Try our new documentation site.

Filter Content By
Version

### sudoku.m

function sudoku(filename)

%  Copyright 2019, Gurobi Optimization, LLC */
%
% Sudoku example.
%
% The Sudoku board is a 9x9 grid, which is further divided into a 3x3 grid
% of 3x3 grids.  Each cell in the grid must take a value from 0 to 9.
% No two grid cells in the same row, column, or 3x3 subgrid may take the
% same value.
%
% In the MIP formulation, binary variables x[i,j,v] indicate whether
% cell <i,j> takes value 'v'.  The constraints are as follows:
%   1. Each cell must take exactly one value (sum_v x[i,j,v] = 1)
%   2. Each value is used exactly once per row (sum_i x[i,j,v] = 1)
%   3. Each value is used exactly once per column (sum_j x[i,j,v] = 1)
%   4. Each value is used exactly once per 3x3 subgrid (sum_grid x[i,j,v] = 1)
%
% Input datasets for this example can be found in examples/data/sudoku*.
%

SUBDIM = 3;
DIM    = SUBDIM*SUBDIM;

fileID = fopen(filename);
if fileID == -1
fprintf('Could not read file %s, quit\n', filename);
return;
end

board = repmat(-1, DIM, DIM);
for i = 1:DIM
s = fgets(fileID, 100);
if length(s) <= DIM
fprintf('Error: not enough board positions specified, quit\n');
return;
end
for j = 1:DIM
if s(j) ~= '.'
board(i, j) = str2double(s(j));
if board(i,j) < 1 || board(i,j) > DIM
fprintf('Error: Unexpected character in Input line %d, quit\n', i);
return;
end
end
end
end

% Map X(i,j,k) into an index variable in the model
nVars = DIM * DIM * DIM;

% Build model
model.vtype    = repmat('B', nVars, 1);
model.lb       = zeros(nVars, 1);
model.ub       = ones(nVars, 1);

for i = 1:DIM
for j = 1:DIM
for v = 1:DIM
var = (i-1)*DIM*DIM + (j-1)*DIM + v;
model.varnames{var} = sprintf('x[%d,%d,%d]', i, j, v);
end
end
end

% Create constraints:
nRows = 4 * DIM * DIM;
model.A = sparse(nRows, nVars);
model.rhs = ones(nRows, 1);
model.sense = repmat('=', nRows, 1);

Row = 1;

% Each cell gets a value */
for i = 1:DIM
for j = 1:DIM
for v = 1:DIM
if board(i,j) == v
model.lb((i-1)*DIM*DIM + (j-1)*DIM + v) = 1;
end
model.A(Row, (i-1)*DIM*DIM + (j-1)*DIM + v) = 1;
end
Row = Row + 1;
end
end

% Each value must appear once in each row
for v = 1:DIM
for j = 1:DIM
for i = 1:DIM
model.A(Row, (i-1)*DIM*DIM + (j-1)*DIM + v) = 1;
end
Row = Row + 1;
end
end

% Each value must appear once in each column
for v = 1:DIM
for i = 1:DIM
for j = 1:DIM
model.A(Row, (i-1)*DIM*DIM + (j-1)*DIM + v) = 1;
end
Row = Row + 1;
end
end

% Each value must appear once in each subgrid
for v = 1:DIM
for ig = 0: SUBDIM-1
for jg = 0: SUBDIM-1
for i = ig*SUBDIM+1:(ig+1)*SUBDIM
for j = jg*SUBDIM+1:(jg+1)*SUBDIM
model.A(Row, (i-1)*DIM*DIM + (j-1)*DIM + v) = 1;
end
end
Row = Row + 1;
end
end
end

% Save model
gurobi_write(model, 'sudoku_m.lp');

% Optimize model
params.logfile = 'sudoku_m.log';
result = gurobi(model, params);

if strcmp(result.status, 'OPTIMAL')
fprintf('Solution:\n');
for i = 1:DIM
for j = 1:DIM
for v = 1:DIM
var = (i-1)*DIM*DIM + (j-1)*DIM + v;
if result.x(var) > 0.99
fprintf('%d', v);
end
end
end
fprintf('\n');
end
else
fprintf('Problem was infeasible\n')
end

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
##### Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.