Try our new documentation site.

Filter Content By
Version

### netflow.py

#!/usr/bin/python

# Copyright 2016, Gurobi Optimization, Inc.

# Solve a multi-commodity flow problem.  Two products ('Pencils' and 'Pens')
# are produced in 2 cities ('Detroit' and 'Denver') and must be sent to
# warehouses in 3 cities ('Boston', 'New York', and 'Seattle') to
# satisfy demand ('inflow[h,i]').
#
# Flows on the transportation network must respect arc capacity constraints
# ('capacity[i,j]'). The objective is to minimize the sum of the arc
# transportation costs ('cost[i,j]').

from gurobipy import *

# Model data

commodities = ['Pencils', 'Pens']
nodes = ['Detroit', 'Denver', 'Boston', 'New York', 'Seattle']

arcs, capacity = multidict({
('Detroit', 'Boston'):   100,
('Detroit', 'New York'):  80,
('Detroit', 'Seattle'):  120,
('Denver',  'Boston'):   120,
('Denver',  'New York'): 120,
('Denver',  'Seattle'):  120 })

cost = {
('Pencils', 'Detroit', 'Boston'):   10,
('Pencils', 'Detroit', 'New York'): 20,
('Pencils', 'Detroit', 'Seattle'):  60,
('Pencils', 'Denver',  'Boston'):   40,
('Pencils', 'Denver',  'New York'): 40,
('Pencils', 'Denver',  'Seattle'):  30,
('Pens',    'Detroit', 'Boston'):   20,
('Pens',    'Detroit', 'New York'): 20,
('Pens',    'Detroit', 'Seattle'):  80,
('Pens',    'Denver',  'Boston'):   60,
('Pens',    'Denver',  'New York'): 70,
('Pens',    'Denver',  'Seattle'):  30 }

inflow = {
('Pencils', 'Detroit'):   50,
('Pencils', 'Denver'):    60,
('Pencils', 'Boston'):   -50,
('Pencils', 'New York'): -50,
('Pencils', 'Seattle'):  -10,
('Pens',    'Detroit'):   60,
('Pens',    'Denver'):    40,
('Pens',    'Boston'):   -40,
('Pens',    'New York'): -30,
('Pens',    'Seattle'):  -30 }

# Create optimization model
m = Model('netflow')

# Create variables
flow = m.addVars(commodities, arcs, obj=cost, name="flow")

# Arc capacity constraints
(flow.sum('*',i,j) <= capacity[i,j] for i,j in arcs), "cap")

# Equivalent version using Python looping
# for i,j in arcs:
#   m.addConstr(sum(flow[h,i,j] for h in commodities) <= capacity[i,j],
#               "cap[%s,%s]" % (i, j))

# Flow conservation constraints
(flow.sum(h,'*',j) + inflow[h,j] == flow.sum(h,j,'*')
for h in commodities for j in nodes), "node")
# Alternate version:
#   (quicksum(flow[h,i,j] for i,j in arcs.select('*',j)) + inflow[h,j] ==
#     quicksum(flow[h,j,k] for j,k in arcs.select(j,'*'))
#     for h in commodities for j in nodes), "node")

# Compute optimal solution
m.optimize()

# Print solution
if m.status == GRB.Status.OPTIMAL:
solution = m.getAttr('x', flow)
for h in commodities:
print('\nOptimal flows for %s:' % h)
for i,j in arcs:
if solution[h,i,j] > 0:
print('%s -> %s: %g' % (i, j, solution[h,i,j]))


Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
##### Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.