Music streaming services like Spotify periodically provide their millions of users with curated music recommendations to keep them wanting to come back for more. It is important that these recommendations truly resonate with their users, while also introducing them to novelty that keeps their curiosity alive.
In this notebook, we will create a music recommendation system using a mixture of predictive and prescriptive analytics. The predictive component foresees what users might be into based on their past music preferences, while the prescriptive component uses these predictions to create an optimally diverse recommendation list.
This modeling tutorial is at the introductory level, where we assume that you know Python and that you have a background on a discipline that uses quantitative methods.
You may find it helpful to refer to the documentation of the Gurobi Python API. This notebook is explained in detail in our webinar on data science and mathematical optimization. You can watch these videos by clicking here.