Breakthrough New Capability

With the release of Gurobi 9.0’s addition of a new bilinear solver, the Gurobi Optimizer now supports non-convex quadratic optimization. This groundbreaking new capability allows users to solve problems with non-convex quadratic constraints and objectives – enabling them to find globally optimal solutions to classic bilinear pooling and blending problems and continuous manufacturing problems.


Business Applications

Companies utilizing mathematical optimization are able to apply non-convex quadratic optimization to a number of industries and problems including:

  • Pooling problem (blending problem is LP, pooling introduces intermediate pools, which lead to bilinear constraints)
  • Petrochemical industry (oil refinery: constraints on ratio of components in tanks)
  • Wastewater treatment
  • Emissions regulation
  • Agricultural / food industry (blending based on pre-mix products)
  • Mining
  • Energy
  • Production planning (constraints on ratio between internal and external workforce)
  • Logistics (restrictions from free trade agreements)
  • Water distribution (Darcy-Weisbach equation for volumetric flow)
  • Engineering design
  • Finance


General MINLP:

  • For general MINLP, another important building block is the support to get automatic
    piece-wise linearization of certain standard non-linear univariate functions like y =
    exp(x), y = sin(x), or y = log(x).
  • Gurobi 9.0 allows to use certain standard non-linear univariate functions like y =
    exp(x) or y = sin(x) in a model. These are automatically approximated using piece-wise
    linear functions.
  • Many classes of general MINLPs can be solved by using these non-linear univariate
    functions and approximating multi-variate functions as polynomials. But note that with
    higher degrees of polynomials, the numerics of the problem become more challenging.


Standard Pooling Problem:

Pooling problems are common in the petrochemical refining, wastewater treatment, and mining industries. This problem can be regarded as a generalization of the minimum-cost flow problem and the blending problem. We construct a non-convex mixed-integer quadratically-constrained programming (MIQCP) model of this problem, implement this model in the Gurobi Python API, and compute an optimal solution.


Meet the Experts

New at Gurobi

Gurobi 10.0 Delivers Blazing-Fast Speed, Innovative Data Science Integration, and an Enterprise Development and Deployment Experience
Latest release enables data professionals to easily integrate machine learning models into optimization models to solve new types of problems.
 Learn More
Webinar: What’s New in Gurobi 10.0
In this webinar, attendees will get a first look at our upcoming product release, Gurobi 10.0. We will summarize the performance improvements and highlight some of the underlying algorithmic advances, such as the network simplex algorithm, enhancements in concurrent LP, and optimization based bound tightening.
 Learn More
new content
Cost Savings & Business Benefits for Gurobi Customers
2022 Total Economic Impact™ Study Reveals A 518% ROI with Gurobi
 Learn More