Try our new documentation site.


workforce2.R


# Copyright 2019, Gurobi Optimization, LLC
# 
# Assign workers to shifts; each worker may or may not be available on a
# particular day. If the problem cannot be solved, use IIS iteratively to
# find all conflicting constraints.

library(Matrix)
library(gurobi)

# Function to display results
printsolution <- function(result) {
  if(result$status == 'OPTIMAL') {
    cat('The optimal objective is',result$objval,'\n')
    cat('Schedule:\n')
    for (s in 1:nShifts) {
      cat('\t',Shifts[s],':')
      for (w in 1:nWorkers) {
        if (result$x[varIdx(w,s)] > 0.9) cat(Workers[w],' ')
      }
      cat('\n')
    }
  }
}

# define data
nShifts  <- 14
nWorkers <-  7
nVars    <- nShifts * nWorkers
varIdx   <- function(w,s) {s+(w-1)*nShifts}

Shifts  <- c('Mon1', 'Tue2', 'Wed3', 'Thu4', 'Fri5', 'Sat6', 'Sun7',
             'Mon8', 'Tue9', 'Wed10', 'Thu11', 'Fri12', 'Sat13', 'Sun14')
Workers <- c( 'Amy', 'Bob', 'Cathy', 'Dan', 'Ed', 'Fred', 'Gu' )

pay     <- c(10, 12, 10, 8, 8, 9, 11 )

shiftRequirements <- c(3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 )

availability <- list( c( 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 ),
                      c( 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 ),
                      c( 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 ),
                      c( 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 ),
                      c( 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 ),
                      c( 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 ),
                      c( 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ) )

# Set-up environment
env <- list()
env$logfile <- 'workforce2.log'

# Build model
model            <- list()
model$modelname  <- 'workforce2'
model$modelsense <- 'min'

# Initialize assignment decision variables:
#    x[w][s] == 1 if worker w is assigned
#    to shift s. Since an assignment model always produces integer
#    solutions, we use continuous variables and solve as an LP.
model$lb       <- 0
model$ub       <- rep(1, nVars)
model$obj      <- rep(0, nVars)
model$varnames <- rep('',nVars)
for (w in 1:nWorkers) {
  for (s in 1:nShifts) {
    model$varnames[varIdx(w,s)] = paste0(Workers[w],'.',Shifts[s])
    model$obj[varIdx(w,s)]      = pay[w]
    if (availability[[w]][s] == 0) model$ub[varIdx(w,s)] = 0
  }
}

# Set-up shift-requirements constraints
model$A           <- spMatrix(nShifts,nVars,
                      i = c(mapply(rep,1:nShifts,nWorkers)),
                      j = mapply(varIdx,1:nWorkers,
                                 mapply(rep,1:nShifts,nWorkers)),
                      x = rep(1,nShifts * nWorkers))
model$sense       <- rep('=',nShifts)
model$rhs         <- shiftRequirements
model$constrnames <- Shifts

# Save model
gurobi_write(model,'workforce2.lp', env)

# Optimize
result <- gurobi(model, env = env)

# Display results
if (result$status == 'OPTIMAL') {
# The code may enter here if you change some of the data... otherwise
# this will never be executed.
  printsolution(result);
} else if (result$status == 'INFEASIBLE') {
# We will loop until we reduce a model that can be solved
  numremoved <- 0 
  while(result$status == 'INFEASIBLE') {
    iis               <- gurobi_iis(model, env = env)
    keep              <- (!iis$Arows)
    cat('Removing rows',model$constrnames[iis$Arows],'...\n')
    model$A           <- model$A[keep,,drop = FALSE]
    model$sense       <- model$sense[keep]
    model$rhs         <- model$rhs[keep]
    model$constrnames <- model$constrnames[keep]
    numremoved        <- numremoved + 1
    gurobi_write(model, paste0('workforce2-',numremoved,'.lp'), env)
    result            <- gurobi(model, env = env)
  }
  printsolution(result)
  rm(iis)
} else {
# Just to handle user interruptions or other problems
  cat('Unexpected status',result$status,'\nEnding now\n')
}

#Clear space
rm(model, env, availability, Shifts, Workers, pay, shiftRequirements, result)

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search