Optimization can feel intimidating at first—but it doesn’t have to be. With Gurobi’s intuitive Python interface, you can build powerful models using simple, readable code. In this post, we’ll walk through a basic Gurobi Python example, helping you understand each step and how to tailor it to your own decision-making problems. 

Whether you’re a student learning linear programming or a developer exploring prescriptive analytics, this hands-on tutorial will get you started quickly. 

Why Start with a Gurobi Python Example? 

Learning by example is one of the most effective ways to master a new tool. Gurobi’s Python API (gurobipy) is widely used across industries for solving everything from scheduling to logistics and portfolio optimization. By starting with a simple example, you’ll build a foundation you can apply to more complex scenarios. 

Setting Up Your Gurobi Python Environment 

Before you run your first model, make sure you have everything installed: 

  1. Set up a Gurobi license (free for academic use). You may also try a 30-day free trial if you do not qualify for academic use.
  2. Install the Python interface, by following this linked guide. This will install both Gurobi and the gurobipy library. 

A Basic Linear Programming Gurobi Python Example 

Let’s look at a simple linear programming model:

Objective: Maximize x + y
Constraint: x + 2y ≤ 4

Here’s how to model and solve it in Python using Gurobi: 

from gurobipy import Model, GRB

# Create a model 
m = Model(“basic_example”) 
 
# Add decision variables 
x = m.addVar(name=”x”) 
y = m.addVar(name=”y”) 
 
# Set objective: Maximize x + y 
m.setObjective(x + y, GRB.MAXIMIZE) 
 
# Add constraint: x + 2y ≤ 4 
m.addConstr(x + 2 * y <= 4, “c1”) 
 
# Solve the model 
m.optimize() 
 
# Display results 
for v in m.getVars(): 
   print(f”{v.varName}: {v.x}”) 
 
print(f”Objective Value: {m.objVal}”) 

This model showcases Gurobi’s clean, Pythonic syntax. Every line closely mirrors the mathematical structure of the problem. 

Understanding the Code Step by Step 

  • Model creation: Starts the optimization problem. 
  • Variables: x and y are decision variables. 
  • Objective: We’re maximizing a linear function. 
  • Constraint: We add a simple linear inequality. 
  • Optimization: Gurobi solves the model using its powerful solver engine. 

Once solved, you’ll see the optimal values for x, y, and the objective. 

Solved in 0 iterations and 0.01 seconds (0.00 work units) 
Optimal objective  4.000000000e+00 
 x: 4.0 
 y: 0.0 
 Objective Value: 4.0

Customizing Examples for Your Own Use Case 

This is where the real value kicks in. You can modify the above example to suit your own business constraints and objectives. Whether you’re scheduling workers, assigning resources, or optimizing routes, Gurobi’s API makes it easy to define new variables, constraints, and goals. 

Looking for More Gurobi Python Examples? 

Check out the Gurobi Examples Repository for models covering: 

  • Mixed-Integer Programming (MIP) 
  • Quadratic and Quadratically Constrained Programming (QCP) 
  • Scheduling and logistics use cases 
  • Workforce optimization and more 

These templates are ideal for both learning and rapid prototyping. 

Troubleshooting and Support 

If you encounter errors while running a Gurobi Python example, don’t worry. Gurobi provides extensive logging, and the Gurobi support portal is packed with articles, community Q&A, and expert advice. 

Free Academic Access for Students and Educators 

Gurobi offers free academic licenses that are perfect for learning and teaching. These licenses support full-featured functionality and are ideal for coursework, research, or capstone projects. 

From Example to Enterprise 

Many Gurobi users start with a basic Python example and go on to deploy large-scale optimization solutions in finance, logistics, energy, and AI decision-making systems. The flexibility of Python and the power of Gurobi allow you to scale as your needs grow. 

Ready to take your first step? Try this example and see how easily you can solve real-world problems using Gurobi and Python. 

Looking for more tutorials? Visit gurobi.com to explore our documentation, case studies, and industry applications. 

Guidance for Your Journey

30 Day Free Trial for Commercial Users

Start solving your most complex challenges, with the world's fastest, most feature-rich solver.

Always Free for Academics

We make it easy for students, faculty, and researchers to work with mathematical optimization.

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Academic License
Gurobi provides free, full-featured licenses for coursework, teaching, and research at degree-granting academic institutions. Academics can receive guidance and support through our Community Forum.

Search

Gurobi Optimization

Navigation Menu