Explore our modeling examples below, access them via GitHub, or download the entire collection. You can also check out examples for other programming languages, or dive into our functional code. MIP developers: Be sure to check out ticdat.

Beginner

#### Cell Tower Coverage Problem

A simple covering problem that builds a network of cell towers to provide signal coverage to the largest number of people possible.

Beginner

#### Combining Machine Learning and Optimization Modeling in Fantasy Basketball

Fantasy sports has turned into a mainstream activity over the last ten to twenty years with leagues now working with popular fantasy sports sites as official partners. If you’re not familiar with fantasy sports, the goal is to select players from a slate of real games to fill out a virtual lineup.

Beginner

#### COVID-19 Facility Capacity Optimization

This COVID-19 Healthcare Facility Capacity Optimization problem shows you how to determine the optimal location and capacity of healthcare facilities.

Beginner

#### Curve Fitting

Try this Jupyter Notebook Modeling Example to learn how you can fit a function to a set of observations. We will formulate this regression problem as a linear programming problem using the Gurobi Python API and then solve it with the Gurobi Optimizer.

Beginner

#### Facility Location Problem

Facility location problems can be commonly found in many industries, including logistics and telecommunications. In this example, we'll show you how to tackle a facility location problem that involves determining the number and location of warehouses that are needed to supply a group of supermarkets. We'll demonstrate how to construct a mixed-integer programming (MIP) model of this problem, implement this model in the Gurobi Python API, and then use the Gurobi Optimizer to find an optimal solution.

Beginner

#### Logic Programming – 3D Tic-Tac-Toe

Try this logic programming example to learn how to solve the problem of arranging X's and O's on a three-dimensional Tic-Tac-Toe board so as to minimize the number of completed lines or diagonals. This example will show you how a binary programming model can be used to capture simple logical constraints.

Beginner

#### Market Sharing

In this example, we'll show you how to solve a goal programming problem that involves allocating the retailers to two divisions of a company in order to optimize the trade-offs of several market sharing goals. You'll learn how to create a mixed integer linear programming model of the problem using the Gurobi Python API and how to find an optimal solution to the problem using the Gurobi Optimizer.

Beginner

#### Marketing Campaign Optimization

Companies across almost every industry are looking to optimize their marketing campaigns. In this Jupyter Notebook, we'll explore a marketing campaign optimization problem that is common in the banking and financial services industry, which involves determining which products to offer to individual customers in order to maximize total expected profit while satisfying various business constraints. You'll learn how to formulate a mathematical optimization model of the problem (using machine learning predictive response models as parameters) and solve it using the Gurobi Optimizer.

Beginner

#### Offshore Wind Farming

In this example, you'll learn how to solve an offshore wind power generation problem. The goal of the problem is to figure out which underwater cables should be laid to connect an offshore wind farm power network at a minimum cost. We'll show you how to formulate a mixed-integer programming (MIP) model of this problem using the Gurobi Python API and then find an optimal solution to the problem using the Gurobi Optimizer.

Beginner

#### Supply Network Design

Try this Jupyter Notebook Modeling Example to learn how to solve a classic supply network design problem that involves finding the minimum cost flow through a network. We'll show you how – given a set of factories, depots, and customers – you can use mathematical optimization to determine the best way to satisfy customer demand while minimizing shipping costs.

Beginner

#### Tackling world hunger using mathematical optimization

Transporting food in a global transportation network is a challenging undertaking. In this notebook, we will build an optimization model to set up a food supply chain based on real data from the UN World Food Program.

Choose the evaluation license that fits you best, and start working with our Expert Team for technical guidance and support.

Get a free, full-featured license of the Gurobi Optimizer to experience the performance, support, benchmarking and tuning services we provide as part of our product offering.
Gurobi supports the teaching and use of optimization within academic institutions. We offer free, full-featured copies of Gurobi for use in class, and for research.
##### Cloud Trial

Request free trial hours, so you can see how quickly and easily a model can be solved on the cloud.