Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
dietmodel.py
#!/usr/bin/env python3.7 # Copyright 2021, Gurobi Optimization, LLC # Solve the classic diet model. This file implements # a function that formulates and solves the model, # but it contains no model data. The data is # passed in by the calling program. Run example 'diet2.py', # 'diet3.py', or 'diet4.py' to invoke this function. import gurobipy as gp from gurobipy import GRB def solve(categories, minNutrition, maxNutrition, foods, cost, nutritionValues): # Model m = gp.Model("diet") # Create decision variables for the foods to buy buy = m.addVars(foods, name="buy") # The objective is to minimize the costs m.setObjective(buy.prod(cost), GRB.MINIMIZE) # Nutrition constraints m.addConstrs((gp.quicksum(nutritionValues[f, c] * buy[f] for f in foods) == [minNutrition[c], maxNutrition[c]] for c in categories), "_") def printSolution(): if m.status == GRB.OPTIMAL: print('\nCost: %g' % m.objVal) print('\nBuy:') for f in foods: if buy[f].x > 0.0001: print('%s %g' % (f, buy[f].x)) else: print('No solution') # Solve m.optimize() printSolution() print('\nAdding constraint: at most 6 servings of dairy') m.addConstr(buy.sum(['milk', 'ice cream']) <= 6, "limit_dairy") # Solve m.optimize() printSolution()