, 60 columns and 102 nonzeros

Model fingerprint: 0x6c3c13d2

Model has 5 quadratic constraints

Coefficient statistics:

Matrix range [2e-01, 5e+00]

QMatrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+01]

Bounds range [0e+00, 0e+00]

RHS range [1e+00, 1e+00]

Presolve removed 9 rows and 30 columns

Presolve time: 0.00s

Presolved: 17 rows, 30 columns, 65 nonzeros

Presolved model has 5 second-order cone constraints

Ordering time: 0.00s

Spotting a QCP in the solver log file



• MIQP: Some additional integrality and/or SOS constraints
• All techniques from “Introduction to algorithms” apply

• Workhorse: QP simplex

• Interesting specialized techniques come into play, too

• MIQCP:
• More challanging

• More algorithmic machinery needed
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Adding integrality constraints



• In principle MIQCP fits naturally into the B&B framework
• Relaxing integrality constraints yields convex subproblem (QCP!)

• Branching on the fractional integers effects the same implicit enumeration as for MILP

• But many tricks from MILP do not carry over directly

• Solution of the QCP subproblem at each tree node is expensive (relative to a re-solve 
with simplex).

• Heuristics that rely on efficient simplex warm start cannot be run

• Cutting planes that need a Simplex basis matrix cannot be deduced

• …

• Sometimes all of this doesn’t do much harm overall, but for many models these 
drawbacks are severe

• Another trick is needed
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Outer approximation for MIQCP



• Assume for simplicity that we have a MILP with one additional standard SOC 
constraint

𝑓 𝑥 = −𝑥1
2 + 𝑥2

2 + …+𝑥𝑛
2 ≤ 0,

• Next simply forget that the SOC constraint exist, and solve ”just” the LP relaxation 
of the resulting MILP, call the optimal solution vector 𝑥∗

• If 𝑓 𝑥∗ ≤ 0: We are done!

• Otherwise find a separating hyperplane for 𝑥∗

• Add as new linear constraint to the LP

• Resolve and repeat!
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MIQCP outer approximation



• Often we need further transformations to solve a model efficiently

• The overall strategy is controlled by parameters “PreMIQCPForm” and 
“MIQPCmethod”

• Happy to explain more during the coffee break!
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Unfortunately it’s even more complicated
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From convex to nonconvex



• How „difficult“ is it to optimize a smooth convex function over a 
convex domain?

• Hypothetical gradient-descend like algorithm:

• Start at some feasible point

• Find direction along which the objective function decreaes

• Take step into that direction without leaving the domain

• Convexity implies: With only very mild conditions on the step
lengths, we always converge to globally optimal solution!!!

• Theory and practice for convex optimization well developed
• Strong convergence results

• Efficient algorithms

27

Convex optimization is „easy“
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Nonconvexity and optimization

• How „difficult“ is it to optimize a smooth convex function over a 
nonconvex domain?

• Hypothetical gradient-descend like algorithm:

• Start at some feasible point

• Find direction along which the objective function decreaes

• Take step into that direction without leaving the domain

• No matter what we do, we can only guarantee to converge to
a locally optimal solution

• This problem is in fact NP-hard!

• Optimizing a smooth, nonconvex function over a convex set is
NP-hard, too!
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Integer

Variables
𝑥 ∈ ℤ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Integer

Variables
𝑥 ∈ ℤ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Integer

Variables
𝑥 ∈ ℤ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Integer

Variables
𝑥 ∈ ℤ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Integer

Variables
𝑥 ∈ ℤ

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Mixed Integer

Quadratic
Program
(MIQP)

SOS

Constraints

Integer

Variables
𝑥 ∈ ℤ
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Convex and nonconvex Optimization

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Mixed Integer

Quadratic
Program
(MIQP)

Mixed Integer

Quadratically
Constrained Program

(MIQCP)

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

SOS

Constraints

Integer

Variables
𝑥 ∈ ℤ
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Mixed Integer

Quadratic
Program
(MIQP)

Mixed Integer

Quadratically
Constrained Program

(MIQCP)

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏
with non-PSD 𝑄

Integer

Variables
𝑥 ∈ ℤ

Quadratic

Equations
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 = 𝑏

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with non-PSD 𝑄

SOS

Constraints
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Convex and nonconvex Optimization

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Mixed Integer

Quadratic
Program
(MIQP)

Mixed Integer

Quadratically
Constrained Program

(MIQCP)

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏
with non-PSD 𝑄

Integer

Variables
𝑥 ∈ ℤ

Quadratic

Equations
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 = 𝑏

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with non-PSD 𝑄

SOS

Constraints
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Linear

Program
(LP)

Quadratic

Program
(QP)

Quadratically

Constrained
Program
(QCP)

Mixed Integer

Linear
Program
(MILP)

Mixed Integer

Quadratic
Program
(MIQP)

Mixed Integer

Quadratically
Constrained Program

(MIQCP)

Linear

Constraints

𝑎𝑇𝑥 ⋚ 𝑏

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏

with PSD 𝑄

Continuous

Variables
𝑥 ∈ ℝ

Quadratic

Inequalities
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏
with non-PSD 𝑄

Integer

Variables
𝑥 ∈ ℤ

Quadratic

Equations
𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 = 𝑏

Linear

Objective
min 𝑐𝑇𝑥

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with PSD 𝑄

Quadratic

Objective
min𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥

with non-PSD 𝑄

SOS

Constraints

Convex and nonconvex Optimization



• A Mixed Integer Quadratically Constrained Program (MIQCP) is defined as

• The 𝑄𝑘 are symmetric matrices

• If all 𝑄𝑘 are positive semi-definite, then QCP relaxation is convex

• What if quadratic constraints or objective are non-convex?
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Mixed Integer Quadratically Constrained Programming



• Applications
• Pooling problem (blending problem is LP, pooling introduces intermediate pools →

bilinear)
• Petrochemical industry (oil refinery: constraints on ratio of components in tanks)
• Wastewater treatment
• Emissions regulation
• Agricultural / food industry (blending based on pre-mix products)
• Mining
• Energy
• Production planning (constraints on ratio between internal and external workforce)
• Logistics (restrictions from free trade agreements)
• Water distribution (Darcy-Weisbach equation for volumetric flow)
• Engineering design
• Finance (constraints on exchange rates)

• General MINLP
• Non-convex MIQCP can model polynomial problems of arbitrary degree
• Solve general MINLPs by approximating as polynomial problem

• but: will often fail for higher degrees due to numerical issues
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Nonconvex QP, QCP, MIQP, and MIQCP



• Traditional nonconvex constraints: Integer variables, SOS constraints

• Since version 9.0: Bilinear constraints: 𝑧 = 𝑥𝑦
• Allows one to represent arbitrary nonconvex quadratic inequalities and equations

• These nonconvexities are treated by
• Cutting planes
• Branching

• Translation of nonconvex quadratic constraints into bilinear constraints:

3𝑥1
2− 7𝑥1𝑥2+ 2𝑥1𝑥3− 𝑥2

2+ 3𝑥2𝑥3− 5𝑥3
2 = 12 (nonconvex quad. constraint)

z11 ≔ 𝑥1
2, z12 ≔ 𝑥1𝑥2,z13 ≔ 𝑥1𝑥3,z22 ≔ 𝑥2

2, z23 ≔ 𝑥2𝑥3,z33 ≔ 𝑥3
2 (6 bilinear constraints)

3z11− 7z12 + 2z13 − z22+ 3z23 − 5z33 = 12 (linear constraint)
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Nonconvex QP, QCP, MIQP, and MIQCP



• Special cases to avoid bilinear constraint for 𝑞𝑖𝑗𝑥𝑖𝑥𝑗 term
• At least one of 𝑥𝑖 and 𝑥𝑗 is fixed

• Square of a binary: 𝑥𝑖
2 = 𝑥𝑖

• At least one of 𝑥𝑖 and 𝑥𝑗 is binary: 𝑧𝑖𝑗 ≔ 𝑥𝑖𝑥𝑗 can easily be modeled
• if possible, add big-M linearization for 𝑧𝑖𝑗 ≔ 𝑥𝑖𝑥𝑗
• otherwise, add SOS1 formulation for 𝑧𝑖𝑗 ≔ 𝑥𝑖𝑥𝑗

• Square term 𝑞𝑖𝑖𝑥𝑖
2 with 𝑞𝑖𝑖 > 0: term is convex

• For quadratic inequalities 𝑎𝑇𝑥 + 𝑥𝑇𝑄𝑥 ≤ 𝑏, only one side of 𝑧𝑖𝑗 ≔ 𝑥𝑖𝑥𝑗 is needed
• 𝑧𝑖𝑗 ≥ 𝑥𝑖𝑥𝑗, if 𝑞𝑖𝑗 > 0

• 𝑧𝑖𝑗 ≤ 𝑥𝑖𝑥𝑗, if 𝑞𝑖𝑗 < 0

• More sophisticated partitions into convex and nonconvex parts are possible and 
may work better!
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More Details on Bilinear Transformation



• General form: 𝑎𝑇𝑧+ 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or 
equation)

• Consider square case (𝑥 = 𝑦):
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Dealing With Bilinear Constraints

convex

−𝑧 + 𝑥2 ≤ 0
nonconvex

−𝑧 − 𝑥2 ≤ 0



• General form: 𝑎𝑇𝑧+ 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or 
equation)

• Consider square case (𝑥 = 𝑦):
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Dealing With Bilinear Constraints

nonconvex

−𝑧 − 𝑥2 ≤ 0
convex

−𝑧 + 𝑥2 ≤ 0

easy: add tangent cuts



• General form: 𝑎𝑇𝑧+ 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or 
equation)

• Consider square case (𝑥 = 𝑦):
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Dealing With Bilinear Constraints

nonconvex

−𝑧 − 𝑥2 ≤ 0



• General form: 𝑎𝑇𝑧+ 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or 
equation)

• Consider square case (𝑥 = 𝑦):
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Dealing With Bilinear Constraints

nonconvex

−𝑧 − 𝑥2 ≤ 0



• General form: 𝑎𝑇𝑧+ 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or 
equation)

• Consider square case (𝑥 = 𝑦):
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Dealing With Bilinear Constraints

nonconvex

−𝑧 − 𝑥2 ≤ 0

branching

𝑥 ≤ 0 or 𝑥 ≥ 0

update relaxation locally



Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:
−𝑧 + 𝑙𝑥𝑦 + 𝑙𝑦𝑥 ≤ 𝑙𝑥 𝑙𝑦
−𝑧 + 𝑢𝑥𝑦 + 𝑢𝑦𝑥 ≤ 𝑢𝑥𝑢𝑦

−𝑧 + 𝑢𝑥𝑦 + 𝑙𝑦𝑥 ≥ 𝑢𝑥𝑙𝑦
−𝑧 + 𝑙𝑥𝑦 + 𝑢𝑦𝑥 ≥ 𝑙𝑥𝑢𝑦
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LP Relaxation of Bilinear Constraints

pictures from Costa and Liberti: "Relaxations of multilinear

convex envelopes: dual is better than primal"



Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:
−𝑧 + 𝑙𝑥𝑦 + 𝑙𝑦𝑥 ≤ 𝑙𝑥 𝑙𝑦
−𝑧 + 𝑢𝑥𝑦 + 𝑢𝑦𝑥 ≤ 𝑢𝑥𝑢𝑦

−𝑧 + 𝑢𝑥𝑦 + 𝑙𝑦𝑥 ≥ 𝑢𝑥𝑙𝑦
−𝑧 + 𝑙𝑥𝑦 + 𝑢𝑦𝑥 ≥ 𝑙𝑥𝑢𝑦
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LP Relaxation of Bilinear Constraints

coefficients depend

on local bounds

pictures from Costa and Liberti: "Relaxations of multilinear

convex envelopes: dual is better than primal"



• Coefficients and right hand sides of McCormick constraints depend on local bounds 
of variables
• Whenever local bounds change, LP coefficients and right hand sides are updated
• May lead to singular or ill-conditioned basis

• in worst case, simplex needs to start from scratch

• Alternative to adaptive constraints: locally valid cuts
• Add tighter McCormick relaxation on top of weaker, more global one, to local node
• Advantages:

• old simplex basis stays valid in all cases
• more global McCormick constraints will likely become slack and basic

• should lead to fewer simplex iterations

• Disadvantages:
• basis size (number of rows) changes all the time during solve

• complicated (and potentially time and memory consuming) data management needed

• redundant more global McCormick constraints stay in LP
• LP solver performs useless calculations in linear system solves
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Adaptive Constraints in LP Relaxation



• Branching variable selection
• What most solvers do: first branching on fractional integer variables as usual
• If no fractional integer variable exists, select continuous variable in violated bilinear constraint
• Our variable selection rule is a combination of:

• sum of absolute bilinear constraint violations
• reduce McCormick volume as much as possible

• big McCormick polyhedron is turned into two smaller McCormick polyhedra after branching at LP solution 𝑥∗

• sum of smaller volumes is smaller than big volume

• shadow costs of variable for linear constraints

• Branching value selection
• We use a standard way

• a convex combination of LP value and mid point of current domain

• Avoid numerical pitfalls
• large branching values for unbounded variables
• tiny child domains if LP value is very close to bound
• very deep dives (node selection)
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Spatial Branching

𝑧𝑖𝑗 = 𝑥𝑖 𝑥𝑗
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Performance Impact of Branching
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• All MILP cutting planes apply

• Special cuts for bilinear constraints

• RLT Cuts
• Reformulation Linearization Technique (Sherali and Adams, 1990)

• multiply linear constraints with single variable, linearize resulting product terms

• very powerful for bilinear programs, also helps a bit for convex MIQCPs and MILPs

• BQP Cuts

• facets from Boolean Quadric Polytope (Padberg 1989)

• equivalent to Cut Polytope

• currently implemented: Padberg's clique cuts for BQP

• PSD Cuts

• tangents of PSD cone defined by 𝑍 = 𝑥𝑥𝑇 relationship: 𝑍 − 𝑥𝑥𝑇 ≽ 0 (Sherali and Fraticelli, 
2002)
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Cutting Planes for Mixed Bilinear Programs
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Performance Impact of Cutting Planes
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• Quadratic optimization if fun

• Convex quadratic optimization is an established technique, and Gurobi has a 
broad toolset for it

• Nonconvex quadratic optimization is mathematical challanging discipline, Gurobi 
puts a lot of effort into making it tractable in practice

• Check out my other lecture “Nonconvex optimization under the hood” talk in the 
advanced track! (Caution: contains math)
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