Try our new documentation site.


poolsearch.R


# Copyright 2019, Gurobi Optimization, LLC
#
# We find alternative epsilon-optimal solutions to a given knapsack
# problem by using PoolSearchMode

library(Matrix)
library(gurobi)

# define primitive data
groundSetSize <- 10
objCoef       <- c(32, 32, 15, 15, 6, 6, 1, 1, 1, 1)
knapsackCoef  <- c(16, 16,  8,  8, 4, 4, 2, 2, 1, 1)
Budget        <- 33

# Initialize model
model             <- list()
model$modelsense  <- 'max'
model$modelname   <- 'poolsearch'

# Set variables
model$obj         <- objCoef
model$vtype       <- 'B'
model$lb          <- 0
model$ub          <- 1
model$varnames    <- sprintf('El%d', seq(1,groundSetSize))

# Build constraint matrix
model$A           <- spMatrix(1, groundSetSize,
                              i = rep(1,groundSetSize),
                              j = 1:groundSetSize,
                              x = knapsackCoef)
model$rhs         <- c(Budget)
model$sense       <- c('<')
model$constrnames <- c('Budget')

# Set poolsearch parameters
params                <- list()
params$PoolSolutions  <- 1024
params$PoolGap        <- 0.10
params$PoolSearchMode <- 2

# Save problem
gurobi_write(model, 'poolsearch_R.lp')

# Optimize
result <- gurobi(model, params)

# Capture solution information
if (result$status != 'OPTIMAL') {
  cat('Optimization finished with status', result$status, '\n')
  stop('Stop now\n')
}

# Print best solution
cat('Selected elements in best solution:\n')
cat(model$varnames[which(result$x>=0.9)],'\n')

# Print all solution objectives and best furth solution
if ('pool' %in% names(result)) {
  solcount <- length(result$pool)
  cat('Number of solutions found:', solcount, '\n')
  cat('Objective values for first', solcount, 'solutions:\n')
  for (k in 1:solcount) {
    cat(result$pool[[k]]$objval,' ',sep='')
  }
  cat('\n')
  if (solcount >= 4) {
    cat('Selected elements in fourth best solution:\n')
    cat(model$varnames[which(result$pool[[4]]$xn >= 0.9)], '\n')
  }
} else {
  solcount <- 1
  cat('Number of solutions found:', solcount, '\n')
  cat('Solution 1 has objective:', result$objval, '\n')
}

# Clean up
rm(model, params, result)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search