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Over 2,100 companies from approx. 50

industries use Gurobi for their mathematical

programming applications



Prerequisites



Prerequisites

• Linear algebra and calculus

• Basic knowledge of Python

• Both at the college level

• Familiarity with mathematical notation. 

𝑒 = 𝑚𝑐2



Remarks



These mathematical optimization models shall capture the key 

features of an optimization problem (effective), and they should 

be solvable in a reasonable amount of time (efficient).



• In spite of the pragmatic 
nature of these videos, it 
is important to cover 
theoretical aspects of 
Linear Programming and 
Integer Programming 
problems in order to 
build and tune up 
efficient mathematical 
optimization models.



• These series of introduction to 
mathematical programming videos 
will have three main chapters.

• Linear programming overview.

• Mixed integer linear programming overview.

• Mathematical programming model building overview.



• The duration 
of each video 
will be in the 
range of 10 
min to 15 min.



Mathematical Programming
Background and relevance



Origin of Mathematical 

Programming



Origin of Mathematical Programming

• The origin of mathematical programming is the 

invention of linear programming in 1947, shortly 

after World War II.

• “Mathematical programming enables stating 

general goals and to lay out a path of detailed 

decisions to make in order to “best” achieve 

these goals when faced with a practical situation 

of great complexity”. –George Dantzig

• Mathematical programming entails 

• the formulation of real-world problems in detailed 

mathematical terms (models).

• the development of techniques for solving those 

models (algorithms).

• and the use of SW and HW to develop 
applications.



• It should be pointed out that mathematical programming is different 

from computer programming. 

• Mathematical programming is ‘programming’ in the sense of 

‘planning’.

Mathematical Programming Remarks



• The common feature that mathematical programming models have 

is that they all involve optimization.

• This is why mathematical programming                                               

is often called mathematical optimization.

Mathematical Programming Remarks



• In these video classes, we focus 

on two special types of 

mathematical programming 

models.

• Linear Programming (LP) 

models.

• Mixed Integer linear 

Programming (MIP) models.

Mathematical Programming Remarks



• Mathematical programming is a declarative approach where the 

modeler formulates a mathematical optimization problem that 

captures the key features of a complex decision problem.

• Mathematical optimization formulations can then be solved by 

standard LP algorithms and MIP algorithms.

Mathematical Programming Remarks



• Gurobi users formulate mathematical optimization problems 

that are solved by the Gurobi callable library.

• The mathematics and computer science behind Gurobi 

technology are leading edge.

• Gurobi has the best performance in the market.

Mathematical Programming Remarks



Mathematical Programming Remarks

• Gurobi users formulate mathematical optimization problems that are solved by the Gurobi callable library.

• The mathematics and computer science behind Gurobi technology are leading edge, that is why Gurobi solver has 

the best performance in the market.



Mathematical Programming Remarks

• The particular implementation of the mathematics and computer 

science in the Gurobi Optimizer is quite complex.

• The user does not need to worry about how to solve the 

optimization problem at hand, this is done automatically by Gurobi 

behind the scenes.  

• The user only needs to have an efficient LP or MIP model that 

captures the main characteristics of the optimization problem and 

the required data for the model.





1. Introduction to linear programming and 

mixed integer linear programming 

models - The furniture factory problem.

• Illustrative example prevalent 

throughout the video series.

• Introduction to general formulations for 

linear programming and mixed integer 

programming problems.



2. Furniture factory problem -
Graphical Solution

• How to graphically solve the furniture 

problem when formulated as a linear 

programming model.

• Introduction to important concepts 
related to the theory of linear 
programming.

3.Overview - Simplex method 
to solve linear programming 
problems.

• How the simplex method works. 

• Key concepts of the theory of linear 
programming.



4.Modeling and solving the 
furniture factory problem 
with the Gurobi python 
API.

• How to use the Gurobi Python API 
to formulate the furniture problem 
as a linear programming problem 
and solve it using the Gurobi 
callable library

5. Sensitivity analysis of LP 
problems with the Gurobi 
python API.

• How linear programming models have 
an economic interpretation and the 
impact on the objective function value 
derived from marginal changes on a 
resource capacity value.



6. Multiple optimal solutions, 
modeling opportunity with 
the Gurobi python API.

• How a linear programming problem 
can have multiple solutions.

• How having multiple solutions 
presents an opportunity to improve 
the linear programming problem 
formulation.

7. Unbounded solutions, 
modeling opportunity with the 
Gurobi python API.

• How a linear programming problem can be 
unbounded which means that the objective 
function value can be arbitrarily large.

• How an unbounded linear programming 
problem presents an opportunity to improve 
the linear programming problem 
formulation.



8.Infeasible solutions, modeling 
opportunity with the Gurobi python 
API. 

• How a linear programming problem can be 
infeasible,  lacking a solution that can satisfy 
all the constraints of the problem.

• How an infeasible linear programming 
problem presents an opportunity to improve 
the linear programming problem formulation.

9.Maximize or minimize 
objective function.

• How to tackle maximization and 
minimization linear programming 
problems.



10. Unconstrained decision 
variables.

• How Gurobi automatically handles 
unconstrained decision variables.

11. Initial basic solution.

• How to determine an initial 
solution of a linear programming 
problem in order to start the 
simplex method. This is done 
automatically by Gurobi.



12. Presolve.

• An example of how Presolve 
reduces the size of a linear 
programming problem. Gurobi by 
default calls Presolve to 
significantly reduce the size of an 
LP problem.

13. Matrix sparsity.

• An important characteristic of 
linear programming problems 
that is related to the number of 
non-zero coefficients associated 
with the variables in the problem 
formulation.



14. Duality in linear 
programming.

• One  of the most important 
concepts in linear programming 
that allows the efficient 
characterization of optimal 
solutions of a linear programming 
problem.

15. Optimality conditions in 
linear programming.

• Discussion of duality and 
establish sufficient and 
necessary conditions of optimal 
solutions of a linear programming 
problem.



16. Dual simplex method.

• A variation of the simplex method 
that is frequently used to solve 
mixed integer linear programming 
problems.



Introduction to linear programming
The Furniture Factory problem





The Furniture Factory Problem

A data scientist is in charge of 

developing the Weekly Production 

Plan of two key products that the 

furniture factory makes: chairs 

and tables.

The data scientist using machine 

learning techniques predicts that 

the selling price of a chair is $45 

and the selling price of a table is 

$80 dollars.



The Furniture Factory Problem

• There are two critical resources 

in the production of chairs and 

tables:

• Mahogany (measured in board 

square-feet) and labor 

(measured in work hours).

• There are 400 units of 

mahogany available at the 

beginning of each week.

• There are 450 units of labor 

available during each week.

A data scientist is in charge of developing the weekly 

production plan of two key products that the furniture 

factory makes: chairs and tables.

The data scientist using machine learning techniques 

predicts that the selling price of a chair is $45 and the 

selling price of a table is $80 dollars.



The Furniture Factory Problem

• The data scientist estimates that

• One chair requires 5 units of 

mahogany and 10 units of labor.

• One table requires 20 units of 

mahogany and 15 units of labor.

• The marketing department has 

told the data scientist that ALL

the production of chairs and 

tables can be sold.

A data scientist is in charge of developing the weekly production 

plan of two key products that the furniture factory makes: chairs 

and tables.

The data scientist using machine learning techniques predicts 

that the selling price of a chair is $45 and the selling price of a 

table is $80 dollars.

• There are two critical resources in the production of chairs 

and tables:

• Mahogany (measured in board square-feet) and labor 

(measured in work hours).

• There are 400 units of mahogany available at the beginning 

of each week.

• There are 450 units of labor available during each week.

= 5

15 hrs.

10hrs.

= 20



Problem statement: 

What is the Production Plan 

that maximizes total revenue?

The Furniture Factory Problem

• The data scientist estimates that

• One chair requires 5 units of mahogany and 10 units 

of labor.

• One table requires 20 units of mahogany and 15 

units of labor.

• The marketing department has told the data 

scientist that all the production of chairs and tables 

can be sold.

A data scientist is in charge of developing the weekly 

production plan of two key products that the furniture 

factory makes: chairs and tables.

The data scientist using machine learning techniques 

predicts that the selling price of a chair is $45 and the 

selling price of a table is $80 dollars.

• There are two critical resources in the production 

of chairs and tables:

• Mahogany (measured in board square-feet) and 

labor (measured in work hours).

• There are 400 units of mahogany available at the 

beginning of each week.

• There are 450 units of labor available during each 

week.



The Furniture Factory Problem… 2

The data of the furniture 

problem can be summarized in 

the following table:

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80

DATA CHAIR TABLE CAPACITY

• To determine a Production Plan, we 

need to decide how many chairs 

and tables to make in order to 

maximize total revenue, while 

satisfying resources constraints.

• This problem has two decision 

variables:

• x1: number of chairs to produce.

• x2: number of tables to produce. 

• The number of chairs and tables to 

produce should be a non-negative 

number. That is, x1, x2 ≥ 0.

x1, x2 ≥ 0



The Furniture Factory Problem… 2

The data of the furniture problem can be 

summarized in the following table:

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80

DATA CHAIR TABLE CAPACITY

• If we would know the value of the amount 

of chairs to produce (x1), then since each 

chair generates $45, the total revenue 

generated by the production of chairs 

can be determined by the term 45x1 

(45*x1).

• Similarly, the total revenue generated by the 
production of tables can be determined by the 
term 80x2 (80*x2).

• Consequently, the total revenue generated by 
the production plan can be determined by the 
following equation.

• Revenue = 45x1 + 80x2



The Furniture Factory Problem… 2

The data of the furniture problem can be 

summarized in the following table:

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80

DATA CHAIR TABLE CAPACITY

• The Production Plan is constrained by the amount of 

resources available.

• How do we ensure that the production plan does not 

consume more mahogany than the amount of 

mahogany available?

• If we decide to produce x1 number of chairs, then the 

total amount of mahogany consumed by the production 

of chairs is 5x1 (5*x1).

• Similarly, if we decide to produce x2 number of tables, 

then the total amount of mahogany consumed by the 

production of tables is 20x2 (20*x2).

• Hence, the total consumption of mahogany by the 

production plan determined by the values of x1 and x2 

is (5x1 + 20x2). However, the consumption of mahogany 

by the production plan cannot exceed the amount of 

mahogany available. We can expressed these ideas in 

the following constraint:

5x1 + 20x2 ≤ 400



The Furniture Factory Problem… 2

The data of the furniture problem can be 

summarized in the following table:

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80

DATA CHAIR TABLE CAPACITY

• The production plan is constrained by the amount of 

resources available.

• In similar fashion, we can formulate the constraint for 

labor resources.

• The total amount of labor resources consumed by the 

production of chairs is 10 labor units multiplied by the 

number of chairs produced, that is 10x1 (10*x1).

• The total amount of labor resources consumed by the 

production of tables is 15 labor units multiplied by the 

number of tables produced, that is 15x2 (15*x2).

• Therefore, the total consumption of labor resources by 

the production plan determined by the values of x1 and 

x2 is (10x1 + 15x2). This labor consumption cannot 

exceed the labor capacity available. Hence, this 

constraint can be expressed as follows:

10x1 + 15x2 ≤ 450.



The Furniture Factory Problem… 2

The data of the furniture problem is

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80

DATA CHAIR TABLE CAPACITY

• The furniture problem formulation as a linear 

programming (LP) problem is

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Introduction linear programming 
and mixed integer linear 
programming problems
Key components of mathematical programming models



1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

Key components of linear 

programming model𝑥1 is the decision variable representing the number of 

chairs to produce. The index 1 refers to the product 

chair.

𝑥2 is the decision variable representing the number of 

tables to produce. The index 2 refers to the product 

table.

We can create a set of products mapping each product 

with the index associated with each decision variable. 

Then, the set products = {1: chair, 2: table} maps each 

index with its corresponding product.

Similarly, we can create a set for resources as follows: 

resources = {1: mahogany, 2: labor} where the index 1 

maps to the resource mahogany, and the index 2 maps 

to the resource labor.



1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

Key components of linear 

programming model… 2This LP model has several types of parameters representing 

known quantities (data) that characterize the problem. 

• Prices can be defined over the set of products, e.g. b1 = 45 means 

that the price of a chair is $45, and b2 = 80 means that the price of a 

table is $80. 

• Resources capacity can be defined over the set of resources, e.g. K1
= 400, means that the availability of mahogany is 400 units/week, and 

K2 = 450 means that the availability of labor is 450 units/week. 

• Technology coefficients describe the consumption of resources when 

building a product. For example,

a1,1 = 5 means that five units of mahogany are consumed when 

building one chair,

a1,2 = 20 means that twenty units of mahogany are consumed when 

building one table,

a2,1 = 10 means that ten units of labor are consumed when building 

one chair,

a2,2 = 15 means that fifteen units of labor are consumed when building 

one table.



• Matrix of technology coefficients

a12 = 20

DATA CHAIR TABLE

Mahogany

Labor

a22 = 15

a11 = 5

a21 = 10



Key components of linear programming model… 3

This LP model has two types of constraints limiting the number of chairs and tables that can 

be produced.

These constraints are defined over the set of resources, and represent that the consumption of 

each resource by a Production Plan cannot exceed the amount available of the resource.

The objective function is to maximize total revenue generated by the optimal Production Plan.

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Linear Programming model components
Summary



Abstraction and generalization 
of furniture problem

Linear Programming model components
Summary

1.0 . Max revenue = 45𝑥1 + 80𝑥2
Units of mahogany capacity2.0 5𝑥1 + 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

1.0 . Max (b1 = 45)𝑥1 + (𝑏2 = 80)𝑥2
2.0 𝑎1,1 = 5 𝑥1+ (𝑎1,2 = 20)𝑥2 ≤ 𝐾1 = 400

3.0 . (𝑎2,2 = 10)𝑥1 + (𝑎2,2 = 15)𝑥2≤ 𝐾2 = 450

𝒙𝟏, 𝒙𝟐 ≥ 𝟎

Parametrization of input data

Parametrization of input data of an LP problem allows 

one to separate the data from the model. That is, one 

can change the values of the data without changing the 

model.

Original LP problem  formulationParametrized LP problem formulation



Abstraction and generalization of furniture problem… 2
Parametrized LP problem formulation

𝑏1𝑥1 + 𝑏2𝑥2 =

𝑗=1

2

𝑏𝑗𝑥𝑗



𝑗=1

2

𝑎𝑖,𝑗𝑥𝑗 ≤ 𝐾𝑖 (𝑖 = 1,2)

𝑥𝑗 ≥ 0, (𝑗 = 1,2)

Resources

capacity

Technology

coefficients

1.0 𝑀𝑎𝑥 𝑏1𝑥1 + 𝑏2𝑥2

2.0 𝑎1,1𝑥1 + 𝑎1,2𝑥2 ≤ 𝐾1

𝒙𝟏, 𝒙𝟐 ≥ 𝟎

3.0 𝑎2,1𝑥1 + 𝑎2,2𝑥2 ≤ 𝐾2

Prices



Abstraction and generalization of 
furniture problem… 2
General LP problem formulation

n = (2) number of decision variables (products)

m = (2) number of constraints (resources)

𝑏1𝑥1 + 𝑏2𝑥2 =

𝑗=1

2

𝑏𝑗𝑥𝑗



𝑗=1

2

𝑎𝑖,𝑗𝑥𝑗 ≤ 𝐾𝑖 (𝑖 = 1,2)

𝑥𝑗 ≥ 0, (𝑗 = 1,2)

𝑀𝑎𝑥 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗
Objective
Function

Constraints σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 ≥ 0 (𝑗 = 1. . 𝑛) Set of indices 

for Variables

Objective function 

coefficients

Decision

Variables

1.0 𝑀𝑎𝑥 𝑏1𝑥1 + 𝑏2𝑥2

2.0 𝑎1,1𝑥1 + 𝑎1,2𝑥2 ≤ 𝐾1

𝒙𝟏, 𝒙𝟐 ≥ 𝟎

3.0 𝑎2,1𝑥1 + 𝑎2,2𝑥2 ≤ 𝐾2

Parametrized LP problem  formulation

Set of indices 

for Constraints

Technology 

coefficients

RHS: right

hand side



Linear, integer, binary, mixed programming models
Linear programming problems

Objective function examples:

• maximize total revenue

• minimize total cost.

𝑀𝑎𝑥 (𝑀𝑖𝑛) 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗

Constraint examples:

• ≤ constraints are typically considered for 

capacity  constraints where you don’t want 

to exceed capacity available.

• ≥ constraints are used to model demand 

requirements where you want to ensure that 

at least certain level of  demand is satisfied.

• = constraints are used when you want to 

match exactly certain activities with a given 

requirement. For example, a job position 

can only be filled with one resource, and  

you have a set of possible qualified 

resources to assign to the job.

σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ =,≥ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 ≥ 0 (𝑗 = 1. . 𝑛)



Linear, integer, binary, mixed programming models
Linear programming problems

Objective function examples:

• maximize total revenue

• minimize total cost.

𝑀𝑎𝑥 (𝑀𝑖𝑛) 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗

Constraint examples:

• ≤ constraints are typically considered for 

capacity  constraints where you don’t want 

to exceed capacity available.

• ≥ constraints are used to model demand 

requirements where you want to ensure that 

at least certain level of  demand is satisfied.

• = constraints are used when you want to 

match exactly certain activities with a given 

requirement. For example, a job position 

can only be filled with one resource, and  

you have a set of possible qualified 

resources to assign to the job.

σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ =,≥ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (𝑗 = 1. . 𝑛)

Integer programming problems



Linear, integer, binary, mixed programming models

Objective function examples:

• maximize total revenue

• minimize total cost.

𝑀𝑎𝑥 (𝑀𝑖𝑛) 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗

Constraint examples:

• ≤ constraints are typically considered for 

capacity  constraints where you don’t want 

to exceed capacity available.

• ≥ constraints are used to model demand 

requirements where you want to ensure that 

at least certain level of  demand is satisfied.

• = constraints are used when you want to 

match exactly certain activities with a given 

requirement. For example, a job position 

can only be filled with one resource, and  

you have a set of possible qualified 

resources to assign to the job.

σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ =,≥ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 𝑖𝑛 {0,1} (𝑗 = 1. . 𝑛)

Binary programming problemsInteger programming problems



Linear, integer, binary, mixed programming models

Objective function examples:

• maximize total revenue

• minimize total cost.

𝑀𝑎𝑥 (𝑀𝑖𝑛) 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗

Constraint examples:

• ≤ constraints are typically considered for 

capacity  constraints where you don’t want 

to exceed capacity available.

• ≥ constraints are used to model demand 

requirements where you want to ensure that 

at least certain level of  demand is satisfied.

• = constraints are used when you want to 

match exactly certain activities with a given 

requirement. For example, a job position 

can only be filled with one resource, and  

you have a set of possible qualified 

resources to assign to the job.

σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ =,≥ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 𝑖𝑛 0,1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗

𝑥𝑗 ≥ 0 (𝑗 = 1. . 𝑛)

𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗

Binary programming problemsMixed integer linear programming problems



Solving MIP Problems

In Mixed Integer linear Programming it is possible to have equivalent 

formulations of a problem

• But the performance of a MIP solver can be drastically different.

• This is why when formulating a MIP model, its very important to 

understand how the MIP algorithms behind the MIP solver behave.

• Hence, we will present a limited discussion of the solution process 

associated with Linear Programming and Mixed Integer Linear 

Programming.

In Mixed Integer linear Programming it is possible to have equivalent formulations of a problem

• But the performance of a MIP solver can be drastically different.

• This is why when formulating a MIP model, its very important to understand how the MIP algorithms behind the MIP 

solver behave.

• Hence, we will present a limited discussion of the solution process associated with Linear Programming and Mixed 

Integer Linear Programming.



Solving MIP Problems

In Mixed Integer linear Programming it is possible to have equivalent formulations of a problem

• But the performance of a MIP solver can be drastically different.

• This is why when formulating a MIP model, its very important to understand how the MIP algorithms behind the MIP 

solver behave.

• Hence, we will present a limited discussion of the solution process associated with Linear Programming and Mixed 

Integer Linear Programming.



Furniture Factory Problem
Graphical interpretation and solution of an LP problem



LP formulation of furniture problem

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Graphical solution of Furniture Problem … 1 1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

𝑥1 Chairs0



Graphical solution of Furniture Problem … 2 1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

𝑥1 Chairs0

𝑥2
Tables



Graphical solution of Furniture Problem … 3 1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

𝑥1 Chairs0

𝑥2
Tables

Therefore, moving from left to right is the direction for x1 ≥ 0



Graphical solution of Furniture Problem … 4 1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

𝑥1 Chairs0

𝑥2
Tables

Therefore, moving from low to high is the direction for x2 ≥ 0



𝑥2
Tables

Graphical solution of Furniture Problem … 5 1.0 . Max revenue = 45𝑥1 + 80𝑥2

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

𝑥1 Chairs

Therefore, any build plan in this quadrant satisfies the 

constraints x1, x2 ≥ 0. For example:

(x1=40, x2=30)

(x1=0, x2=10)

(x1=0, x2=30)

(x1=0, x2=40)

(x1=0, x2=0)

(x1=10, x2=0) (x1=40, x2=0) (x1=80, x2=0)



•5x1 + 20x2 ≤ 400 (mahogany constraint) 

•5x1 + 20x2 = 400 (mahogany equation)

• Expressing x2 in terms of x1

• 20x2 = 400 – 5x1

• x2 = 400/20 –(5/20)x1

• Hence, x2 = 20 –(1/4)x1

• If (x1 = 0) then (x2 = 20)

• If (x1 = 1) chairs, then x2 = 20 –(1/4)(x1 = 1) = 19.75 tables

•Mahogany tradeoff tables for chairs is (1/4 = 0.25)

Graphical solution of Furniture Problem … 6

➗



𝑥2
Tables

Graphical solution of Furniture Problem … 7

𝑥1 Chairs

5𝑥1+20𝑥2 = 400

(x1=0, x2=20)

(x1=0, x2=0)

(x1=80, x2=0)

• Let’s graph the equation 

x2 = 20 –(1/4)x1

Slope = -1/4

Mahogany



𝑥2
Tables

Graphical solution of Furniture Problem … 8

𝑥1 Chairs

(x1=0, x2=20)

(x1=0, x2=0)

(x1=80, x2=0)

• Mahogany constraint:

5x1 + 20x2 ≤ 400.

• (slack variable) h1  ≥ 0: 
amount of unused 
mahogany for Production 

Plan (x1, x2)

• Equation representing  
mahogany constraint 

5x1 + 20x2 + h1 = 400

10

10

5𝑥1+20𝑥2 = 400 Mahogany



𝑥2
Tables

Graphical solution of Furniture Problem … 8

𝑥1 Chairs

(x1=0, x2=20)

(x1=0, x2=0)

(x1=80, x2=0)

• Consider Production Plan 

(x1=10, x2=10)

• Value of slack variable 

h1 = 
400 – 5(x1=10) –
20(x2=10)=150

10

10

5𝑥1+20𝑥2 = 400 Mahogany

(x1=10, x2=10), h1=150



•10x1 + 15x2 ≤ 450 (labor constraint)

•10x1 + 15x2 = 450 (labor equation)

• Expressing x2 in terms of x1

•x2 = 30 –(2/3)x1

• If (x1 = 0) then (x2 = 30)

• If (x1 = 1) chair, then x2 = 30 –(2/3)(x1 = 1) = 29.333 tables 

•Labor tradeoff tables for chairs is (2/3 = 0.667)

Graphical solution of Furniture Problem … 9

➗



𝑥2
Tables

Graphical solution of Furniture Problem … 10

𝑥1 Chairs(x1=0, x2=0)

(x1=80, x2=0)

• Let’s graph the equation

x2 = 30 –(2/3)x1

10

45

(x1=0, x2=30)

Slope = -2/3



𝑥2
Tables

Graphical solution of Furniture Problem … 11

𝑥1 Chairs(x1=0, x2=0)

(x1=80, x2=0)

• Labor constraint

10x1 + 15x2 ≤ 450

• (slack variable) h2  ≥ 0: 
amount of unused labor for 

production plan (x1, x2)

• Equation representing labor 
constraint

10x1 + 15x2 + h2 = 450

10

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=10, x2=0) (x1=45, x2=0)

(x1=0, x2=20)



𝑥2
Tables

Graphical solution of Furniture Problem … 11

𝑥1 Chairs(x1=0, x2=0)

(x1=80, x2=0)

• Production Plan

(x1=10, x2=10)

• Slack variable value
h2 =
450 – 10(x1=10) –
15(x2=10) = 200

10

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=10, x2=0) (x1=45, x2=0)

(x1=0, x2=20)

(x1=10, x2=10), h2=200



𝑥2
Tables

Graphical solution of Furniture Problem … 12

𝑥1
Chairs(x1=0, x2=0)

(x1=80, x2=0)

10

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=10, x2=0) (x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Feasible Region

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 13

𝑥1
Chairs(x1=0, x2=0)

(x1=80, x2=0)

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=10, x2=0) (x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Polyhedron

• In the theory of linear 

programming the 

feasible region is 

called a polyhedron.

Units of mahogany capacity2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor hours capacity

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 14

𝑥1
Chairs

(x1=80, x2=0)

• The objective function: 

revenue = 45x1 + 80x2 

x2 =

revenue/80 –(45/80)x1

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Feasible Region

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 14

𝑥1
Chairs

(x1=80, x2=0)

x2 =

revenue/80 –(45/80)x1

• If (x1=0, x2=0), then 

revenue is $0.00.

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

Slope = -45/80 (x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Feasible Region

(x1=0, x2=0)

revenue = $ 0
Revenue = 45x1 + 80x2

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 15

𝑥1
Chairs

(x1=80, x2=0)

• Production Plan

(x1 = 0, x2 = 10)

• Generates a revenue

= 45(x1=0) + 80(x2=10)
= $800

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Feasible Region
(x1=0, x2=10)

revenue = 800

Revenue = 45x1 + 80x2

(x1=0, x2=0)

revenue = $ 0

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 15

𝑥1
Chairs

(x1=80, x2=0)

• Mahogany slack variable: 

h1 = 
400 – 5(x1=0) –
20(x2=10)=200

• Labor slack variable:

h2 = 
450 – 10(x1=0) –
15(x2=10) = 150

• 200 units of unused 
mahogany capacity

• 150 units of unused labor 
capacity

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=45, x2=0)

(x1=0, x2=20)

≥ 0

Feasible Region
(x1=0, x2=10)

revenue = 800

Revenue = 45x1 + 80x2

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 16

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=45, x2=0)

(x1=0, x2=40)

≥ 0

(x1=0, x2=10)

revenue = 800

(x1=0, x2=20)

revenue = 1600

• How far can we increase the 
production of tables?

• Production Plan

(x1=0, x2=20)

Revenue =

45(x1 = 0) + 80(x2=20) = 
$1,600



𝑥2
Tables

Graphical solution of Furniture Problem … 16

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• Can we continue increasing 
the production tables?

• Production plan

(x1=0, x2=21)

Revenue =

45(x1 = 0) + 80(x2=21) = 
$1,680

• Mahogany slack variable

h1 = 400 – 5(x1=0) –
20(x2=21)= -20 !!! 
Infeasible

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=45, x2=0) ≥ 0

(x1=0, x2=20)

revenue = 1600

Revenue = 45x1 + 80x2



𝑥2
Tables

Graphical solution of Furniture Problem … 17

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• What else we can do?

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=45, x2=0) ≥ 0

(x1=0, x2=20)

revenue = 1600

Revenue = 45x1 + 80x2



𝑥2
Tables

Graphical solution of Furniture Problem … 17

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• Mahogany equation

x2 =
20 –(1/4)x1

(x1=0, x2=30)

(x1=45, x2=0) ≥ 0

(x1=0, x2=20)

revenue = 1600

Revenue = 45x1 + 80x2

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)



(x1=0, x2=20)

revenue = 1600

𝑥2
Tables

Graphical solution of Furniture Problem … 18

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• How much can we keep 
increasing the production 
of chairs while keeping the 
production of tables as 
high as we can? 

• If we build 10 chairs, then:       
x2 =
20 –(1/4)(x1=10) 
= 17.5 tables.

• Mahogany slack variable
h1 = 
400 – 5(x1=10) –
20(x2=17.5) = 0

(x1=0, x2=30)

(x1=45, x2=0) ≥ 0

(x1=10, x2=17.5)

revenue = 1850

Revenue = 45x1 + 80x2

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)



𝑥2
Tables

Graphical solution of Furniture Problem … 18

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• Production plan
(x1=10, x2=17.5)

• Revenue =
45(x1=10) + 80(x2=17.5)
= $1,850

• Labor slack variable 
h2 = 
450 – 10(x1=10) –
15(x2=17.5) = 87.5

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=45, x2=0) ≥ 0

(x1=10, x2=17.5)

revenue = 1850
(x1=0, x2=20)

revenue = 1600



𝑥2
Tables

Graphical solution of Furniture Problem … 19

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

• Observe that when the 
production plan moving 
along the mahogany 
equation hits the labor 
equation, we cannot move 
any further.

• This happens when the 
equation that defines the 
mahogany constraint 
intersects with the 
equation that defines the 
labor constraint. The 
associated production plan 
is found by solving these 
system of equations.

• STOP, labor constraint 
limits production plan.

(x1=0, x2=30)

5𝑥1+20𝑥2 = 400 (Mahogany)

10𝑥1+15𝑥2 = 450 (Labor)

(x1=45, x2=0) ≥ 0

(x1=24, x2=14)

revenue = 2200

(x1=0, x2=20)

revenue = 1600



𝑥2
Tables

Graphical solution of Furniture Problem … 19

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

(x1=0, x2=30)

(x1=45, x2=0) ≥ 0

(x1=24, x2=14)

revenue = 2200

5𝑥1+20𝑥2 = 400

10𝑥1+15𝑥2 = 450

• Production Plan:

• 24 chairs 

• 14 tables.

• Revenue =

45(x1=24) + 

80(x2=14) = $2,200

Mahogany

Labor

10𝑥1+15𝑥2 = 450 (Labor)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=0, x2=20)

revenue = 1600



𝑥2
Tables

Graphical solution of Furniture Problem … 19

𝑥1
Chairs

(x1=0, x2=0)

revenue = 0

(x1=80, x2=0)

(x1=0, x2=30)

(x1=45, x2=0) ≥ 0

Production Plan

(x1 =24, x2=14) is 

optimal 

Efficient Production Plan

Mahogany slack variable 

h1 = 400 – 5(x1=24) –

20(x2=14)= 0

Labor slack variable

h2 = 450 – 10(x1=24) –

15(x2=14) = 0

(x1=24, x2=14)

revenue = 2200

10𝑥1+15𝑥2 = 450 (Labor)

5𝑥1+20𝑥2 = 400 (Mahogany)

(x1=0, x2=20)

revenue = 1600



Break



𝑥2
Tables

Fundamental theorem of linear programming ..

𝑥1
Chairs

(0,0)

• Definitions: 

• A solution of an LP 

problem is a set of values 

of the decision variables 

that satisfies all the 

constraints of the problem 

defined by the polyhedron.  

• A corner point solution is 

a vertex of the polyhedron 

defining the feasible 

region of the LP problem.

• An optimal solution is a 

solution of the LP problem 

that cannot be improved.

20

≥ 0

Polyhedron

45

10𝑥1+15𝑥2 = 450 (Labor)

5𝑥1+20𝑥2 = 400 (Mahogany)

𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1+80𝑥2

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.



𝑥2
Tables

Fundamental theorem of linear programming .. 2

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

(Labor)

≥ 0

Polyhedron

45

(Revenue)

P1

• Initial corner point solution

P1 =(0 chairs, 0 tables)



𝑥2
Tables

Fundamental theorem of linear programming .. 2

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

(Labor)

≥ 0

Polyhedron

45

(Revenue)

P1

P2

• Initial corner point solution

P1 =(0 chairs, 0 tables)

• Adjacent corner point 

solution

P2 =(0 chairs, 20 tables)



𝑥2
Tables

Fundamental theorem of linear programming .. 2

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

(Labor)

≥ 0

Polyhedron

45

(Revenue)

P1

P2

• Initial corner point solution

P1 =(0 chairs, 0 tables)

• Adjacent corner point 

solution

P2 =(0 chairs, 20 tables)

• Adjacent corner point 

solution

P3 =(24 chairs, 14 tables)

P3



𝑥2
Tables

Fundamental theorem of linear programming .. 2

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

(Labor)

≥ 0

Polyhedron

45

(Revenue)

P1

P2

• Initial corner point solution

P1 =(0 chairs, 0 tables)

• Adjacent corner point 

solution

P2 =(0 chairs, 20 tables)

• Adjacent corner point 

solution

P3 =(24 chairs, 14 tables)

P3



𝑥2
Tables

Fundamental theorem of linear programming .. 3

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45

• Significant increase in 

the price (b1) of chairs. 

• New oportunity to 

increase revenue

P1

30

Revenue = 𝑏1𝑥1+80𝑥2

(Labor)

P2

P3



𝑥2
Tables

Fundamental theorem of linear programming .. 3

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
P1

30

Revenue = 𝑏1𝑥1+80𝑥2

(Labor)

• The new Production Plan

P4 = (45 chairs, 0 tables) 

is optimal

P2

P3

P4P4



𝑥2
Tables

Fundamental theorem of linear programming .. 4

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

≥ 0

Polyhedron

45
P1

30 (Labor)

Revenue = 𝑏1𝑥1+𝑏2𝑥2

(0,0) x1 = 0 and x2 = 0

Vertex Equations

(45,0) 10x1 + 15x2 = 450 (labor) and x2=0

(0,20) x1= 0 and 5x1 +20x2= 400 (mahogany)

(24,14) 5x1 + 20x2 = 400 (mahogany) and 10x1 +15x2 = 450 (labor)

80

P3

P4

P2



𝑥2
Tables

Fundamental theorem of linear programming .. 5

𝑥1
Chairs

• Theorem:

• If a linear programming 

problem has an optimal 

solution, there is at least 

one optimal solution that is 

a corner point solution.

(Mahogany)

≥ 0

Polyhedron

45
P1

30 (Labor)

Revenue = 𝑏1𝑥1+𝑏2𝑥2

80

(0,30) x1 = 0 and labor equation

(80, 0) mahogany and x2 = 0

Infeasible points Equations

(0,0) x1 = 0 and x2 = 0

Vertex Equations

(45,0) 10x1 + 15x2 = 450 (labor) and x2=0

(0,20) x1= 0 and 5x1 +20x2= 400 (mahogany)

(24,14) 5x1 + 20x2 = 400 (mahogany) and 10x1 +15x2 = 450 (labor)

P2

P3

P4



Enumeration approach
Enumeration of solutions of the system of equations for the furniture problem

(0,0) Yes (feasible) 0 = 45*0 + 80*0

Points of interest Vertex of the polyhedron Objective function value. Revenue = 45x1 + 80x2

(0,20) Yes (feasible) 1600 = 45*0 + 80*20

(24,14) Yes (feasible) 2200 = 45*24 + 80*14

(45,0) Yes (feasible) 2025 = 45*45 + 80*0

(0,30) No (infeasible) 2400 = 45*30 + 80*30

(80,0) No (infeasible) 3600 = 45*80 + 80*0

Optimal!!



Num of variables Num of constraints Num of points of interest

How many solutions can we have?

10 10 184,756

• Let’s ask the question: How many points of interest an LP problem 

would have with n variables and n constraints?

50 50 ~ 𝟏𝟎𝟐𝟗

100 100 ~ 𝟏𝟎𝟓𝟖

150 150 ~ 𝟏𝟎𝟖𝟖

500 500 ~ 𝟏𝟎𝟐𝟗𝟗

An LP with 500 variables and constraints is considered a very small LP problem.

Is there a way that 

we can traverse 

vertices in the 

polyhedron in a 

more efficient way?

This number is larger 

than the number of atoms 

(~ 1080) in the  known 

universe !!

~ 𝟏𝟎𝟖𝟖



Is there a way that we can traverse vertices in the 
polyhedron in a more efficient way?

Simplex Method !!!



Simplex method
Overview 



Linear Programming Furniture problem LP problem formulation

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
P1

P2

30 (Labor)

80

(Revenue)

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Mahogany2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Linear Programming Furniture problem LP problem formulation

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
P1

P2

30 (Labor)

80

(Revenue)

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Mahogany2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Linear Programming 

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
P1

P2

30 (Labor)

80

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Mahogany2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

Furniture problem LP problem formulation

(Revenue)



Linear Programming/Simplex Method

We call the formulation of an LP problem the original LP problem

1.0 . Max revenue = 45𝑥1 + 80𝑥2

Mahogany2.0 5𝑥1 + 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity



Linear Programming/Simplex Method

The original LP problem in a standard form is:

1.0 . Max revenue = 45𝑥1 + 80𝑥2
mahogany2.0 5𝑥1+ 20𝑥2 ≤ 400

3.0 . 10𝑥1 + 15𝑥2 ≤ 450 Labor

𝒙𝟏, 𝒙𝟐 ≥ 𝟎 Non − negativity

Original LP problem.

1.0 . Max revenue = 45𝑥1 + 80𝑥2

mahogany2.0 5𝑥1 + 20𝑥2 + ℎ1 = 400

3.0 . 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

𝒙𝟏, 𝒙𝟐, ℎ1, ℎ2 ≥ 𝟎 Non − negativity



Linear Programming/Simplex Method .. 2 Furniture problem standard form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

1.0 . Max revenue = 45𝑥1 + 80𝑥2
Mahogany2.0 5𝑥1+ 20𝑥2+ ℎ1 = 400

3.0 . 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

𝒙𝟏, 𝒙𝟐, 𝒉𝟏, 𝒉𝟐 ≥ 𝟎 Non − negativity

(x1=0, x2=0) initial solution

Revenue = 0

(Revenue)

h1 = 400 –5(x1=0) -20(x2=0) = 400

h2 = 450 –10(x1=0) -15(x2=0) = 450

x1=0, x2=0, h1 = 400, h2 = 450 Feasible solution



Linear Programming/Simplex Method .. 2 Furniture problem standard form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

1.0 . Max revenue = 45𝑥1 + 80𝑥2
Mahogany2.0 5𝑥1+ 20𝑥2+ ℎ1 = 400

3.0 . 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

𝒙𝟏, 𝒙𝟐, 𝒉𝟏, 𝒉𝟐 ≥ 𝟎 Non − negativity

(Revenue)

x1=0, x2=0, h1 = 400, h2 = 450 Feasible solution

h1, h2 Basic variables

x1, x2 Non basic variables

x1=0, x2=0, h1 = 400, h2 = 450 Basic Feasible solution



Linear Programming/Simplex Method .. 3 Furniture problem standard form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

1.0 . Max revenue = 45𝑥1 + 80𝑥2
Mahogany2.0 5𝑥1+ 20𝑥2+ ℎ1 = 400

3.0 . 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

𝒙𝟏, 𝒙𝟐, 𝒉𝟏, 𝒉𝟐 ≥ 𝟎 Non − negativity

A basic solution is defined by the values of the basic 

and non basic variables.

Production Plan (x1=0, x2=30)

h1 = 400 –5(x1=0) -20(x2=30) = -200

h2 = 450 –10(x1=0) -15(x2=30) = 0

x1=0, x2=30, h1 = -200, h2 = 0 Basic infeasible solution



Linear Programming/Simplex Method .. 4 Furniture problem standard form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

1.0 . Max revenue = 45𝑥1 + 80𝑥2
Mahogany2.0 5𝑥1+ 20𝑥2+ ℎ1 = 400

3.0 . 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

𝒙𝟏, 𝒙𝟐, 𝒉𝟏, 𝒉𝟐 ≥ 𝟎 Non − negativity

LP problem in a canonical form with respect to the 

basic variables  (h1, h2) :

(Revenue)

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2
2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

Unused mahogany

Unused labor

Non-negativity

Reduced costs:

Objective funcion 

coefficients of non basic 

variables (x1, x2)

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2
2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

Unused mahogany

Unused labor

Non-negativity



Linear Programming/Simplex Method .. 5 Furniture problem canonical form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

Current basic feasible solution:

h1=400 and h2=450,  x1=0 and x2=0

Revenue: z=0  

(Revenue)

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2
2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

Mahogany

Labor

Non-negativity

Max {45,80} =80 Table price

Make tables, x2 > 0

x2 enter the basis



Linear Programming/Simplex Method .. 5 Furniture problem canonical form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

How many tables (x2) can we make?

(Revenue)

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2
2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

Mahogany

Labor

Non-negativity
h1 = 400 – 20x2

h2 = 450 – 15x2  

400/20 = 20 tables

450/15 = 30 tables



Linear Programming/Simplex Method .. 5 Furniture problem canonical form

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

If x2 =30, h1 = 400 – 20(x2=30) = -200!!!!

(Revenue)

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2
2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

Mahogany

Labor

Non-negativityMin ratio test {400/20 = 20, 450/15 = 30} = 20 tables

h1 leaves the basis

Pivoting: Express problem canonical form (x2, h2)



Linear Programming/Simplex Method (Pivoting) .. 6

1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2

2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

In equation 2.0, express x2 in terms of x1 and h1 

2.0 𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1



In equation 2.0, express x2 in terms of x1 and h1 

2.0 𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1

Linear Programming/Simplex Method (Pivoting) .. 6 1.0 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 + 0ℎ1 + 0ℎ2

2.0 ℎ1= 400 − 5𝑥1 − 20𝑥2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 ℎ2 = 450 − 10𝑥1 − 15𝑥2

We substitute the value of x2 in equation (3.0)

3.0 ℎ2 = 450 − 10𝑥1 − 15(𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1)

= 150 − ൗ25
4 𝑥1 + ൗ3 4 ℎ1

Substitute the value of x2 in (1.0), the objective function

1.0 𝑧 = 45𝑥1 + 80 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1 + 0ℎ1 + 0ℎ2

= 1600 + 25𝑥1 + 0𝑥2 − 4ℎ1 + 0ℎ2



Linear Programming/Simplex Method .. 7 
Furniture LP problem in a canonical form with respect to the basic variables (x2, h2).

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

(Revenue)

Production of tables

Unused labor capacity

Non-negativity

1.0 𝑀𝑎𝑥 𝑧 = 1600 + 25𝑥1 + 0𝑥2 − 4ℎ1 + 0ℎ2

2.0 𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1

3.0 ℎ2 = 150 − ൗ25
4 𝑥1 + ൗ3 4 ℎ1

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

Pivoting

(Revenue)=1600



Linear Programming/Simplex Method (Pivoting) .. 8 

Simplex method: iteration 2

Production of tables

Unused labor capacity

Non-negativity

1.0 𝑀𝑎𝑥 𝑧 = 1600 + 25𝑥1 + 0𝑥2 − 4ℎ1 + 0ℎ2

2.0 𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1

3.0 ℎ2 = 150 − ൗ25
4 𝑥1 + ൗ3 4 ℎ1

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

Step1: x1 enters the basis.

Step2: minimum ratio test, 𝑚𝑖𝑛{20 ∕ (1 ∕ 4)=80 ,150 ∕ (25 ∕ 4)=24 }=24. h2 leaves 

the basis

Step3: Pivoting express problem in canonical form with respect to (x2, x1)



In equation 3.0, express x1 in terms of h1 and h2 

Linear Programming/Simplex Method (Pivoting) .. 9

We substitute the value of x1 in equation (2.0)

Substitute the value of x1 in (1.0), the objective function

1.0 𝑀𝑎𝑥 𝑧 = 1600 + 25𝑥1 + 0𝑥2 − 4ℎ1 + 0ℎ2

2.0 𝑥2 = 20 − ൗ1 4 𝑥1 − ൗ1 20 ℎ1

3.0 ℎ2 = 150 − ൗ25
4 𝑥1 + ൗ3 4 ℎ1

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 𝑥1 = 24 + Τ3 25 ℎ1 − Τ4 25 ℎ2

2.0 𝑥2 = 14 − ൗ2 25 ℎ1 + ൗ1 25 ℎ2

𝑧 = 2200 + 0𝑥1 + 0𝑥2 − 1ℎ1 − 4ℎ2



Linear Programming/Simplex Method (Pivoting) .. 10 
Furniture LP problem in a canonical form with respect to the basic variables (x2, x1).

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

Production of tables

Production of chairs

Non-negativity

Pivoting

(Revenue)

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

1.0 𝑀𝑎𝑥 𝑧 = 2200 + 0𝑥1 + 0𝑥2 − 1ℎ1 − 4ℎ2

2.0 𝑥2 = 14 − ൗ2 25 ℎ1 + ൗ1 25 ℎ2

3.0 𝑥1 = 24 + Τ3 25 ℎ1 − Τ4 25 ℎ2

(Revenue)=2200



Linear Programming/Simplex Method.. 11
Simplex method: iteration 3.

𝑥2
Tables

(Mahogany)

Polyhedron

45
(0,0)

20

30 (Labor)

80

(Revenue)=2200

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

1.0 𝑀𝑎𝑥 𝑧 = 2200 + 0𝑥1 + 0𝑥2 − 1ℎ1 − 4ℎ2

2.0 𝑥2 = 14 − ൗ2 25 ℎ1 + ൗ1 25 ℎ2

3.0 𝑥1 = 24 + Τ3 25 ℎ1 − Τ4 25 ℎ2

𝑥1
Chairs

≥ 0

Step 1: reduced costs (h1, h2) ≤ 0. Recall that the 

reduced costs are the coefficients of the non basic.

Objective value cannot increase. STOP 

Basic feasible solution (x1=24, x2=14, h1=0, h2=0), is 

optimal.



Summary of simplex method for the maximization case

1.Transform the original LP problem into the standard form. Consider an initial basic feasible 

solution.

2.Express the LP problem in a canonical form with respect to the current basic feasible 

solution.

3. If the reduced costs of all the non basic variables are ≤ 0, STOP –the current basic feasible 

solution is optimal. Else, choose a non basic variable with the largest positive reduced cost 

to enter the basis.

4.Consider the column vector of the non basic variable entering the basis. If all the 

coefficients of this column vector are positive, the entering non basic variable can be 

arbitrarily large, hence the LP problem is unbounded.

i. Assume that the column vector has at least one negative component.

ii. Apply the minimum ratio test over the equations where the entering non basic variable 

has negative coefficients to determine the basic variable that will leave the basis.

iii.(Pivoting) Go to 2.) to determine the new basic solution.



Modeling and solving LP problems
Gurobi Python API



Furniture Problem: solved with Gurobi … 1

This command imports the Gurobi functions and classes.

The Model() constructor creates a model object f . The name of this new model is ‘Furniture’.

This new model f initially contains no decision variables, constraints, or objective function.

This method adds a decision variable to the model object f, one by one; i.e. x1 and  then x2. 

The argument of the method gives the name of added decision variable. The default values 

are applied here; i.e. the decision variables are of type continuous and non-negative, with no 

upper bound. This method adds the objective function to the model object f. The first 

argument is a linear expression (LinExpr) and the second argument defines 

the sense of the optimization.

A linear expression object (LinExpr) consists of a constant term, plus a sum 

of coefficient-variables pairs that capture the linear terms.  
This method adds a constraint to the model object f and considers a linear 

expression (LinExpr) as the left-hand-side of the constraints, the sense of 

the constraint, and its capacity value. The last argument gives the name of 

the constraint. 



Furniture Problem: solved with Gurobi … 2

This method runs the optimization engine to solve the LP problem in the model object f

Minimum and maximum absolute value of the matrix of technology coefficients.
Minimum and maximum absolute value of the objective function coefficients.
Minimum and maximum absolute value of the upper and lower bound values.
Minimum and maximum absolute value of the RHS values.

Simplex method iteration information.

An optimal solution was found.

This method retrieves a list of all variables in the model object f

The print function displays the decision variable names and solution value

The print function displays the objective function value of the model object f

Optimal Production Plan





Furniture Problem (abstracted): solved with Gurobi .. 1

Parametrized furniture LP 

problem formulation 



Furniture Problem: Parametrized solved with Gurobi .. 2

The multidict function returns a list which maps 

each resource (key) to its capacity value.

This multidict function returns a list which maps 

each product (key) to its price value.

This dictionary has a 2-tuple as a key, mapping the 

resource required by a product with its quantity per.



Furniture Problem: Parametrized solved with Gurobi .. 3

The Model() constructor creates a model 

object f . 

This method adds decision variables to the 

model object f, and returns a Gurobi 

tupledict object (make) that contains the 

variables recently created.

The first argument (products) provides the 

indices that will be used as keys to access 

the variables in the returned tupledict. The 

last argument gives the name ‘make’ to the  

decision variables. The decision variables 

are of type continuous and non-negative, 

with no upper bound.



Furniture Problem: Parametrized solved with Gurobi .. 4

This method adds constraints to the model object f.



Furniture Problem: Parametrized solved with Gurobi .. 5

This method adds the objective function to the model object f. 

The first argument is a linear expression which is generated 

by the (prod) method. The (prod) method is the product of the 

object (revenue) with the object (make) for each product p in 

the set (products). The second argument defines the sense of 

the optimization.  



Furniture Problem: Parametrized solved with Gurobi .. 6



Furniture Problem: Parametrized solved with Gurobi .. 7

This method runs the optimization engine 

to solve the LP problem in the model 

object f

Optimal Production Plan



Final Remarks

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

≥ 0

Polyhedron

45
(0,0)

20

30 (Labor)

80

Pivoting

(Revenue)=2200

Pivoting

• The simplex method iterates from one basic feasible solution to another, 

always trying to improve the value of the solution, until not further 

improvements can be done. 

• The geometric interpretation of a basic feasible solution is that it is a 

solution to a set of equations that defines a corner point (vertex) of the 

polyhedron that determines the feasible region of an LP problem.



Sensitivity analysis of LP problems
Gurobi Python API



Economic interpretation in Linear Programming models

• Solving LP problems provides more information than only the values of the decision 

variables and the value of the objective function. 

• Associated with an LP optimal solution there are shadow prices 

(a.k.a. dual variables, or marginal values) for the constraints.

• The shadow price of a constraint associated with the optimal solution, represents 

the change in the value of the objective function per unit of increase in the right-

hand side value of that constraint.

• There are shadow prices associated with the non-negativity constraints. These 

shadow prices are called the reduced costs.

Furniture Problem: economic interpretation



• For example, suppose the labor capacity is increased from 450 hours to 451 hours. 

What is the increase in the objective function value from such increase?

• Since the constraints on mahogany capacity (2.0) and labor capacity (3.0) define the 

optimal solution, we can solve the following system of equations 

Furniture Problem: economic interpretation .. 2

5𝑥1+20𝑥2 = 400

10𝑥1 + 15𝑥2 = 451

Mahogany capacity

Labor capacity

• The new values of the decision variables are: chairs (x1) = 24.16, tables (x2) = 13.96

• The new value of the objective function (revenue) is = $2,204

• The shadow price associated with the labor capacity is $2,204 - $2,200 = $4. That 

is, we can get $4 of increased revenue per hour of increase in labor capacity.

• Remark: The shadow price value of $4 remains constant over a range of value 

changes of the mahogany capacity. The calculation of this range is beyond the 

scope of this course.



• Similarly, we can compute the shadow price of the mahogany constraint by solving 

the following system of equations

Furniture Problem: economic interpretation .. 3

5𝑥1+20𝑥2 = 401

10𝑥1 + 15𝑥2 = 450

Mahogany capacity

Labor capacity

• The new values of the decision variables are: chairs (x1) = 14.08, tables (x2) = 23.88

• The new value of the objective function (revenue) is = $2,201

• The shadow price associated with the mahogany capacity is $2,201 - $2,200 = $1. 

That is, we can get $1 of increased revenue per unit of increase in mahogany 

capacity.

• Remark: The shadow price value of $1 remains constant over a range of value 

changes of the labor capacity. 



The LP problem in a canonical form with respect to the optimal basic variables (x1, x2) is 

Furniture Problem: simplex method revisited

• Remarks: Recall that h1 and h2 are the slack variables associated with the mahogany capacity 

constraint and labor capacity constraint, respectively. 

• The interpretation of the slack variables is the amount of resource capacity not consumed by 

the production of chairs and tables.

• The optimal solution is

• Revenue = $2,200, chairs (x1) = 24, tables (x2)= 14

• Slack variable (h1) of mahogany constraint = 0, and 

• Slack variable (h2) of labor constraint = 0

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

𝑀𝑎𝑥 𝑧 = 2200 + 0𝑥1 + 0𝑥2 − 1ℎ1 − 4ℎ2

2.0 𝑥2 = 14 − ൗ2 25 ℎ1 + ൗ4 25 ℎ2

3.0 𝑥1 = 24 + Τ3 25 ℎ1 − Τ4 25 ℎ2

• Remarks: notice that if we increase the value of h1 (unused capacity of mahogany) by one the 

total revenue will be reduced by $1. If we increase the value of h2 (unused capacity of labor) by 

one the total revenue will be reduced by $4.

• Our previous analysis show us that the shadow price of mahogany is $1 and the one of labor is 

$4 !!!!

• Conclusion: The simplex method automatically give us the shadow prices of the resources.



Furniture Problem: solved with Gurobi

This method adds constraints to the model object f. We store the constraints generated in 

an object called (res).

For each resource constraint in the dictionary (res), check if its associated shadow price is 

greater than zero. Then print the resource constraint name and the resource constraint shadow 

price.

Recall that the object 

(res) stores all the 

information related to the 

constraints of the model f.



Furniture Problem: economic interpretation .. 4

• Is it profitable to make a third product, like desks?

• Assume that the price of the desk is $110, 

• and the desk consumes 15 units of mahogany and 25 units of labor

• The previous python code has parametrized the Furniture LP model, i.e. the model 

formulation does not depend on the data of  the problem. Therefore, we just generate a 

new set of data that includes the new product information



Furniture Problem: economic interpretation .. 5

• The new LP model is 



Furniture Problem: economic interpretation .. 6

It is not profitable to produce 

desks. The optimal solution 

remains the same.

The shadow prices of the 

resources remain the same.



Furniture Problem: economic interpretation .. 7 

• Notice that we can use the shadow price information of the resources to check if it is worth it to 

make desks.

• The shadow price of the mahogany capacity constraint is $1

• The shadow price of the labor capacity constraint is $4

• Let’s compute the opportunity cost of making one desk and compare it with the price of a 

desk. If this opportunity cost is greater than the price, then it is not worth it to make desks. 

• The opportunity cost can be computed by multiplying the units of mahogany capacity that 

one desk built consumes by the shadow price of mahogany capacity, and multiplying the 

hours of labor capacity that one desk built consumes by the shadow price of labor capacity:

• That is, ($1)*15 (units of mahogany) + ($4)*25 (hours of labor) = $115 > $110

• Therefore, investing resources to produce desks, otherwise used to produce chairs and tables,  

is not profitable.



Multiple optimal solutions
Gurobi Python API



Furniture Problem

• The data scientist in charge of 

production planning for the 

furniture factory uses machine 

learning to predict that the 

market price of a chair is now 

$50 and the market price of a 

table is $75.

• The equation of the objective 

function under these new 

business conditions is: 

revenue = 50x1 + 75x2. 

New business conditions



Furniture Problem

• In this case, the production 

plan P1 of building 24 chairs 

and 14 tables and the plan P2

of building 45 chairs and  0 

tables are both optimal.

• The production plan P1 is 

defined by the mahogany and 

labor constraints. The 

associated optimal basic 

feasible solution is x1=24, 

x2=14, h1=0, h2=0.

• The production plan P2 is 

defined by the labor and a 

non-negativity constraint (x2 = 

0), i.e. no tables

are built. The associated 

optimal basic feasible solution 

is x1=45, x2=0, h1=175, h2=0.

New business conditions

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 50𝑥1 + 75𝑥2

2.0 5𝑥1 + 20𝑥2 + ℎ1 = 400

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

3.0 10𝑥1 + 15𝑥2 + ℎ2 = 450

Units of mahogany capacity

Labor hours capacity

Non-negativity

Furniture problem standard form

≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30 (Labor)

80

(Revenue= 50X1 + 75 X2)

(x1=24,
x2=14)

P1

(x1=45, 
x2=0)

P2



Price

price

Modified Furniture Problem: solved with Gurobi … 1

Parametrized furniture LP 

problem formulation 

New data, same model formulation



Modified Furniture Problem: solved with Gurobi … 2

Gurobi found one of the optimal solutions ... P2

Notice that the shadow price of the resource mahogany 

for this alternative optimal solution is zero, 

… the marginal value of mahogany for this optimal 

solution is zero. 

Reduced cost of the non basic variable (tables) is zero. 

This means that if we produce more tables (and produce 

less chairs) the revenue generated remains the same.



New (original) LP problem

𝑀𝑎𝑥 𝑧 = 50𝑥1 + 75𝑥2
𝑠. 𝑡. 5𝑥1 + 20𝑥2 ≤ 400
10𝑥1 + 15𝑥2 ≤ 450

𝑥1, 𝑥2 ≥ 0

The LP problem in a standard form is

𝑀𝑎𝑥 𝑧 = 50𝑥1 + 75𝑥2 + 0ℎ1 + 0ℎ2

𝑠. 𝑡. 5𝑥1 + 20𝑥2 + ℎ1 = 400
10𝑥1 + 15𝑥2 + ℎ2 = 450
𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

LP problem in canonical form with respect to the 

optimal basic variables  (x1, h1) found by Gurobi:

𝑀𝑎𝑥 𝑧 = 2,250 + (0𝑥1 + 0ℎ1) + (0𝑥2 − 5ℎ2)

ℎ1 = 175 − ൗ25
2 𝑥2 + ൗ1 2 ℎ2 (2.0)

𝑥1 = 45 − ൗ3 2 𝑥2 − ൗ1 10 ℎ2 (3.0)

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

Non basic variables

The reduced cost of non basic variable x2 is zero, 

hence if we increase its value, the optimal objective 

function value does not change. Let’s decide which 

basic variable should become non basic (value of 

zero) by computing the minimum ratio test:

𝑚𝑖𝑛 Τ175 Τ25 2 = 14 , Τ45 Τ3 2 = 30 = 14; 

therefore h1 will become non basic variable. Hence, 

we pivot on constraint (2.0) and the column of 

variable x2.

Furniture Problem: simplex method revisited .. 1



Furniture Problem: simplex method revisited .. 2

LP problem in canonical form with respect to the basic variables (x1, x2):

𝑀𝑎𝑥 𝑧 = 2,250 + 0ℎ1 − 5ℎ2

𝑥2 = 14 − ൗ2 25 ℎ1 + ൗ1 25 ℎ2 (2.0)

𝑥1 = 24 − ൗ3 25 ℎ1 − ൗ4 25 ℎ2 (3.0)

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

Modeling Opportunity

From the mathematical model point of view, we have two alternative optimal solutions S1= (x1 =24, x2 =14, h1=0, 

h2= 0) and S2 = (x1 =45, x2 =0, h1= 175, h2 = 0), both with a maximum total revenue of $2,250.

The data scientist points out that from the business perspective, the “optimal” solution S1 is preferred to the 

“optimal” solution S2, because the latter solution wastes 175 units of mahogany. 

The data scientist decides to modify the LP model by now interpreting the slack variables as the amount of 

wasted resources, and defines the new decision variables: 

x3 is the amount of unused mahogany and x4 is the amount of unused labor.  

The data scientists uses machine learning to predict that the per unit inventory carrying cost of mahogany is $1 , 

and the unused per hour labor cost is $2. Then, the new LP model formulation is: 



Furniture Problem: simplex method revisited .. 2

Modeling Opportunity

From the mathematical model point of view, we have two alternative optimal solutions S1= (x1 =24, x2 =14, x3 = x4 = 0) and S2 = (x1 =45, x2 =0, x3 = 175, x4 = 0), both with a maximum total 

revenue of $2,250.

The data scientist notice that from the business perspective, the “optimal” solution S1 is preferred to “optimal” solution S2, because with the latter solution is wasting 175  units of mahogany. 

The data scientist decides to modify the LP model by now interpreting the slack variables as the amount of wasted resources, and defines the new decision variables: 

x3 is the amount of unused mahogany and x4 is the amount of unused labor.  

The data scientists using machine learning estimates that the per unit inventory carrying cost of mahogany is $1 , and the unused per hour labor cost is $2. Then, the new LP model formulation is: 

𝑀𝑎𝑥 𝑧 = 50𝑥1 + 75𝑥2 − 1𝑥3 − 2𝑥4

𝑠. 𝑡. 5𝑥1 + 20𝑥2 + 𝑥3 = 400
10𝑥1 + 15𝑥2 + 𝑥4 = 450
𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0



New Furniture Problem: solved with Gurobi … 1

Price

Price

price



New Furniture Problem: solved with Gurobi … 2

We add a cost parameter to the resources 

multidict to penalize the waste of resources.



price

New Furniture Problem: solved with Gurobi … 3

We add a new type of decision variable to 

measure the unused resource capacity.



New Furniture Problem: solved with Gurobi … 4

The optimal solution is now making 14 tables and 24 chairs with a 

total objective function value of $2,250.

Notice that the solution of  making 0 tables and 45 chairs is no longer 

optimal since the objective function value is

($50*45 = $2,250) – ($1*175 = $175) = $2,075.

That is, the alternative solution (chairs = 45, tables =0) is no longer 

optimal.



Unbounded LP problem
Gurobi Python API



Furniture Problem

• The operations manager of the 

furniture factory tells the data 

scientist that she is negotiating 

with the supplier of mahogany 

to obtain an unlimited amount 

of mahogany as long as the 

factory procures at least 400 

units of mahogany per week.

• In addition, the operations 

manager is negotiating with 

the union to obtain extra 

workforce as long as the 

factory hires at least 450 hours 

of labor per week.

New business conditions



Furniture Problem

• Notice that the polyhedron 

defined by the feasible region 

is unbounded.

• Clearly, the maximum of the 

objective function is 

unbounded, since the revenue 

that we can make can be 

arbitrarily large by increasing 

the number of chairs (x1) 

and/or the number of tables 

(x2) as much as we want. 

Recall, that we had assumed 

that we sell everything that we 

produce.

• Conclusion: With unlimited 

mahogany and labor, revenue 

is unlimited.

New business conditions

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 ≥ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≥ 450

Mahogany constraint

Labor constraint

The new LP problem formulations is:

𝑥2
Tables

𝑥1
Chairs

Revenue

Feasible Region

Constraint (2.0)

Mahogany

Constraint (3.0)

Labor



Unbounded Furniture Problem: solved with Gurobi .. 1

The Gurobi solver could not find an optimal solution and declares the 

problem either infeasible or unbounded.



Unbounded Furniture Problem: solved with Gurobi .. 2

Since an optimal solution does not exist, the objective function 

value and the value of the decision variables is void. In this case, 

we get an error when trying to print these values.

To avoid the error, we need to check the status of the LP model, 

and only print the solution values if an optimal solution was found.



Unbounded Furniture Problem: solved with Gurobi .. 3

We changed the sense of the optimization to 

check if the model has a feasible solution.

The Gurobi solver now finds a minimum optimal solution. Hence, 

the LP problem is feasible and for the revenue maximization 

problem, it is unbounded. 



• The data scientist recognized 

that it is unrealistic to assume 

that an infinite amount of 

chairs and tables can be sold.

• The data scientist using 

predictive analytics techniques 

has determined that at most 

200 chairs and 150 tables can 

be sold.

New business conditions



New furniture problem New business conditions
𝑥2

Tables

𝑥1
Chairs

Feasible Region

Constraint (2.0)

Mahogany

Constraint (3.0)

Labor

Revenue equation:
Revenue = 45x1 + 80x2

Mahogany constraint

Labor constraint

2.0 5𝑥1 + 20𝑥2 ≥ 400

3.0 10𝑥1 + 15𝑥2 ≥ 450

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

0 ≤ 𝑥1 ≤ 200 0 ≤ 𝑥2 ≤ 150

200

150



Unbounded Furniture Problem: solved with Gurobi ..4

Adding the upper bounds to the multidict for products



Unbounded Furniture Problem: solved with Gurobi .. 5

Adding the upper bounds to the multidict for 

products



Unbounded Furniture Problem: solved with Gurobi .. 6



Unbounded Furniture Problem: solved with Gurobi .. 7

As expected, Gurobi solver now finds 

an optimal solution.

The optimal number of chairs to make 

is equal to the chairs upper bound and 

the optimal number of tables to make is 

equal to the tables upper bound.

The optimal objective function value is 

a total revenue of  $21,000



Infeasible LP problem
Gurobi Python API



Minimum Optimal Solution

• The data scientist receives a 

memo from the CEO of the 

furniture company saying that 

the new board of directors of 

the company requires a total 

revenue of at least $4,500 per 

week.

New business conditions



Furniture Problem

• Evidently, there are no points 

that satisfy all the constraints 

simultaneously. Hence this LP 

problem is infeasible. 

1.0 𝑀𝑎𝑥 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2
2.0 5𝑥1 + 20𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≤ 450

4.0 45𝑥1 + 80𝑥2 ≥ 4500

New business conditions

The new LP problem formulations is:

≥ 0

𝑥2
Tables

𝑥1
Chairs

(0,0)

Constraint (2.0)

Mahogany

Constraint (3.0)

Labor

Profit equation:

Profit = 45x1 + 80x2

Constraint (4.0)

Board of directors

Feasible Region

Mahogany constraint

Labor constraint

Board of directors constraint

(4.0) Board of directors constraint



Infeasible Furniture Problem: using with Gurobi .. 1

Defining a new parameter to capture the minimum revenue value that the board of directors may impose.

Adding a new constraint to the f model to ensure that the minimum revenue impose by the Board is satisfied.



Infeasible Furniture Problem: solved with Gurobi .. 2



Infeasible Furniture Problem: solved with Gurobi .. 3

We check the status of the f model to 

see if Gurobi found an optimal solution. 

If true, then we print the optimal solution 

and the associated objective function 

value.



Infeasible Furniture Problem: solved with Gurobi .. 3

We set an objective with zero 

value. Then run the Gurobi solver 

to find any feasible solution.

We check the status of the f 

model to see if it is infeasible. If 

true, then we print that we have 

proven that the model is 

infeasible.



Infeasible Furniture Problem

• There is a Board of Director 

meeting and the data scientist 

cannot tell the Board that their 

requirement of having a total 

revenue of at least $4,500 per 

week is Infeasible !!! 

• The data scientist knows that the 

cause of infeasibility is the 

limited capacity available of 

resources that does not allow 

the production of chairs and 

tables to reach the minimum 

level of total revenue.

• The data scientist calls the 

supplier of mahogany and talks 

with the labor union and they 

agree to increase the supply at a 

cost. An extra unit of mahogany 

will cost $20 and one hour of 

overtime of labor will cost $30.

Addressing infeasibility 



Furniture Problem: addressing infeasibility .. 2



Furniture Problem: addressing infeasibility .. 2

We include in the resources multidict the extra cost 

of adding resource capacity.

Create a new decision variable to measure the extra 

resource capacity to meet the Board constraint.

We subtract the cost of the extra capacity to meet the Board constraint .

We add a decision variable (extra) to the RHS of each resource constraint to add the extra capacity to satisfy the Board constraint.



Furniture Problem: addressing infeasibility .. 3



Furniture Problem: addressing infeasibility .. 3

Gurobi solver found an optimal solution.



Furniture Problem: addressing infeasibility

The company will lose 

$14,000 per week !!!

The Board request was 

proven not to be a good idea.

To meet the Board request 

requires 100 extra units of 

mahogany and 550 extra 

units of overtime. 

The optimal production plan 

is to produce only 100 chairs.



Final Remarks about model status

• It is a good modeling practice that the LP problem is well characterized.

• This means that when the data of the LP problem satisfy the specified modeling 
assumptions, the LP problem has an optimal solution.

• That is, the LP problem is never infeasible, unbounded, and there are no alternate 
optimal solutions.

• To avoid infeasibility add “artificial” variables to the constraints that may be 
infeasible. These artificial variables will have a “high” penalty in the objective 
function in such a way that they become positive only to make the problem feasible. 
Ideally, these artificial variables have a business meaning that the user of the 
decision support application can properly interpret. 

• To avoid that the LP problem is unbounded, define realistic upper bounds for all the 
decision variables of the LP problem.

• If the LP problem has alternate optimal solutions, if possible add another objective 
functions that eliminates the alternate optimal solutions.



Linear Programming Overview
Further considerations:

• Maximize or minimize objective function

• Unconstrained decision variables

• Initial basic solution

• Presolve

• Matrix sparsity



What if we need to minimize an objective function?

We have assumed that we are maximizing an LP problem. Notice that the rules 

for a non-basic variables to become basic variables can be changed to address 

the minimization problem. 

Alternatively, since 𝑴𝒊𝒏 σ𝒋=𝟏
𝒏 𝒃𝒋𝒙𝒋 = −𝑴𝒂𝒙 − σ𝒋=𝟏

𝒏 𝒃𝒋𝒙𝒋 , then we solve 

𝑴𝒂𝒙 σ𝒋=𝟏
𝒏 (−𝒃𝒋)𝒙𝒋 .

Example: Min {1, 2} = -Max {-1, -2} = 1



What if a decision variable can be positive or negative?

If the decision variable is unconstrained in sign, the Gurobi 

Optimizer will take care of this automatically.

An example of a decision variable that is unconstrained is profit. 

Negative profit is interpreted as a loss.



How to determine an initial basic feasible solution?

• This technique entails adding non-negative artificial variables to the equations 

(=) and greater-or-equal (≥) inequalities.

• Then replace the original objective function by a new objective, minimize the 

summation of the artificial variables.

• If the minimum value of the summation of artificial variables is positive, the LP 

problem is infeasible.

• If the minimum value of the summation of artificial variables is zero, then the 

basic feasible variables of the optimal solution are an initial basic feasible 

solution of the original LP model (*).

•Gurobi behind the scenes may use a technique called Phase 1 of Linear 

Programming: 

(*) There are some subtleties about this statement beyond the scope of this class.



How to determine an initial basic feasible solution? .. 2

• Consider the following LP problem with the Furniture factory board request.

• An instance of the parametrized formulation is

𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 − 20𝑥3 − 30𝑥4
5𝑥1 + 20𝑥2 − 𝑥3 ≤ 400

𝑥1, 𝑥2,, 𝑥3. 𝑥4 ≥ 0

10𝑥1 + 15𝑥2 − 𝑥4 ≤ 450

45𝑥1 + 80𝑥2 ≥ 4500



How to determine an initial basic feasible solution? .. 2

• Original LP problem. 𝑀𝑎𝑥 𝑧 = 45𝑥1 + 80𝑥2 − 20𝑥3 − 30𝑥4
5𝑥1 + 20𝑥2 − 𝑥3 ≤ 400

𝑥1, 𝑥2,, 𝑥3. 𝑥4 ≥ 0

10𝑥1 + 15𝑥2 − 𝑥4 ≤ 450

45𝑥1 + 80𝑥2 ≥ 4500

• We add an artificial variable alpha to the ≥ constraint. At Phase 1 of linear programming, 

we minimize the value of alpha, i.e. alpha should be equal to zero and non-basic 

variable, to identify an initial basic feasible solution. 

Original LP Problem

5𝑥1 + 20𝑥2 − 𝑥3 ≤ 400

𝑥1, 𝑥2, 𝑥3. 𝑥4, 𝛼 ≥ 0

10𝑥1 + 15𝑥2 − 𝑥4 ≤ 450

45𝑥1 + 80𝑥2 + 𝛼 ≥ 4500

𝑀𝑖𝑛 𝑤 = 𝛼

LP Problem Standard Form

5𝑥1 + 20𝑥2 − 𝑥3 + ℎ1 = 400

𝑥1, 𝑥2, 𝑥3. 𝑥4, 𝛼, ℎ1, ℎ2, 𝑠1 ≥ 0

10𝑥1 + 15𝑥2 − 𝑥4 + ℎ2 = 450

45𝑥1 + 80𝑥2 + 𝛼 − 𝑠1 = 4500

𝑀𝑎𝑥 𝑤 = −𝛼

LP Problem Canonical Form

ℎ1 = 400 − 5𝑥1 − 20𝑥2 + 𝑥3

𝑥1, 𝑥2, 𝑥3. 𝑥4, 𝛼, ℎ1, ℎ2, 𝑠1 ≥ 0

ℎ2 = 450 − 10𝑥1 − 15𝑥2 + 𝑥4

𝛼 = 4500 − 45𝑥1 − 80𝑥2 + 𝑠1

𝑀𝑎𝑥 𝑤 = −4500 + 45𝑥1 + 80𝑥2 − 𝑠1



How to determine an initial basic feasible solution? .. 3

We apply the simplex method to the Phase 1 LP problem in canonical form with respect to the basis 
(ℎ1, ℎ2, 𝛼). The following table shows the basic feasible solution at each iteration of the simplex 

method, the non basic variable entering the basis and the basic variable leaving the basis.

Iteration Basic feasible solution Phase 1
Non basic variable 

entering the basis

Basic variable leaving 

the basis

This solution is optimal.

Notice that 𝛼 is non basic and = 0. This solution is an initial basic feasible solution of the original LP problem. 

Iteration 4 continues with Phase 2 of the simplex method, where we find the optimal feasible basic solution.

𝑥1 = 100 , 𝑥3 = 100 , 𝑥4 = 5505

1 ℎ1 = 400 , ℎ2 = 450 , 𝛼 = 4500 𝑥2 ℎ1

𝑥2 = 20 , ℎ2 = 150 , 𝛼 = 29002 𝑥3 ℎ2

𝑥2 = 30 , 𝑥3 = 200 , 𝛼 = 21003 𝑥4 𝛼

𝑥2 = 56.25, 𝑥3 = 725 , 𝑥4 = 393.754 𝑥1 𝑥2



Optimal solution found using Gurobi

Gurobi corroborates the optimal solution found manually 

using the two phases simplex method approach
x1 = 100 

x3 = 100 
x4 = 550 



How to determine an initial basic feasible solution? .. 4

Remarks

• Gurobi user does not need to provide an initial basic feasible 

solution, or solve the phase 1 minimization of the sum of 

artificial variables problem to generate an initial basic solution.

• Gurobi only needs the original LP formulation. It automatically 

finds an initial feasible basic solution to start the simplex 

method.



Presolve



Presolve

• LP problems can use a large amount of computer time, consequently it is advisable to have LP 

models that can be solved as quickly as possible.

• The Presolve engine of Gurobi can dramatically reduce the size of an LP problem. The 

reduced problem can then be solved faster than the original one. The solution of the reduced 

problem is then used to generate a solution of the original problem.

• To briefly illustrate the core ideas behind a Presolve approach consider the following example.

• Max 2x1 + 3x2 –x3 –x4 … (0)

• Subject to:   x1 + x2 + x3 -2x4 ≤ 4 … (1)

• -x1 –x2 + x3 – x4  ≤ 1 … (2)

• x1               +  x4  ≤ 1 … (3)

• x1, x2,  x3,  x4  ≥ 0 … (4)

• Notice that x3 has a negative objective coefficient. We 

have a maximization problem, then we want to make x3 

as small as possible.

• Observe that x3 has positive coefficient in constraints (1) 

and (2), 

• and these constraints are of the ‘≤’, then we want to 

make x3 as small as possible. 

• Therefore, x3 can be reduced to its lower bound of zero

and eliminated as a redundant variable.



Presolve ..2

• Max 2x1 + 3x2  –x4 … (0)
• Subject to:   x1 + x2  -2x4 ≤ 4 … (1)
• -x1 –x2  – x4  ≤ 1 … (2)
• x1               +  x4  ≤ 1 … (3)
• x1, x2,  x3,  x4  ≥ 0 … (4)

• After removing x3, let’s analyze constraint (2) –x1 –x2 –x4 ≤ 1. Notice that all coefficients of the  

variables in this constraint are negative. For any positive value of variables x1, x2, and x3 

constraint (2) is satisfied, consequently this constrained is redundant and can be eliminated. 

The reduced problem is then:

• Max 2x1 + 3x2  –x4         … (0)
• Subject to:   x1 + x2 - 2x4 ≤ 4 … (1)
• x1       +  x4  ≤ 1 … (3)
• x1, x2, x4  ≥ 0 and x3=0 … (4)



Example of the power of Gurobi Presolve

Gurobi Case Study:

• Project Portfolio Optimization is an extremely difficult problem to solve. There are an 

astronomical number of combinations to select and schedule projects optimally within 

the scarce and limited resources available.

• Problem statement: how to optimize the selection and scheduling of a portfolio of IT 

projects such that the trade-offs among various objectives are optimized, while 

satisfying resource constraints (e.g. labor availability and budgets) and other business 

constraints (e.g. project precedence constraints).

• Solution approach:

• A decision support tool, called Project Portfolio Optimization (PPO), was built to 

automate the number crunching processes during the creation and maintenance of a 

portfolio of IT projects. 

• Gurobi solver was used to solve this complex MIP problem.



Example of the power of Gurobi Presolve .. 3

PPO modelSize
PPO model 

after Presolve
Reduction %

9307Total # of variables

Total # of constraints 6461

Gurobi solving time 8.53 s

156.1 sGurobi solving time no presolve

3170

337

66 %

94 %

–

–

–

–



𝑀𝑎𝑥 
𝑗=1

𝑛

𝑏𝑗𝑥𝑗
Objective
Function

Constraints σ𝑗=1
𝑛 𝑎𝑖,𝑗𝑥𝑗 ≤ 𝐾𝑖 (𝑖 = 1 . .𝑚)

𝑥𝑗 ≥ 0 (𝑗 = 1. . 𝑛) Set of indices 

for Variables

Objective function 

coefficients

Decision

Variables

Set of indices 

for Constraints

Technology 

coefficients

RHS: right

hand side

Matrix sparsity of LP problems

• An important feature of practical LP and MIP models is that their matrix of technology 

coefficients is sparse. 

• This means that a small number of coefficients in the matrix of technology coefficients is 

non-zero. 

• Presolve takes advantage of the sparsity of the matrix of technology coefficients to 

significantly reduce the size of the problem.

• The sparsity of the matrix of technology coefficients is effectively exploited in a very 

efficient computer implementation of the simplex method called the revised simplex 

method.



Duality in Linear Programming



Linear Programming Duality

In the section of sensitivity analysis of Linear Programming, we asked the following question:

• For the furniture problem, is it profitable to make a third product, like desks?

• Assume that the price of the desk is $110, 

• and the desk consumes 15 units of mahogany and 25 units of labor.

• Shadow prices determine the marginal worth of an additional unit of a resource:

• The shadow price of the mahogany capacity constraint is $1.

• The shadow price of the labor capacity constraint is $4.

• Let’s compute the opportunity cost of making one desk and compare it with the price of a desk. If 

this opportunity cost is greater than the desk price, then it is not worth it to make desks. 

• The opportunity cost can be computed by multiplying the units of mahogany capacity that one 

desk built consumes by the shadow price of mahogany capacity, and multiplying the units of 

labor  capacity that one desk built consumes by the shadow price of labor capacity:

• That is, ($1)*15 (units of mahogany) + ($4)*25 (hours of labor) = $115 > $110.

• Therefore, investing resources to produce desks, otherwise used to produce chairs and tables,  

is not profitable. 



Duality in Linear Programming is an

unifying theory that established the

relation between an LP problem –

called Primal Problem, and another

related LP problem –called Dual

Problem, where its decision variables

(dual variables) are the shadow

prices of the resource constraints.

Linear Programming Duality .. 2



Furniture Problem: Primal and Dual problems

The primal and dual of the Furniture problem are:

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≤ 450 Labor

Chairs Tables

Mahogany

Primal

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 ≥ 45

𝑤1, 𝑤2 ≥ 0

6.0 20𝑤1 + 15𝑤2 ≥ 80

Labor

Chairs

Tables

Mahogany

Dual

• In this dual problem, the decision variable w1 represents the opportunity cost of the mahogany resource, and 

w2 is the opportunity cost of the labor resource. These decision variables are the shadow prices of mahogany 

and labor capacity.

• Notice the switch between the objective function coefficients and the right hand sides of the primal and dual 

problems. 

• Also, notice that the rows of the primal problem are the columns of the dual problem. This means that 

inequalities (5.0) and (6.0) ensures that the opportunity costs of consumption of resources per unit of production 

of chairs and tables, respectively, should be at least the value of their price. The objective is to minimize the 

resource opportunity costs.



Constraint (6.0)

Tables

Constraint (5.0)

Chairs

𝑤2

Labor

4

(4.0)

Objective Function

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 ≥ 45

𝑤1, 𝑤2 ≥ 0

6.0 20𝑤1 + 15𝑤2 ≥ 80

Labor

Chairs

Tables

Mahogany

Dual

𝑤1

Mahogany
(0,0)

41

Furniture Dual Problem: Graphical solution



($1, $4)

Constraint (6.0)

Tables

Constraint (5.0)

Chairs

𝑤2

Labor

4

Objective Function = $2200

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 ≥ 45

𝑤1, 𝑤2 ≥ 0

6.0 20𝑤1 + 15𝑤2 ≥ 80

Labor

Chairs

Tables

Mahogany

Dual

𝑤1
Mahogany

(0,0)
41

Furniture Dual Problem: Graphical solution



Furniture Dual Problem: Parametrized



Furniture Dual Problem: Solved with Gurobi ..1

The data of the Furniture Dual problem is identical to the original Furniture problem –called Primal Problem.



Furniture Dual Problem: Solved with Gurobi ..2

The right hand side of the constraints are the price of each product. The left hand side is the opportunity cost 

of consuming each resource when making the products. The sense of the inequalities is greater than equal 

to have an evaluation of the resource at least equal to the price.   

GRB.MINIMZE is the default 

Coefficients in the objective function are the resource capacities



Furniture Dual Problem: Solved with Gurobi ..3



Furniture Dual Problem: Solved with Gurobi ..4

Gurobi solver finds the optimal solution 

of the Furniture dual problem

The optimal value of the shadow price for mahogany is $1.00

The optimal value of the shadow price for labor is $4.00

The optimal objective function value is $2,200

$1.00
$4.00
$2,200



Furniture Dual Problem: Solved with Gurobi .. 5

• The “shadow prices” of the products’ constraints are 14 tables and 24 chairs. These are the 

optimal (make) values of the Furniture primal problem. Notice that in both problems, primal and 

dual, the optimal objective function value is $2,200. This is not a coincidence!!!



Duality in Linear Programming

Remarks: 

• In general, it can be shown that the dual of a dual problem is the primal problem, and that when 

either problem has an optimal solution, the other problem also has an optimal solution, and the 

optimal objective function value of both problems is the same.

• Another important feature of duality in linear programming is that the optimal solution of the dual 

problem is contained in the information provided by the simplex method while solving and 

finding an optimal solution to the primal problem.

• Duality in linear programming provides a good characterization of optimality conditions that can 

be exploited computationally to solve LP problems efficiently.



Dual (minimize)Primal (maximize)

i’th variable ≥ 0 i’th constraint ≤

i’th constraint ≥ i’th variable  ≤ 0 

j’th constraint ≥ j’th variable ≥ 0

Relationship between primal and dual problems

i’th constraint = i’th variable  unrestricted

j’th variable ≤ 0 j’th constraint ≤

j’th variable unrestricted j’th constraint =

1)

2)

3)

4)

5)

6)

Remark:

Notice that the relationship between the Furniture primal and dual problems  is captured by rows 1) and 4)

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≤ 450 Labor

Chairs Tables

Mahogany

Primal

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 ≥ 45

𝑤1, 𝑤2 ≥ 0

6.0 20𝑤1 + 15𝑤2 ≥ 80

Labor

Chairs

Tables

Mahogany

Dual



Optimality conditions
Linear Programming



Optimality conditions in linear programming .. 1

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≤ 450 Labor

Chairs Tables

Mahogany

Primal

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 ≥ 45

𝑤1, 𝑤2 ≥ 0

6.0 20𝑤1 + 15𝑤2 ≥ 80

Labor

Chairs

Tables

Mahogany

Dual

Consider the Furniture primal and dual problems:

Furniture primal and dual problems in standard form

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 + ℎ1 = 400

𝑥1, 𝑥2, ℎ1,ℎ2 ≥ 0

3.0 10𝑥1 + 15𝑥2 + ℎ2 = 450 Labor

Chairs Tables

Mahogany

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400𝑤1 + 450𝑤2

5.0 5𝑤1 + 10𝑤2 − 𝑠1 = 45

𝑤1, 𝑤2𝑠1, 𝑠2 ≥ 0

6.0 20𝑤1 + 15𝑤2 − 𝑠2 = 80

Labor

Chairs

Tables

Mahogany

ℎ1 is the slack variable of the mahogany constraint

ℎ2 is the slack variable of the labor constraint

𝑠1 is the surplus variable of the chairs constraint

𝑠2 is the surplus variable of the tables constraint



Optimality conditions in linear programming .. 2

Consider the optimal solution of both problems, primal and dual

Primal optimal solution:
x1 = 24, x2 = 14, h1 = 0, h2 = 0

Dual optimal solution:
w1 = 1, w2 = 4, s1 = 0, s2 = 0

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45 𝑥1 = 24 + 80 𝑥2 = 14 = 2200

Labor

Mahogany

2.0 5 𝑥1 = 24 + 20 𝑥2 = 14 + (ℎ1 = 0) = 400

3.0 10 𝑥1 = 24 + 15 𝑥2 = 14 + (ℎ2 = 0) = 450

binding

binding

Chairs

Tables

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400 𝑤1 = 1 + 450 𝑤2 = 4 = 2200

5.0 5 𝑤1 = 1 + 10 𝑤2 = 4 − (𝑠1 = 0) = 45

6.0 20 𝑤1 = 1 + 15 𝑤2 = 4 − (𝑠2 = 0) = 80

𝑥1, 𝑥2, ℎ1,ℎ2 ≥ 0
Chairs Tables

𝑤1, 𝑤2𝑠1, 𝑠2 ≥ 0
LaborMahogany

Remarks 

• Note that the mahogany and labor constraints are binding, i.e. the slack variables (h1 = h2 = 0).

• Note that the shadow price of the mahogany and labor constraints are positive, i.e. (w1 = 1, w2 = 4).

• Note that the chairs and tables constraints are binding, i.e. the surplus variables (s1 = s2 = 0).

• Note that the “shadow price” of the chairs and tables constraints are positive, i.e. (x1 = 24, x2 = 14).



Optimality conditions in linear programming .. 3

In summary

Dual optimal solutionPrimal optimal solution

Chair constraint (is binding) surplus variable s1 = 0 Chair variable x1 = 24

Table variable x2 = 14 Table constraint (is binding) surplus variable s2 = 0

Labor shadow price w2 = 4Labor constraint (is binding) slack variable h2 = 0

Mahogany constraint (is binding) slack variable h1 = 0 Mahogany shadow price w1 = 1

Complementary (a.k.a. orthogonality) conditions in linear programming optimal solutions

• x*s = 0. At optimality, the product of the decision variables in the primal problem and the 

associate surplus (slack) variables in the dual problem is always zero.

• h*w = 0. At optimality, the product of the slack (surplus) variables in the primal problem and the 

associate shadow prices in the dual problem is always zero.



Summary of optimality conditions for linear programming

• A solution (x1=24, x2=14) to the primal problem and a solution (w1=1, w2=4) of the dual 

problem are optimal, if and only if:

• Primal feasibility: we have found a solution of the primal problem that satisfy all its 

constraints.

• The production plan satisfies the mahogany and labor constraints.

Labor capacity

Mahogany capacity2.0 5 𝑥1 = 24 + 20 𝑥2 = 14 = 400

3.0 10 𝑥1 = 24 + 15 𝑥2 = 14 = 450

• Dual feasibility: we have found a solution of the dual problem that satisfy all its constraints.

• The shadow prices associated to the mahogany and labor resources satisfy the price 

constraints for the chairs and the tables.

Chair price

Table price

5.0 5 𝑤1 = 1 + 10 𝑤2 = 4 = 45

6.0 20 𝑤1 = 1 + 15 𝑤2 = 4 = 80



Summary of optimality conditions for linear programming

• Complementary (orthogonality) conditions: 

• The product of the decision variables in the primal problem and the associate surplus 

variables in the dual problem is always zero. (Cost efficient).

• Since we are building 24 chairs, the surplus variable of the constraint of the price of 

chairs is 0. That is, x1*s1=0. This means that the opportunity costs of building chairs is 

equal to the price of the chair:

5.0 5 𝑤1 = 1 + 10 𝑤2 = 4 − (𝑠1 = 0) = 45

• Since we are building 14 tables, the surplus variable of the constraint of the price of 

tables is 0. That is, x2*s2=0. This means that the opportunity costs of building tables is 

equal to the price of the table:

6.0 20 𝑤1 = 1 + 15 𝑤2 = 4 − (𝑠2 = 0) = 80



Summary of optimality conditions for linear programming

• The product of the decision variables in the dual problem and the associate slack  variables 

in the primal problem is always zero. (Resource efficient).

• Since the shadow price (opportunity cost) of mahogany is $1, the slack variable of the 

mahogany constraint is 0. This means we are using the mahogany resource efficiently 

and there is no waste.

(2.0) 5(𝑥1 = 24) + 20(𝑥2 = 14) + (ℎ1 = 0) = 400

• Since the shadow price (opportunity cost) of labor is $4, the slack variable of the labor 

constraint is 0. This means we are using the labor resource efficiently and there is no 

waste.

(3.0) 10(𝑥1 = 24) + 15(𝑥2 = 14) + (ℎ2 = 0) = 450



Summary of optimality conditions for linear programming

• The optimal objective function value of the primal problem = the optimal objective function of 

the dual problem. This mathematical theorem is known as strong duality.

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 45 𝑥1 = 24 + 80 𝑥2 = 14 = 2200

4.0 𝑀𝑖𝑛 𝐶𝑜𝑠𝑡 = 400 𝑤1 = 1 + 450 𝑤2 = 4 = 2200



Dual Simplex method
Variation of  Simplex method



The Dual simplex method

≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30

(Labor)

(Revenue)

The key idea of the dual simplex method is to apply the simplex method to the dual problem, but using 

the canonical form of the primal problem.

Labor

Tables

Mahogany

1.0 𝑀𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒(𝑧) = 45𝑥1 + 80𝑥2

2.0 5𝑥1 + 20𝑥2 ≤ 400

𝑥1, 𝑥2 ≥ 0

3.0 10𝑥1 + 15𝑥2 ≤ 450

Original LP Problem Formulation

Consider the following basic infeasible solution:

x1=0, x2=30, h1=-200, h2=0

1.0 𝑀𝑎𝑥 𝑧 = 2400 − ൗ25
3 𝑥1 − ൗ80

15ℎ2

2.0 ℎ1 = −200 + ൗ25
3 𝑥1 + ൗ4 3 ℎ2

3.0 𝑥2 = 30 − ൗ2 3 𝑥1 − ൗ1 15ℎ2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

LP Problem Formulation in Canonical Form



The Dual simplex method ..2

≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30

(Labor)

(Revenue)

• Recall that the simplex method iterates from one basic feasible solution to another, always trying to 

improve the value of the objective function.

• The simplex method finds an optimal basic feasible solution when all the reduced costs of the non-

basic variables of the primal problem expressed in a canonical form are ≤ 0. (Maximization problem).

• The idea of the dual simplex method is to start with a (dual) basic feasible solution (i.e. all the 

reduced costs of the non-basic variables are ≤ 0). Notice that if all the basic variables are ≥ 0, then 

the current solution is a basic feasible solution for the primal problem in a canonical form that 

satisfies the optimality conditions, consequently this solution is optimal.

1.0 𝑀𝑎𝑥 𝑧 = 2400 − ൗ25
3 𝑥1 − ൗ80

15ℎ2

2.0 ℎ1 = −200 + ൗ25
3 𝑥1 + ൗ4 3 ℎ2

3.0 𝑥2 = 30 − ൗ2 3 𝑥1 − ൗ1 15ℎ2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

LP Problem Formulation in Canonical Form• Dual basic feasible solution: since reduced costs 

of non-basic variables are ≤ 0:  

x1=0, x2=30, h1=-200, h2=0



The Dual simplex method ..3

≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30

(Labor)

(Revenue)

• Suppose that at least there is one basic variable that is negative. Choose the basic variable with the 

most negative value as the variable to leave the basis. In this example, the variable h1 will leave the 

basis.

• If all the coefficients of the non-basic variables in the canonical form equation of the basic variable 

leaving the basis are negative, STOP the LP problem is infeasible.

1.0 𝑀𝑎𝑥 𝑧 = 2400 − ൗ25
3 𝑥1 − ൗ80

15ℎ2

2.0 ℎ1 = −200 + ൗ25
3 𝑥1 + ൗ4 3 ℎ2

3.0 𝑥2 = 30 − ൗ2 3 𝑥1 − ൗ1 15ℎ2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

LP Problem Formulation in Canonical Form



The Dual simplex method ..4

≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30

(Labor)

(Revenue)

• Else, there is at least one non-basic variable with a positive coefficient, consider the minimum ratio test 

of the absolute of the reduce costs and the positive coefficient of non-basic variables in the canonical 

form equation of the basic variable leaving the basis. The non-basic variable with the minimum ratio 

enters the basis. Determine the new (dual) basic feasible solution. Minimum ratio test:

• Min { (25/3)/(25/3)=1, (80/15)/(4/3)=4,}= 25/3)/(25/3)=1.  Hence, the variable x1 enters the basis.

• Determine the new (dual) basic feasible solution by pivoting.

1.0 𝑀𝑎𝑥 𝑧 = 2400 − ൗ25
3 𝑥1 − ൗ80

15ℎ2

2.0 ℎ1 = −200 + ൗ25
3 𝑥1 + ൗ4 3 ℎ2

3.0 𝑥2 = 30 − ൗ2 3 𝑥1 − ൗ1 15ℎ2

𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

LP Problem Formulation in Canonical Form

Pivot
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≥ 0

𝑥2
Tables

𝑥1
Chairs

(Mahogany)

Polyhedron

(0,0)

20

30

(Labor)

(Revenue)

• Pivoting). In equation (2.0), express basic variable x1 in terms of non-basic variables h1 and h2:

2.0 𝑥1 = 24 + ൗ3 25 ℎ1 − ൗ4 25 ℎ2

• In equation (3.0), replace the value of x1: 3.0 𝑥2 = 14 − ൗ2 25 ℎ1 − ൗ1 25 ℎ2 𝑥1, 𝑥2, ℎ1, ℎ2 ≥ 0

• In the objective function (1.0), replace the value of x1: 1.0 𝑀𝑎𝑥 𝑧 = 2200 − 1ℎ1 − 4ℎ2

• Notice that the current solution is both a primal basic feasible solution, since 

all basic  variables are ≥ 0; and a dual basic feasible solution, since all the 

reduced costs associated to the non-basic variables are ≤ 0. 

• As we have seen, this solution satisfies the complementary conditions:

• Therefore, the solution is optimal.

Pivot



The Dual simplex method ..5

• The dual simplex method is recommended for LP problems in which a 

dual basic feasible solution is available.

• The dual simplex method is particularly useful for reoptimizing an LP 

problem after a constraint has been added, since we don’t need to start 

the solution approach from scratch. 

• The cutting planes method to solve MIP problems relies heavily on the 

dual simplex. The core idea of the cutting planes method is to add a 

constraint to the LP problem continuous relaxation whenever an integer 

variable has a fractional value in the optimal solution. The added 

constraint will make this fractional value of the integer variable infeasible.



END


