Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
qp.m
function qp() % Copyright 2024, Gurobi Optimization, LLC % % This example formulates and solves the following simple QP model: % minimize % x^2 + x*y + y^2 + y*z + z^2 + 2 x % subject to % x + 2 y + 3 z >= 4 % x + y >= 1 % x, y, z non-negative % % It solves it once as a continuous model, and once as an integer % model. names = {'x', 'y', 'z'}; model.varnames = names; model.Q = sparse([1 0.5 0; 0.5 1 0.5; 0 0.5 1]); model.A = sparse([1 2 3; 1 1 0]); model.obj = [2 0 0]; model.rhs = [4 1]; model.sense = '>'; gurobi_write(model, 'qp.lp'); results = gurobi(model); for v=1:length(names) fprintf('%s %e\n', names{v}, results.x(v)); end fprintf('Obj: %e\n', results.objval); model.vtype = 'B'; results = gurobi(model); for v=1:length(names) fprintf('%s %e\n', names{v}, results.x(v)); end fprintf('Obj: %e\n', results.objval); end