Try our new documentation site (beta).
Filter Content By
Version
Text Search
${sidebar_list_label} - Back
Filter by Language
gc_pwl_func.R
# Copyright 2024, Gurobi Optimization, LLC # # This example considers the following nonconvex nonlinear problem # # maximize 2 x + y # subject to exp(x) + 4 sqrt(y) <= 9 # x, y >= 0 # # We show you two approaches to solve this: # # 1) Use a piecewise-linear approach to handle general function # constraints (such as exp and sqrt). # a) Add two variables # u = exp(x) # v = sqrt(y) # b) Compute points (x, u) of u = exp(x) for some step length (e.g., x # = 0, 1e-3, 2e-3, ..., xmax) and points (y, v) of v = sqrt(y) for # some step length (e.g., y = 0, 1e-3, 2e-3, ..., ymax). We need to # compute xmax and ymax (which is easy for this example, but this # does not hold in general). # c) Use the points to add two general constraints of type # piecewise-linear. # # 2) Use the Gurobis built-in general function constraints directly (EXP # and POW). Here, we do not need to compute the points and the maximal # possible values, which will be done internally by Gurobi. In this # approach, we show how to "zoom in" on the optimal solution and # tighten tolerances to improve the solution quality. library(gurobi) printsol <- function(model, result) { print(sprintf('%s = %g, %s = %g', model$varnames[1], result$x[1], model$varnames[3], result$x[3])) print(sprintf('%s = %g, %s = %g', model$varnames[2], result$x[2], model$varnames[4], result$x[4])) print(sprintf('Obj = %g', + result$objval)) # Calculate violation of exp(x) + 4 sqrt(y) <= 9 vio <- exp(result$x[1]) + 4 * sqrt(result$x[2]) - 9 if (vio < 0.0) vio <- 0.0 print(sprintf('Vio = %g', vio)) } model <- list() # Four nonneg. variables x, y, u, v, one linear constraint u + 4*v <= 9 model$varnames <- c('x', 'y', 'u', 'v') model$lb <- c(rep(0, 4)) model$ub <- c(rep(Inf, 4)) model$A <- matrix(c(0, 0, 1, 4), nrow = 1) model$rhs <- 9 # Objective model$modelsense <- 'max' model$obj <- c(2, 1, 0, 0) # First approach: PWL constraints model$genconpwl <- list() intv <- 1e-3 # Approximate u \approx exp(x), equispaced points in [0, xmax], xmax = log(9) model$genconpwl[[1]] <- list() model$genconpwl[[1]]$xvar <- 1L model$genconpwl[[1]]$yvar <- 3L xmax <- log(9) point <- 0 t <- 0 while (t < xmax + intv) { point <- point + 1 model$genconpwl[[1]]$xpts[point] <- t model$genconpwl[[1]]$ypts[point] <- exp(t) t <- t + intv } # Approximate v \approx sqrt(y), equispaced points in [0, ymax], ymax = (9/4)^2 model$genconpwl[[2]] <- list() model$genconpwl[[2]]$xvar <- 2L model$genconpwl[[2]]$yvar <- 4L ymax <- (9/4)^2 point <- 0 t <- 0 while (t < ymax + intv) { point <- point + 1 model$genconpwl[[2]]$xpts[point] <- t model$genconpwl[[2]]$ypts[point] <- sqrt(t) t <- t + intv } # Solve and print solution result = gurobi(model) printsol(model, result) # Second approach: General function constraint approach with auto PWL # translation by Gurobi # Delete explicit PWL approximations from model model$genconpwl <- NULL # Set u \approx exp(x) model$genconexp <- list() model$genconexp[[1]] <- list() model$genconexp[[1]]$xvar <- 1L model$genconexp[[1]]$yvar <- 3L model$genconexp[[1]]$name <- 'gcf1' # Set v \approx sqrt(y) = y^0.5 model$genconpow <- list() model$genconpow[[1]] <- list() model$genconpow[[1]]$xvar <- 2L model$genconpow[[1]]$yvar <- 4L model$genconpow[[1]]$a <- 0.5 model$genconpow[[1]]$name <- 'gcf2' # Parameters for discretization: use equal piece length with length = 1e-3 params <- list() params$FuncPieces <- 1 params$FuncPieceLength <- 1e-3 # Solve and print solution result = gurobi(model, params) printsol(model, result) # Zoom in, use optimal solution to reduce the ranges and use a smaller # pclen=1-5 to resolve model$lb[1] <- max(model$lb[1], result$x[1] - 0.01) model$ub[1] <- min(model$ub[1], result$x[1] + 0.01) model$lb[2] <- max(model$lb[2], result$x[2] - 0.01) model$ub[2] <- min(model$ub[2], result$x[2] + 0.01) params$FuncPieceLength <- 1e-5 # Solve and print solution result = gurobi(model, params) printsol(model, result) # Clear space rm(model, result)