Try our new documentation site.


dense_c++.cpp


/* Copyright 2022, Gurobi Optimization, LLC */

/* This example formulates and solves the following simple QP model:

     minimize    x + y + x^2 + x*y + y^2 + y*z + z^2
     subject to  x + 2 y + 3 z >= 4
                 x +   y       >= 1
                 x, y, z non-negative

   The example illustrates the use of dense matrices to store A and Q
   (and dense vectors for the other relevant data).  We don't recommend
   that you use dense matrices, but this example may be helpful if you
   already have your data in this format.
*/

#include "gurobi_c++.h"
using namespace std;

static bool
dense_optimize(GRBEnv* env,
               int     rows,
               int     cols,
               double* c,     /* linear portion of objective function */
               double* Q,     /* quadratic portion of objective function */
               double* A,     /* constraint matrix */
               char*   sense, /* constraint senses */
               double* rhs,   /* RHS vector */
               double* lb,    /* variable lower bounds */
               double* ub,    /* variable upper bounds */
               char*   vtype, /* variable types (continuous, binary, etc.) */
               double* solution,
               double* objvalP)
{
  GRBModel model = GRBModel(*env);
  int i, j;
  bool success = false;

  /* Add variables to the model */

  GRBVar* vars = model.addVars(lb, ub, NULL, vtype, NULL, cols);

  /* Populate A matrix */

  for (i = 0; i < rows; i++) {
    GRBLinExpr lhs = 0;
    for (j = 0; j < cols; j++)
      if (A[i*cols+j] != 0)
        lhs += A[i*cols+j]*vars[j];
    model.addConstr(lhs, sense[i], rhs[i]);
  }

  GRBQuadExpr obj = 0;

  for (j = 0; j < cols; j++)
    obj += c[j]*vars[j];
  for (i = 0; i < cols; i++)
    for (j = 0; j < cols; j++)
      if (Q[i*cols+j] != 0)
        obj += Q[i*cols+j]*vars[i]*vars[j];

  model.setObjective(obj);

  model.optimize();

  model.write("dense.lp");

  if (model.get(GRB_IntAttr_Status) == GRB_OPTIMAL) {
    *objvalP = model.get(GRB_DoubleAttr_ObjVal);
    for (i = 0; i < cols; i++)
      solution[i] = vars[i].get(GRB_DoubleAttr_X);
    success = true;
  }

  delete[] vars;

  return success;
}

int
main(int   argc,
     char *argv[])
{
  GRBEnv* env = 0;
  try {
    env = new GRBEnv();
    double c[] = {1, 1, 0};
    double  Q[3][3] = {{1, 1, 0}, {0, 1, 1}, {0, 0, 1}};
    double  A[2][3] = {{1, 2, 3}, {1, 1, 0}};
    char    sense[] = {'>', '>'};
    double  rhs[]   = {4, 1};
    double  lb[]    = {0, 0, 0};
    bool    success;
    double  objval, sol[3];

    success = dense_optimize(env, 2, 3, c, &Q[0][0], &A[0][0], sense, rhs,
                             lb, NULL, NULL, sol, &objval);

    cout << "optimal=" << success << " x: " << sol[0] << " y: " << sol[1] << " z: " << sol[2] << endl;

  } catch(GRBException e) {
    cout << "Error code = " << e.getErrorCode() << endl;
    cout << e.getMessage() << endl;
  } catch(...) {
    cout << "Exception during optimization" << endl;
  }

  delete env;
  return 0;
}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search