Try our new documentation site (beta).


workforce4_c.c


/* Copyright 2016, Gurobi Optimization, Inc. */

/* Assign workers to shifts; each worker may or may not be available on a
   particular day. We use Pareto optimization to solve the model:
   first, we minimize the linear sum of the slacks. Then, we constrain
   the sum of the slacks, and we minimize a quadratic objective that
   tries to balance the workload among the workers. */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "gurobi_c.h"

int solveAndPrint(GRBmodel* model,
                  int nShifts, int nWorkers, char** Workers,
                  int* status);


#define xcol(w,s)         nShifts*w+s
#define slackcol(s)       nShifts*nWorkers+s
#define totSlackcol       nShifts*(nWorkers+1)
#define totShiftscol(w)   nShifts*(nWorkers+1)+1+w
#define avgShiftscol      (nShifts+1)*(nWorkers+1)
#define diffShiftscol(w)  (nShifts+1)*(nWorkers+1)+1+w
#define MAXSTR     128


int
main(int   argc,
     char *argv[])
{
  GRBenv   *env = NULL;
  GRBmodel *model = NULL;
  int       error = 0, status;
  int       s, w, col;
  int      *cbeg = NULL;
  int      *cind = NULL;
  int       idx;
  double   *cval = NULL;
  char     *sense = NULL;
  char      vname[MAXSTR], cname[MAXSTR];
  double    val;

  /* Sample data */
  const int nShifts = 14;
  const int nWorkers = 7;

  /* Sets of days and workers */
  char* Shifts[] =
    { "Mon1", "Tue2", "Wed3", "Thu4", "Fri5", "Sat6",
      "Sun7", "Mon8", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13",
      "Sun14" };
  char* Workers[] =
    { "Amy", "Bob", "Cathy", "Dan", "Ed", "Fred", "Gu" };

  /* Number of workers required for each shift */
  double shiftRequirements[] =
    { 3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 };

  /* Worker availability: 0 if the worker is unavailable for a shift */
  double availability[][14] =
    { { 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 },
      { 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 },
      { 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
      { 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
      { 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 },
      { 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 },
      { 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } };

  /* Create environment */
  error = GRBloadenv(&env, "workforce4.log");
  if (error) goto QUIT;

  /* Create initial model */
  error = GRBnewmodel(env, &model, "workforce4",
                      (nShifts + 1) * (nWorkers + 1),
                      NULL, NULL, NULL, NULL, NULL);
  if (error) goto QUIT;

  /* Initialize assignment decision variables:
     x[w][s] == 1 if worker w is assigned to shift s.
     This is no longer a pure assignment model, so we must
     use binary variables. */
  for (w = 0; w < nWorkers; ++w)
  {
    for (s = 0; s < nShifts; ++s)
    {
      col = xcol(w, s);
      sprintf(vname, "%s.%s", Workers[w], Shifts[s]);
      error = GRBsetcharattrelement(model, "VType", col, GRB_BINARY);
      if (error) goto QUIT;
      error = GRBsetdblattrelement(model, "UB", col, availability[w][s]);
      if (error) goto QUIT;
      error = GRBsetstrattrelement(model, "VarName", col, vname);
      if (error) goto QUIT;
    }
  }

  /* Initialize slack decision variables */
  for (s = 0; s < nShifts; ++s)
  {
    sprintf(vname, "%sSlack", Shifts[s]);
    error = GRBsetstrattrelement(model, "VarName", slackcol(s), vname);
    if (error) goto QUIT;
  }

  /* Initialize total slack decision variable */
  error = GRBsetstrattrelement(model, "VarName", totSlackcol, "totSlack");
  if (error) goto QUIT;

  /* Initialize variables to count the total shifts worked by each worker */
  for (w = 0; w < nWorkers; ++w)
  {
    sprintf(vname, "%sTotShifts", Workers[w]);
    error = GRBsetstrattrelement(model, "VarName", totShiftscol(w), vname);
    if (error) goto QUIT;
  }

  /* The objective is to minimize the sum of the slacks */
  error = GRBsetintattr(model, "ModelSense", 1);
  if (error) goto QUIT;
  error = GRBsetdblattrelement(model, "Obj", totSlackcol, 1.0);
  if (error) goto QUIT;

  /* Make space for constraint data */
  cbeg = malloc(sizeof(int) * nShifts);
  if (!cbeg) goto QUIT;
  cind = malloc(sizeof(int) * nShifts * (nWorkers + 1));
  if (!cind) goto QUIT;
  cval = malloc(sizeof(double) * nShifts * (nWorkers + 1));
  if (!cval) goto QUIT;
  sense = malloc(sizeof(char) * nShifts);
  if (!sense) goto QUIT;

  /* Constraint: assign exactly shiftRequirements[s] workers
     to each shift s, plus the slack */
  idx = 0;
  for (s = 0; s < nShifts; ++s)
  {
    cbeg[s] = idx;
    sense[s] = GRB_EQUAL;
    for (w = 0; w < nWorkers; ++w)
    {
      cind[idx] = xcol(w, s);
      cval[idx++] = 1.0;
    }
    cind[idx] = slackcol(s);
    cval[idx++] = 1.0;
  }
  error = GRBaddconstrs(model, nShifts, idx, cbeg, cind, cval, sense,
                        shiftRequirements, Shifts);
  if (error) goto QUIT;

  /* Constraint: set totSlack column equal to the total slack */
  idx = 0;
  for (s = 0; s < nShifts; ++s)
  {
    cind[idx] = slackcol(s);
    cval[idx++] = 1.0;
  }
  cind[idx] = totSlackcol;
  cval[idx++] = -1.0;
  error = GRBaddconstr(model, idx, cind, cval, GRB_EQUAL,
                       0.0, "totSlack");
  if (error) goto QUIT;

  /* Constraint: compute the total number of shifts for each worker */
  for (w = 0; w < nWorkers; ++w)
  {
    idx = 0;
    for (s = 0; s < nShifts; ++s)
    {
      cind[idx] = xcol(w,s);
      cval[idx++] = 1.0;
    }
    sprintf(cname, "totShifts%s", Workers[w]);
    cind[idx] = totShiftscol(w);
    cval[idx++] = -1.0;
    error = GRBaddconstr(model, idx, cind, cval, GRB_EQUAL, 0.0, cname);
    if (error) goto QUIT;
  }

  /* Optimize */
  error = solveAndPrint(model, nShifts, nWorkers, Workers, &status);
  if (error) goto QUIT;
  if (status != GRB_OPTIMAL) goto QUIT;

  /* Constrain the slack by setting its upper and lower bounds */
  error = GRBgetdblattrelement(model, "X", totSlackcol, &val);
  if (error) goto QUIT;
  error = GRBsetdblattrelement(model, "UB", totSlackcol, val);
  if (error) goto QUIT;
  error = GRBsetdblattrelement(model, "LB", totSlackcol, val);
  if (error) goto QUIT;

  /* Variable to count the average number of shifts worked */
  error = GRBaddvar(model, 0, NULL, NULL, 0, 0, GRB_INFINITY, GRB_CONTINUOUS,
                    "avgShifts");
  if (error) goto QUIT;

  /* Variables to count the difference from average for each worker;
     note that these variables can take negative values. */
  error = GRBaddvars(model, nWorkers, 0, NULL, NULL, NULL, NULL, NULL, NULL,
                     NULL, NULL);
  if (error) goto QUIT;

  error = GRBupdatemodel(model);
  if (error) goto QUIT;

  for (w = 0; w < nWorkers; ++w)
  {
    sprintf(vname, "%sDiff", Workers[w]);
    error = GRBsetstrattrelement(model, "VarName", diffShiftscol(w), vname);
    if (error) goto QUIT;
    error = GRBsetdblattrelement(model, "LB", diffShiftscol(w), -GRB_INFINITY);
    if (error) goto QUIT;
  }

  /* Constraint: compute the average number of shifts worked */
  idx = 0;
  for (w = 0; w < nWorkers; ++w) {
    cind[idx] = totShiftscol(w);
    cval[idx++] = 1.0;
  }
  cind[idx] = avgShiftscol;
  cval[idx++] = -nWorkers;
  error = GRBaddconstr(model, idx, cind, cval, GRB_EQUAL, 0.0, "avgShifts");
  if (error) goto QUIT;

  /* Constraint: compute the difference from the average number of shifts */
  for (w = 0; w < nWorkers; ++w) {
    cind[0] = totShiftscol(w);
    cval[0] = 1.0;
    cind[1] = avgShiftscol;
    cval[1] = -1.0;
    cind[2] = diffShiftscol(w);
    cval[2] = -1.0;
    sprintf(cname, "%sDiff", Workers[w]);
    error = GRBaddconstr(model, 3, cind, cval, GRB_EQUAL, 0.0, cname);
    if (error) goto QUIT;
  }

  /* Objective: minimize the sum of the square of the difference from the
     average number of shifts worked */
  error = GRBsetdblattrelement(model, "Obj", totSlackcol, 0.0);
  if (error) goto QUIT;

  for (w = 0; w < nWorkers; ++w)
  {
    cind[w] = diffShiftscol(w);
    cval[w] = 1.0;
  }
  error = GRBaddqpterms(model, nWorkers, cind, cind, cval);
  if (error) goto QUIT;

  /* Optimize */
  error = solveAndPrint(model, nShifts, nWorkers, Workers, &status);
  if (error) goto QUIT;
  if (status != GRB_OPTIMAL) goto QUIT;


QUIT:

  /* Error reporting */

  if (error)
  {
    printf("ERROR: %s\n", GRBgeterrormsg(env));
    exit(1);
  }

  /* Free data */

  free(cbeg);
  free(cind);
  free(cval);
  free(sense);

  /* Free model */

  GRBfreemodel(model);

  /* Free environment */

  GRBfreeenv(env);

  return 0;
}


int solveAndPrint(GRBmodel* model,
                  int nShifts, int nWorkers, char** Workers,
                  int* status)
{
  int error, w;
  double val;

  error = GRBoptimize(model);
  if (error) return error;

  error = GRBgetintattr(model, "Status", status);
  if (error) return error;

  if ((*status == GRB_INF_OR_UNBD) || (*status == GRB_INFEASIBLE) ||
      (*status == GRB_UNBOUNDED))
  {
    printf("The model cannot be solved "
           "because it is infeasible or unbounded\n");
    return 0;
  }
  if (*status != GRB_OPTIMAL)
  {
    printf("Optimization was stopped with status %i\n", *status);
    return 0;
  }

  /* Print total slack and the number of shifts worked for each worker */
  error = GRBgetdblattrelement(model, "X", totSlackcol, &val);
  if (error) return error;

  printf("\nTotal slack required: %f\n", val);
  for (w = 0; w < nWorkers; ++w)
  {
    error = GRBgetdblattrelement(model, "X", totShiftscol(w), &val);
    if (error) return error;
    printf("%s worked %f shifts\n", Workers[w], val);
  }
  printf("\n");
  return 0;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization