Model: Part 1

Major electric power companies around the world utilize mathematical optimization to manage the flow of energy across their electrical grids. In this example, you’ll discover the power of mathematical optimization in addressing a common energy industry problem: electrical power generation. We’ll show you how to figure out the optimal set of power stations to turn on in order to satisfy anticipated power demand over a 24-hour time horizon.

This model is example 15 from the fifth edition of Model Building in Mathematical Programming by H. Paul Williams on pages 270 – 271 and 325 – 326.

This example is at the intermediate level, where we assume that you know Python and the Gurobi Python API and that you have some knowledge of building mathematical optimization models.

 

Model: Part 2

This example (which is an extension of the earlier ‘Electrical Power Generation 1 ‘ example) will teach you how to choose an optimal set of power stations to turn on in order to satisfy anticipated power demand over a 24-hour time horizon – but gives you the option of using hydroelectric power plants to satisfy that demand.

This model is example 16 from the fifth edition of Model Building in Mathematical Programming by H. Paul Williams on pages 271-272 and 326-327.

This example is at the intermediate level, where we assume that you know Python and the Gurobi Python API and that you have some knowledge of building mathematical optimization models.

Access the Jupyter Notebook Modeling Example

Click on the button below to access the example in Google Colab, which is a free, online Jupyter Notebook environment that allows you to write and execute Python code through your browser. 

How to Run the Jupyter Notebook Modeling Example

  • To run the example the first time, choose “Runtime” and then click “Run all”.
  • All the cells in the Jupyter Notebook will be executed.
  • The example will install the gurobipy package, which includes a limited Gurobi license that allows you to solve small models.
  • You can also modify and re-run individual cells.
  • For subsequent runs, choose “Runtime” and click “on “Restart and run all”.
  • The Gurobi Optimizer will find the optimal solution of the modeling example.

Check out the Colab Getting Started Guide for full details on how to use Colab Notebooks as well as create your own.

What's
New at Gurobi

News
Gurobi 10.0 Delivers Blazing-Fast Speed, Innovative Data Science Integration, and an Enterprise Development and Deployment Experience
Latest release enables data professionals to easily integrate machine learning models into optimization models to solve new types of problems.
 Learn More
Event
Webinar: What’s New in Gurobi 10.0
In this webinar, attendees will get a first look at our upcoming product release, Gurobi 10.0. We will summarize the performance improvements and highlight some of the underlying algorithmic advances, such as the network simplex algorithm, enhancements in concurrent LP, and optimization based bound tightening.
 Learn More
new content
Cost Savings & Business Benefits for Gurobi Customers
2022 Total Economic Impact™ Study Reveals A 518% ROI with Gurobi
 Learn More