Try our new documentation site (beta).


bilinear.m


function bilinear
% This example formulates and solves the following simple bilinear model:
%  maximize    x
%  subject to  x + y + z <= 10
%              x * y <= 2         (bilinear inequality)
%              x * z + y * z = 1  (bilinear equality)
%              x, y, z non-negative (x integral in second version)

% Copyright 2024, Gurobi Optimization, LLC

% Linear constraint matrix
m.A = sparse([1, 1, 1]);
m.sense = '<';
m.rhs = 10;

% Variable names
m.varnames = {'x', 'y', 'z'};

% Objective function max 1.0 * x
m.obj = [1; 0; 0];
m.modelsense = 'max';

% Bilinear inequality constraint: x * y <= 2
m.quadcon(1).Qrow = 1;
m.quadcon(1).Qcol = 2;
m.quadcon(1).Qval = 1.0;
m.quadcon(1).q = sparse(3,1);
m.quadcon(1).rhs = 2.0;
m.quadcon(1).sense = '<';
m.quadcon(1).name = 'bilinear0';

% Bilinear equality constraint: x * z + y * z == 1
m.quadcon(2).Qrow = [1, 2];
m.quadcon(2).Qcol = [3, 3];
m.quadcon(2).Qval = [1.0, 1.0];
m.quadcon(2).q = sparse(3,1);
m.quadcon(2).rhs = 1.0;
m.quadcon(2).sense = '=';
m.quadcon(2).name = 'bilinear1';

% Solve bilinear model, display solution.
result = gurobi(m);
disp(result.x);

% Constrain 'x' to be integral and solve again
m.vtype = 'ICC';
result = gurobi(m);
disp(result.x);
end

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search