Filter Content By
Version
Text Search
mip2.py
#!/usr/bin/python # Copyright 2016, Gurobi Optimization, Inc. # This example reads a MIP model from a file, solves it and prints # the objective values from all feasible solutions generated while # solving the MIP. Then it creates the associated fixed model and # solves that model. import sys from gurobipy import * if len(sys.argv) < 2: print('Usage: mip2.py filename') quit() # Read and solve model model = read(sys.argv[1]) if model.isMIP == 0: print('Model is not a MIP') exit(0) model.optimize() if model.status == GRB.Status.OPTIMAL: print('Optimal objective: %g' % model.objVal) elif model.status == GRB.Status.INF_OR_UNBD: print('Model is infeasible or unbounded') exit(0) elif model.status == GRB.Status.INFEASIBLE: print('Model is infeasible') exit(0) elif model.status == GRB.Status.UNBOUNDED: print('Model is unbounded') exit(0) else: print('Optimization ended with status %d' % model.status) exit(0) # Iterate over the solutions and compute the objectives model.Params.outputFlag = 0 print('') for k in range(model.solCount): model.Params.solutionNumber = k objn = 0 for v in model.getVars(): objn += v.obj * v.xn print('Solution %d has objective %g' % (k, objn)) print('') model.Params.outputFlag = 1 fixed = model.fixed() fixed.Params.presolve = 0 fixed.optimize() if fixed.status != GRB.Status.OPTIMAL: print("Error: fixed model isn't optimal") exit(1) diff = model.objVal - fixed.objVal if abs(diff) > 1e-6 * (1.0 + abs(model.objVal)): print('Error: objective values are different') exit(1) # Print values of nonzero variables for v in fixed.getVars(): if v.x != 0: print('%s %g' % (v.varName, v.x))