Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
params.R
# Copyright 2024, Gurobi Optimization, LLC # # Use parameters that are associated with a model. # # A MIP is solved for a few seconds with different sets of parameters. # The one with the smallest MIP gap is selected, and the optimization # is resumed until the optimal solution is found. library(Matrix) library(gurobi) args <- commandArgs(trailingOnly = TRUE) if (length(args) < 1) { stop('Usage: Rscript params.R filename\n') } # Read model cat('Reading model',args[1],'...') model <- gurobi_read(args[1]) cat('... done\n') # Detect set of non-continuous variables intvars <- which(model$vtype != 'C') numintvars <- length(intvars) if (numintvars < 1) { stop('All model\'s variables are continuous, nothing to do\n') } # Set a 2 second time limit params <- list() params$TimeLimit <- 2 # Now solve the model with different values of MIPFocus params$MIPFocus <- 0 result <- gurobi(model, params) bestgap <- result$mipgap bestparams <- params for (i in 1:3) { params$MIPFocus <- i result <- gurobi(model, params) if (result$mipgap < bestgap) { bestparams <- params bestgap <- result$mipgap } } # Finally, reset the time limit and Re-solve model to optimality bestparams$TimeLimit <- Inf result <- gurobi(model, bestparams) cat('Solved with MIPFocus:', bestparams$MIPFocus, '\n') # Clear space rm(model, params, result, bestparams)