Try our new documentation site.

Filter Content By
Version

### bilinear_c.c

/* Copyright 2021, Gurobi Optimization, LLC */

/* This example formulates and solves the following simple bilinear model:

maximize    x
subject to  x + y + z <= 10
x * y <= 2          (bilinear inequality)
x * z + y * z == 1  (bilinear equality)
x, y, z non-negative (x integral in second version)
*/

#include <stdlib.h>
#include <stdio.h>
#include "gurobi_c.h"

int
main(int   argc,
char *argv[])
{
GRBenv   *env   = NULL;
GRBmodel *model = NULL;
int       error = 0;
double    sol[3];
int       ind[3];
double    val[3];
double    obj[] = {1, 0, 0};
int       qrow[2];
int       qcol[2];
double    qval[2];
int       optimstatus;
double    objval;

/* Create environment */

if (error) goto QUIT;

/* Create an empty model */

error = GRBnewmodel(env, &model, "bilinear", 0, NULL, NULL, NULL, NULL,
NULL);
if (error) goto QUIT;

error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL, NULL, NULL,
NULL);
if (error) goto QUIT;

/* Change sense to maximization */

error = GRBsetintattr(model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

/* Linear constraint: x + y + z <= 10 */

ind[0] = 0; ind[1] = 1; ind[2] = 2;
val[0] = 1; val[1] = 1; val[2] = 1;

error = GRBaddconstr(model, 3, ind, val, GRB_LESS_EQUAL, 10.0, "c0");
if (error) goto QUIT;

/* Bilinear inequality: x * y <= 2 */

qrow[0] = 0; qcol[0] = 1; qval[0] = 1.0;

error = GRBaddqconstr(model, 0, NULL, NULL, 1, qrow, qcol, qval,
GRB_LESS_EQUAL, 2.0, "bilinear0");
if (error) goto QUIT;

/* Bilinear equality: x * z + y * z == 1 */

qrow[0] = 0; qcol[0] = 2; qval[0] = 1.0;
qrow[1] = 1; qcol[1] = 2; qval[1] = 1.0;

error = GRBaddqconstr(model, 0, NULL, NULL, 2, qrow, qcol, qval,
GRB_EQUAL, 1, "bilinear1");
if (error) goto QUIT;

/* Optimize model - this will fail since we need to set NonConvex to 2 */

error = GRBoptimize(model);
if (!error) {
printf("Should have failed!\n");
goto QUIT;
}

/* Set parameter and solve again */

error = GRBsetintparam(GRBgetenv(model), GRB_INT_PAR_NONCONVEX, 2);
if (error) goto QUIT;

error = GRBoptimize(model);
if (error) goto QUIT;

/* Write model to 'bilinear.lp' */

error = GRBwrite(model, "bilinear.lp");
if (error) goto QUIT;

/* Capture solution information */

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

error = GRBgetdblattr(model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

error = GRBgetdblattrarray(model, GRB_DBL_ATTR_X, 0, 3, sol);
if (error) goto QUIT;

printf("\nOptimization complete\n");
if (optimstatus == GRB_OPTIMAL) {
printf("Optimal objective: %.4e\n", objval);

printf("  x=%.2f, y=%.2f, z=%.2f\n", sol[0], sol[1], sol[2]);
} else if (optimstatus == GRB_INF_OR_UNBD) {
printf("Model is infeasible or unbounded\n");
} else {
printf("Optimization was stopped early\n");
}

/* Now constrain 'x' to be integral and solve again */

error = GRBsetcharattrelement(model, GRB_CHAR_ATTR_VTYPE, 0, GRB_INTEGER);
if (error) goto QUIT;

error = GRBoptimize(model);
if (error) goto QUIT;

/* Capture solution information */

error = GRBgetintattr(model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

error = GRBgetdblattr(model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

error = GRBgetdblattrarray(model, GRB_DBL_ATTR_X, 0, 3, sol);
if (error) goto QUIT;

printf("\nOptimization complete\n");
if (optimstatus == GRB_OPTIMAL) {
printf("Optimal objective: %.4e\n", objval);

printf("  x=%.2f, y=%.2f, z=%.2f\n", sol[0], sol[1], sol[2]);
} else if (optimstatus == GRB_INF_OR_UNBD) {
printf("Model is infeasible or unbounded\n");
} else {
printf("Optimization was stopped early\n");
}

QUIT:

/* Error reporting */

if (error) {
printf("ERROR: %s\n", GRBgeterrormsg(env));
exit(1);
}

/* Free model */

GRBfreemodel(model);

/* Free environment */

GRBfreeenv(env);

return 0;
}


Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
##### Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.