Try our new documentation site (beta).


Workforce4.java


/* Copyright 2024, Gurobi Optimization, LLC */

/* Assign workers to shifts; each worker may or may not be available on a
   particular day. We use Pareto optimization to solve the model:
   first, we minimize the linear sum of the slacks. Then, we constrain
   the sum of the slacks, and we minimize a quadratic objective that
   tries to balance the workload among the workers. */

import com.gurobi.gurobi.*;

public class Workforce4 {

  public static void main(String[] args) {
    try {

      // Sample data
      // Sets of days and workers
      String Shifts[] =
          new String[] { "Mon1", "Tue2", "Wed3", "Thu4", "Fri5", "Sat6",
              "Sun7", "Mon8", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13",
              "Sun14" };
      String Workers[] =
          new String[] { "Amy", "Bob", "Cathy", "Dan", "Ed", "Fred", "Gu" };

      int nShifts = Shifts.length;
      int nWorkers = Workers.length;

      // Number of workers required for each shift
      double shiftRequirements[] =
          new double[] { 3, 2, 4, 4, 5, 6, 5, 2, 2, 3, 4, 6, 7, 5 };

      // Worker availability: 0 if the worker is unavailable for a shift
      double availability[][] =
          new double[][] { { 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1 },
              { 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0 },
              { 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
              { 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
              { 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1 },
              { 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1 },
              { 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } };

      // Model
      GRBEnv env = new GRBEnv();
      GRBModel model = new GRBModel(env);
      model.set(GRB.StringAttr.ModelName, "assignment");

      // Assignment variables: x[w][s] == 1 if worker w is assigned
      // to shift s. This is no longer a pure assignment model, so we must
      // use binary variables.
      GRBVar[][] x = new GRBVar[nWorkers][nShifts];
      for (int w = 0; w < nWorkers; ++w) {
        for (int s = 0; s < nShifts; ++s) {
          x[w][s] =
              model.addVar(0, availability[w][s], 0, GRB.BINARY,
                           Workers[w] + "." + Shifts[s]);
        }
      }

      // Slack variables for each shift constraint so that the shifts can
      // be satisfied
      GRBVar[] slacks = new GRBVar[nShifts];
      for (int s = 0; s < nShifts; ++s) {
        slacks[s] =
            model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
                         Shifts[s] + "Slack");
      }

      // Variable to represent the total slack
      GRBVar totSlack = model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
                                     "totSlack");

      // Variables to count the total shifts worked by each worker
      GRBVar[] totShifts = new GRBVar[nWorkers];
      for (int w = 0; w < nWorkers; ++w) {
        totShifts[w] = model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS,
                                    Workers[w] + "TotShifts");
      }

      GRBLinExpr lhs;

      // Constraint: assign exactly shiftRequirements[s] workers
      // to each shift s, plus the slack
      for (int s = 0; s < nShifts; ++s) {
        lhs = new GRBLinExpr();
        lhs.addTerm(1.0, slacks[s]);
        for (int w = 0; w < nWorkers; ++w) {
          lhs.addTerm(1.0, x[w][s]);
        }
        model.addConstr(lhs, GRB.EQUAL, shiftRequirements[s], Shifts[s]);
      }

      // Constraint: set totSlack equal to the total slack
      lhs = new GRBLinExpr();
      lhs.addTerm(-1.0, totSlack);
      for (int s = 0; s < nShifts; ++s) {
        lhs.addTerm(1.0, slacks[s]);
      }
      model.addConstr(lhs, GRB.EQUAL, 0, "totSlack");

      // Constraint: compute the total number of shifts for each worker
      for (int w = 0; w < nWorkers; ++w) {
        lhs = new GRBLinExpr();
        lhs.addTerm(-1.0, totShifts[w]);
        for (int s = 0; s < nShifts; ++s) {
          lhs.addTerm(1.0, x[w][s]);
        }
        model.addConstr(lhs, GRB.EQUAL, 0, "totShifts" + Workers[w]);
      }

      // Objective: minimize the total slack
      GRBLinExpr obj = new GRBLinExpr();
      obj.addTerm(1.0, totSlack);
      model.setObjective(obj);

      // Optimize
      int status =
        solveAndPrint(model, totSlack, nWorkers, Workers, totShifts);
      if (status != GRB.Status.OPTIMAL ) {
        return;
      }

      // Constrain the slack by setting its upper and lower bounds
      totSlack.set(GRB.DoubleAttr.UB, totSlack.get(GRB.DoubleAttr.X));
      totSlack.set(GRB.DoubleAttr.LB, totSlack.get(GRB.DoubleAttr.X));

      // Variable to count the average number of shifts worked
      GRBVar avgShifts =
        model.addVar(0, GRB.INFINITY, 0, GRB.CONTINUOUS, "avgShifts");

      // Variables to count the difference from average for each worker;
      // note that these variables can take negative values.
      GRBVar[] diffShifts = new GRBVar[nWorkers];
      for (int w = 0; w < nWorkers; ++w) {
        diffShifts[w] = model.addVar(-GRB.INFINITY, GRB.INFINITY, 0,
                                     GRB.CONTINUOUS, Workers[w] + "Diff");
      }

      // Constraint: compute the average number of shifts worked
      lhs = new GRBLinExpr();
      lhs.addTerm(-nWorkers, avgShifts);
      for (int w = 0; w < nWorkers; ++w) {
        lhs.addTerm(1.0, totShifts[w]);
      }
      model.addConstr(lhs, GRB.EQUAL, 0, "avgShifts");

      // Constraint: compute the difference from the average number of shifts
      for (int w = 0; w < nWorkers; ++w) {
        lhs = new GRBLinExpr();
        lhs.addTerm(-1, diffShifts[w]);
        lhs.addTerm(-1, avgShifts);
        lhs.addTerm( 1, totShifts[w]);
        model.addConstr(lhs, GRB.EQUAL, 0, Workers[w] + "Diff");
      }

      // Objective: minimize the sum of the square of the difference from the
      // average number of shifts worked
      GRBQuadExpr qobj = new GRBQuadExpr();
      for (int w = 0; w < nWorkers; ++w) {
        qobj.addTerm(1.0, diffShifts[w], diffShifts[w]);
      }
      model.setObjective(qobj);

      // Optimize
      status =
        solveAndPrint(model, totSlack, nWorkers, Workers, totShifts);
      if (status != GRB.Status.OPTIMAL ) {
        return;
      }

      // Dispose of model and environment
      model.dispose();
      env.dispose();

    } catch (GRBException e) {
      System.out.println("Error code: " + e.getErrorCode() + ". " +
          e.getMessage());
    }
  }

  private static int solveAndPrint(GRBModel model, GRBVar totSlack,
                                   int nWorkers, String[] Workers,
                                   GRBVar[] totShifts) throws GRBException {

    model.optimize();
    int status = model.get(GRB.IntAttr.Status);
    if (status == GRB.Status.INF_OR_UNBD ||
        status == GRB.Status.INFEASIBLE  ||
        status == GRB.Status.UNBOUNDED     ) {
      System.out.println("The model cannot be solved "
          + "because it is infeasible or unbounded");
      return status;
    }
    if (status != GRB.Status.OPTIMAL ) {
      System.out.println("Optimization was stopped with status " + status);
      return status;
    }

    // Print total slack and the number of shifts worked for each worker
    System.out.println("\nTotal slack required: " +
                       totSlack.get(GRB.DoubleAttr.X));
    for (int w = 0; w < nWorkers; ++w) {
      System.out.println(Workers[w] + " worked " +
                         totShifts[w].get(GRB.DoubleAttr.X) + " shifts");
    }
    System.out.println("\n");
    return status;
  }

}

Try Gurobi for Free

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Evaluation License
Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Academic License
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.

Search