Try our new documentation site (beta).


Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm maintains both a lower bound and an upper bound on the optimal objective value. For a minimization model, the upper bound is the objective of the best known feasible solution, while the lower bound gives a bound on the best possible objective.

In contrast to ObjBoundC, this attribute takes advantage of objective integrality information to round to a tighter bound. For example, if the objective is known to take an integral value and the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.