Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
opttoolbox_lp.m
function opttoolbox_lp() % Copyright 2019, Gurobi Optimization, LLC % % This example uses Matlab 2017b problem based modeling feature, which % requires Optimization Toolbox, to formulate and solve the following % simple LP model, the same model as for lp.m % % maximize % x + 2 y + 3 z % subject to % x + y <= 1 % y + z <= 1 % % To use Gurobi with this example, linprog.m must be in the current % directory or added to Matlab path x = optimvar('x', 'LowerBound',0); y = optimvar('y', 'LowerBound',0); z = optimvar('z', 'LowerBound',0); prob = optimproblem('ObjectiveSense','maximize'); prob.Objective = x + 2 * y + 3 * z; prob.Constraints.cons1 = x + y <= 1; prob.Constraints.cons2 = y + z <= 1; options = optimoptions('linprog'); % For Matlab R2017b use the following % sol = solve(prob, options) % Syntax for R2018a and later sol = solve(prob, 'Options', options); end