Try our new documentation site (beta).


workforce3.m


function workforce3()

% Copyright 2021, Gurobi Optimization, LLC
%
% Assign workers to shifts; each worker may or may not be available on a
% particular day. If the problem cannot be solved, relax the model
% to determine which constraints cannot be satisfied, and how much
% they need to be relaxed.

% define data
nShifts  = 14;
nWorkers =  7;
nVars    = nShifts * nWorkers;

Shifts  = {'Mon1'; 'Tue2'; 'Wed3'; 'Thu4'; 'Fri5'; 'Sat6'; 'Sun7';
    'Mon8'; 'Tue9'; 'Wed10'; 'Thu11'; 'Fri12'; 'Sat13'; 'Sun14'};
Workers = {'Amy'; 'Bob'; 'Cathy'; 'Dan'; 'Ed'; 'Fred'; 'Gu'};

pay     = [10; 12; 10; 8; 8; 9; 11];

shiftRequirements = [3; 2; 4; 4; 5; 6; 5; 2; 2; 3; 4; 6; 7; 5];

availability = [
    0 1 1 0 1 0 1 0 1 1 1 1 1 1;
    1 1 0 0 1 1 0 1 0 0 1 0 1 0;
    0 0 1 1 1 0 1 1 1 1 1 1 1 1;
    0 1 1 0 1 1 0 1 1 1 1 1 1 1;
    1 1 1 1 1 0 1 1 1 0 1 0 1 1;
    1 1 1 0 0 1 0 1 1 0 0 1 1 1;
    1 1 1 0 1 1 1 1 1 1 1 1 1 1
    ];

% Build model
model.modelname  = 'workforce3';
model.modelsense = 'min';

% Initialize assignment decision variables:
%    x[w][s] == 1 if worker w is assigned
%    to shift s. Since an assignment model always produces integer
%    solutions, we use continuous variables and solve as an LP.
model.ub    = ones(nVars, 1);
model.obj   = zeros(nVars, 1);

for w = 1:nWorkers
    for s = 1:nShifts
        model.varnames{s+(w-1)*nShifts} = sprintf('%s.%s', Workers{w}, Shifts{s});
        model.obj(s+(w-1)*nShifts) = pay(w);
        if availability(w, s) == 0
            model.ub(s+(w-1)*nShifts) = 0;
        end
    end
end

% Set-up shift-requirements constraints
model.sense = repmat('=', nShifts, 1);
model.rhs   = shiftRequirements;
model.constrnames = Shifts;
model.A = sparse(nShifts, nVars);
for s = 1:nShifts
    for w = 1:nWorkers
        model.A(s, s+(w-1)*nShifts) = 1;
    end
end

% Save model
gurobi_write(model,'workforce3_m.lp');

% Optimize
params.logfile = 'workforce3_m.log';
result = gurobi(model, params);

% Display results
if strcmp(result.status, 'OPTIMAL')
    % The code may enter here if you change some of the data... otherwise
    % this will never be executed.
    printsolution(result, Shifts, Workers)
else
    if strcmp(result.status, 'INFEASIBLE')
        penalties.lb  = inf(nVars, 1);
        penalties.ub  = inf(nVars, 1);
        penalties.rhs = ones(nShifts, 1);
        feasrelax     = gurobi_feasrelax(model, 0, false, penalties, params);
        result        = gurobi(feasrelax.model, params);
        if strcmp(result.status, 'OPTIMAL')
            printsolution(result, Shifts, Workers);
            fprintf('Slack value:\n');
            for j = nVars+1:length(result.x)
                if result.x(j) > 0.1
                    fprintf('\t%s, %g\n', feasrelax.model.varnames{j}, result.x(j));
                end
            end
        else
            fprintf('Unexpected status %s\n',result.status);
        end
    else
        % Just to handle user interruptions or other problems
        fprintf('Unexpected status %s\n',result.status);
    end
end

end

function printsolution(result, Shifts, Workers)
% Helper function to display results
nShifts = length(Shifts);
nWorkers = length(Workers);
fprintf('The optimal objective is %g\n', result.objval);
fprintf('Schedule:\n');
for s = 1:nShifts
    fprintf('\t%s:', Shifts{s});
    for w = 1:nWorkers
        if result.x(s+(w-1)*nShifts) > 0.9
            fprintf('%s ', Workers{w});
        end
    end
    fprintf('\n');
end
end

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search