Try our new documentation site (beta).


multiobj.py


#!/usr/bin/env python3.11

# Copyright 2024, Gurobi Optimization, LLC

# Want to cover three different sets but subject to a common budget of
# elements allowed to be used. However, the sets have different priorities to
# be covered; and we tackle this by using multi-objective optimization.

import gurobipy as gp
from gurobipy import GRB
import sys

try:
    # Sample data
    Groundset = range(20)
    Subsets = range(4)
    Budget = 12
    Set = [
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
        [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0],
        [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0],
    ]
    SetObjPriority = [3, 2, 2, 1]
    SetObjWeight = [1.0, 0.25, 1.25, 1.0]

    # Create initial model
    model = gp.Model("multiobj")

    # Initialize decision variables for ground set:
    # x[e] == 1 if element e is chosen for the covering.
    Elem = model.addVars(Groundset, vtype=GRB.BINARY, name="El")

    # Constraint: limit total number of elements to be picked to be at most
    # Budget
    model.addConstr(Elem.sum() <= Budget, name="Budget")

    # Set global sense for ALL objectives
    model.ModelSense = GRB.MAXIMIZE

    # Limit how many solutions to collect
    model.setParam(GRB.Param.PoolSolutions, 100)

    # Set and configure i-th objective
    for i in Subsets:
        objn = sum(Elem[k] * Set[i][k] for k in range(len(Elem)))
        model.setObjectiveN(
            objn, i, SetObjPriority[i], SetObjWeight[i], 1.0 + i, 0.01, "Set" + str(i)
        )

    # Save problem
    model.write("multiobj.lp")

    # Optimize
    model.optimize()

    model.setParam(GRB.Param.OutputFlag, 0)

    # Status checking
    status = model.Status
    if status in (GRB.INF_OR_UNBD, GRB.INFEASIBLE, GRB.UNBOUNDED):
        print("The model cannot be solved because it is infeasible or unbounded")
        sys.exit(1)

    if status != GRB.OPTIMAL:
        print(f"Optimization was stopped with status {status}")
        sys.exit(1)

    # Print best selected set
    print("Selected elements in best solution:")
    selected = [e for e in Groundset if Elem[e].X > 0.9]
    print(" ".join(f"El{e}" for e in selected))

    # Print number of solutions stored
    nSolutions = model.SolCount
    print(f"Number of solutions found: {nSolutions}")

    # Print objective values of solutions
    if nSolutions > 10:
        nSolutions = 10
    print(f"Objective values for first {nSolutions} solutions:")
    for i in Subsets:
        model.setParam(GRB.Param.ObjNumber, i)
        objvals = []
        for e in range(nSolutions):
            model.setParam(GRB.Param.SolutionNumber, e)
            objvals.append(model.ObjNVal)

        print(f"\tSet{i}" + "".join(f" {objval:6g}" for objval in objvals[:3]))

except gp.GurobiError as e:
    print(f"Error code {e.errno}: {e}")

except AttributeError as e:
    print(f"Encountered an attribute error: {e}")

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search

Gurobi Optimization