Try our new documentation site (beta).


multiobj.m


function multiobj()

% Copyright 2024, Gurobi Optimization, LLC
%
% Want to cover three different sets but subject to a common budget of
% elements allowed to be used. However, the sets have different priorities to
% be covered; and we tackle this by using multi-objective optimization.

% define primitive data
groundSetSize     = 20;
nSubSets          = 4;
Budget            = 12;
Set               = [
    1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1;
    0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0;
    0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0
    ];
SetObjPriority    = [3; 2; 2; 1];
SetObjWeight      = [1.0; 0.25; 1.25; 1.0];

% Initialize model
model.modelsense  = 'max';
model.modelname   = 'multiobj';

% Set variables and constraints
model.vtype       = repmat('B', groundSetSize, 1);
model.lb          = zeros(groundSetSize, 1);
model.ub          = ones(groundSetSize, 1);
model.A           = sparse(1, groundSetSize);
model.rhs         = Budget;
model.sense       = '<';
model.constrnames = {'Budget'};

for j = 1:groundSetSize
    model.varnames{j} = sprintf('El%d', j);
    model.A(1, j)     = 1;
end

% Set multi-objectives
for m = 1:nSubSets
    model.multiobj(m).objn     = Set(m, :);
    model.multiobj(m).priority = SetObjPriority(m);
    model.multiobj(m).weight   = SetObjWeight(m);
    model.multiobj(m).abstol   = m;
    model.multiobj(m).reltol   = 0.01;
    model.multiobj(m).name     = sprintf('Set%d', m);
    model.multiobj(m).con      = 0.0;
end

% Save model
gurobi_write(model,'multiobj_m.lp')

% Set parameters
params.PoolSolutions = 100;

% Optimize
result = gurobi(model, params);

% Capture solution information
if ~strcmp(result.status, 'OPTIMAL')
    fprintf('Optimization finished with status %d, quit now\n', result.status);
    return;
end

% Print best solution
fprintf('Selected elements in best solution:\n');
for j = 1:groundSetSize
    if result.x(j) >= 0.9
        fprintf('%s ', model.varnames{j});
    end
end
fprintf('\n');

% Print all solution objectives and best furth solution
if isfield(result, 'pool') && ~isempty(result.pool)
    solcount = length(result.pool);
    fprintf('Number of solutions found: %d\n', solcount);
    fprintf('Objective values for first %d solutions:\n', solcount);
    for m = 1:nSubSets
        fprintf('  %s:', model.multiobj(m).name);
        for k = 1:solcount
            fprintf('  %3g', result.pool(k).objval(m));
        end
        fprintf('\n');
    end
    fprintf('\n');
else
    fprintf('Number of solutions found: 1\n');
    fprintf('Solution 1 has objective values:');
    for k = 1:nSubSets
        fprintf('  %g', result.objval(k));
    end
    fprintf('\n');
end

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search