Try our new documentation site.


mip2_vb.vb


' Copyright 2019, Gurobi Optimization, LLC
'
' This example reads a MIP model from a file, solves it and
' prints the objective values from all feasible solutions
' generated while solving the MIP. Then it creates the fixed
' model and solves that model.


Imports System
Imports Gurobi

Class mip2_vb
    Shared Sub Main(ByVal args As String())

        If args.Length < 1 Then
            Console.WriteLine("Usage: mip2_vb filename")
            Return
        End If

        Try
            Dim env As GRBEnv = New GRBEnv("lp1.log")
            Dim model As GRBModel = New GRBModel(env, args(0))

            If model.IsMIP = 0 Then
                Console.WriteLine("Model is not a MIP")
                Return
            End If

            model.Optimize()

            Dim optimstatus As Integer = model.Status

            If optimstatus = GRB.Status.INF_OR_UNBD Then
                model.Parameters.Presolve = 0
                model.Optimize()
                optimstatus = model.Status
            End If

            Dim objval As Double

            If optimstatus = GRB.Status.OPTIMAL Then
                objval = model.ObjVal
                Console.WriteLine("Optimal objective: " & objval)
            ElseIf optimstatus = GRB.Status.INFEASIBLE Then
                Console.WriteLine("Model is infeasible")
                model.ComputeIIS()
                model.Write("model.ilp")
                Return
            ElseIf optimstatus = GRB.Status.UNBOUNDED Then
                Console.WriteLine("Model is unbounded")
                Return
            Else
                Console.WriteLine("Optimization was stopped with status = " & _
                                  optimstatus)
                Return
            End If

            ' Iterate over the solutions and compute the objectives
            Dim vars() As GRBVar = model.GetVars()
            model.Parameters.OutputFlag = 0

            Console.WriteLine()
            For k As Integer = 0 To model.SolCount - 1
                model.Parameters.SolutionNumber = k
                Dim objn As Double = 0.0

                For j As Integer = 0 To vars.Length - 1
                    objn += vars(j).Obj * vars(j).Xn
                Next

                Console.WriteLine("Solution " & k & " has objective: " & objn)
            Next
            Console.WriteLine()
            model.Parameters.OutputFlag = 1

            ' Solve fixed model
            Dim fixedmodel As GRBModel = model.FixedModel()
            fixedmodel.Parameters.Presolve = 0
            fixedmodel.Optimize()

            Dim foptimstatus As Integer = fixedmodel.Status
            If foptimstatus <> GRB.Status.OPTIMAL Then
                Console.WriteLine("Error: fixed model isn't optimal")
                Return
            End If

            Dim fobjval As Double = fixedmodel.ObjVal

            If Math.Abs(fobjval - objval) > 0.000001 * (1.0 + Math.Abs(objval)) Then
            End If

            Dim fvars() As GRBVar = fixedmodel.GetVars()
            Dim x() As Double = fixedmodel.Get(GRB.DoubleAttr.X, fvars)
            Dim vnames() As String = fixedmodel.Get(GRB.StringAttr.VarName, fvars)

            For j As Integer = 0 To fvars.Length - 1
                If x(j) <> 0 Then
                    Console.WriteLine(vnames(j) & " " & x(j))
                End If
            Next

            ' Dispose of models and env
            fixedmodel.Dispose()
            model.Dispose()
            env.Dispose()

        Catch e As GRBException
            Console.WriteLine("Error code: " & e.ErrorCode & ". " & e.Message)
        End Try
    End Sub
End Class

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search