Webinar Summary

Discover how the NFL uses mathematical optimization to solve one of the hardest scheduling problems in existence. At first glance, the NFL’s scheduling problem seems simple: 5 people have 12 weeks to schedule 256 games over the course of a 17-week season. That might seem like plenty of planning time for seemingly few decisions, but – when you actually work it out – the number of possible schedules is well into the quadrillions. Making the problem particularly hard is the necessary inclusion of thousands of constraints addressing stadium availability, travel considerations, competitive equity, and television viewership.

In 2013, the NFL began using Gurobi’s mathematical optimization solver to tackle this incredibly complex scheduling problem. With mathematical optimization, NFL planners can generate and analyze more than 50,000 feasible schedules despite adding more constraints to the process every year. Now – instead of spending months manually creating a single feasible schedule – the NFL planners can focus on evaluating and comparing completed schedules to determine which should be selected as the final schedule.

In this webinar, you will learn:

  • How the NFL uses mathematical optimization to solve one of the most challenging scheduling problems in existence.
  • How the NFL switched from a linear to a parallel approach to optimization.

Presented Materials

You can download the slides presented in this webinar here.

Meet the Experts

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.