Try our new documentation site (beta).


computeIIS ( void )

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and variable bounds with the following properties:

  • It is still infeasible, and
  • If a single constraint or bound is removed, the subsystem becomes feasible.
Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQConstr, and IISGenConstr. Each indicates whether the corresponding model element is a member of the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible subsystem found to that point.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain information about the results of the IIS computation by writing an .ilp format file (see Model.write). This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.

Note that this method can be used to compute IISs for both continuous and MIP models.

Example usage:


Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.