Try our new documentation site (beta).

Filter Content By
Version

### linprog.m

function [x, fval, exitflag] = linprog(f, A, b, Aeq, beq, lb, ub)
%LINPROG A linear programming example using the Gurobi MATLAB interface
%
%   This example is based on the linprog interface defined in the
%   MATLAB Optimization Toolbox. The Optimization Toolbox
%   is a registered trademark of The MathWorks, Inc.
%
%   x = LINPROG(f,A,b) solves the linear programming problem:
%
%   minimize     f'*x
%   subject to   A*x <= b
%
%
%   x = LINPROG(f,A,b,Aeq,beq) solves the problem:
%
%   minimize     f'*x
%   subject to     A*x <= b,
%                Aeq*x == beq.
%
%   x = LINPROG(f,A,b,Aeq,beq,lb,ub) solves the problem:
%
%   minimize     f'*x
%   subject to     A*x <= b,
%                Aeq*x == beq,
%          lb <=     x <= ub.
%
%   You can set lb(j) = -inf, if x(j) has no lower bound,
%   and ub(j) = inf, if x(j) has no upper bound.
%
%   [x, fval] = LINPROG(f, A, b) returns the objective value
%   at the solution. That is, fval = f'*x.
%
%   [x, fval, exitflag] = LINPROG(f, A, b) returns an exitflag
%   containing the status of the optimization. The values for
%   exitflag and corresponding status codes are:
%      1 - OPTIMAL,
%      0 - ITERATION_LIMIT,
%     -2 - INFEASIBLE,
%     -3 - UNBOUNDED.
%

if nargin < 3
error('linprog(f, A, b)')
end

if nargin > 7
error('linprog(f, A, b, Aeq, beq, lb, ub)');
end

if ~isempty(A)
n = size(A, 2);
elseif nargin > 4 && ~isempty(Aeq)
n = size(Aeq, 2);
else
error('No linear constraints specified')
end

if ~issparse(A)
A = sparse(A);
end

if nargin > 3 && ~issparse(Aeq)
Aeq = sparse(Aeq);
end

model.obj = f;

if nargin < 4
model.A = A;
model.rhs = b;
model.sense = '<';
else
model.A = [A; Aeq];
model.rhs = [b; beq];
model.sense = [repmat('<', size(A,1), 1); repmat('=', size(Aeq,1), 1)];
end

if nargin < 6
model.lb = -inf(n,1);
else
model.lb = lb;
end

if nargin == 7
model.ub = ub;
end

params.outputflag = 0;
result = gurobi(model, params);

if strcmp(result.status, 'OPTIMAL')
exitflag = 1;
elseif strcmp(result.status, 'ITERATION_LIMIT')
exitflag = 0;
elseif strcmp(result.status, 'INF_OR_UNBD')
params.dualreductions = 0;
result = gurobi(model, params);
if strcmp(result.status, 'INFEASIBLE')
exitflag = -2;
elseif strcmp(result.status, 'UNBOUNDED')
exitflag = -3;
else
exitflag = nan;
end
elseif strcmp(result.status, 'INFEASIBLE')
exitflag = -2;
elseif strcmp(result.status, 'UNBOUNDED')
exitflag = -3;
else
exitflag = nan;
end

if isfield(result, 'x')
x = result.x;
else
x = nan(n,1);
end

if isfield(result, 'objval')
fval = result.objval;
else
fval = nan;
end


Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
##### Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.